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Abstract— Calcium ion, the second messenger, plays pivotal role 
in many physiological processes like, contraction, signaling, 
prolification, etc. [2]. Due to calcium ions, nerve cells are able to 
move from one cytosole to synapse or other cytosole. A 
mathematical model is developed in the form of advection-
diffusion equation to study the effect of different physiological 
parameters like diffusion coefficient, potential difference, flux at 
boundary, etc. Laplace transform is employed to find the 
solution. Graphical results are obtained with the help of 
MATLAB. In present study it is observed that the effect of 
advection on cytosolic calcium distribution is significant at high 
speed flux. VGCC also make the significant effect on cytosolic 

calcium concentration to increase the concentration. 
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I. INTRODUCTION 
 

athematical model plays an important role in 
understanding various real world problems in science 

and engineering. In biology, now a days, investigations are 
made with the help of mathematical models. Neuroscience, 
one of them, is an emerging area where calcium dynamics are 
studied through mathematical models. In our nervous system, 
many kind of nerve cells are found like neuron, astrocytes 
(glial cells), myocytes, fibrocytes, etc. Neuron and Glial cells 
are found in central nervous system (CNS) and rests of the 
cells are found in peripheral nervous system (PNS) [5]. Nerve 
impulse moves from one cell to another cell and thus 
information moves from one part to another part of our body. 
Movement of the neurotransmitter is due to the free calcium 
ions 2[ ]Ca  . As calcium ions enter into the nerve cells, due to 

the high calcium concentration, the nerve impulse 
(neurotransmitter)   moves towards the synapse with the help 
of protein. The way how  the calcium ions enter into cell is 
different. Calcium ions are diffused into the cell due to 
concentration difference. It also moves into the cytosole due 
to potential difference via various ion channels. Four types of 

2Ca  -permeable voltage channels are found. They are P, N, L, 
and Q-type channels [1]. In present study L-type voltage gated 
calcium channel is considered.  
Free calcium ions enter into cytosole through voltage gated 
cacium channel and work as a second messenger in electrical 
signaling, which starts various different inter and intracellular 
events. In neuron, synaptic transmission is started as 2Ca   

ion enters into the cytosole via voltage gated channels [3,4,6]. 
In many other cells it regulates enzyme activity, gene 
expression and other bio-chemical processes [7]. Thus voltage 
gated calcium channel plays an important role in many 
cellular processes. 
Calcium ions also enter via diffusion process into the 
cytosole. Diffusion is the process in which free calcium ions 
move from one place (post synapse) to another place 
(cytosole), in straight direction due to concentration 
difference. In literature, many authors have studied the 
calcium distribution in the form of diffusion equation in 
presence of voltage gated channel [11,13,16,22]. 
Mathematical models are solved using various analytical and 
numerical techniques [9-18,21]. Very few efforts have been 
made to study the calcium distribution in the form of 
advection diffusion. Jha et.al have studied the effect of buffer, 
VGCC, and advection on cytosolic calcium distribution in 
astrocytes [13]. Panday and Pardasani have studied the role of 
advection diffusion in calcium regulation in oocytes [15]. In 
this paper we have studied the combined effect of VGCC and 
advection diffusion on cytosolic calcium distribution in nerve 
cells like neuron, astrocytes, etc. 
Shuai Z et.al investigated the possible role of VGCC in 2Ca   
oscillations in astrocytes [22]. 
 

A. Mathematical Formulation 

 

The concentration profile of 2Ca   is taken into account in 

the form of advection-diffusion. It is supposed that due to 

aqueous medium, coupling between various ions and 

chemical activity, advection-diffusion of 2Ca  takes place 

[12].  

 
 

Figure 1: Mass transfers in domain [12] 

 
Advection is the process in which diffusion takes place in the 
cross flow direction. Smith et.al have shown the nonlinear 
advection diffusion in presence of rapid buffers in neuron [19]. 
The theoretical analysis and interpretation of the advection term 
is based on the conservation law in differential form. [5,22]. 

M 
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Here u is the calcium concentration, ( , )J x t  is the rate at 

which u cross the boundary (plasma membrane) at point x 

from left to right at time t. ( , , )f x t u is the net rate of increase 

of u (through source and sink) per unit volume at location x 

and time t. Here a uniform macroscopic flow of calcium ion 

is assumed with speed v along the x-axis, which carries 

additional u with it. After incorporating diffusive flux and  

advective flux, the total flux is given as 
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Thus, equation (1) becomes reaction-advection-diffusion 

equation. i.e. 
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In one dimensional case, the mouth of the channel is assumed 

at x=0. Calcium ion diffused at x=0 approaches up to x=5 

M .  

For the internal behavior of 2Ca  , we have taken VGCC as  

( , , )f x t u . 

 

Voltage Gated Calcium Channel (VGCC) 
 

For mathematical formulation of VGCC, the Goldman-

Hodgkin-Katz (GHK) current equation is used and given as 

   
2 2

2
2

[ ] [ ] exp( )

1 exp( )

m
i o Ca

m
Ca Ca Ca

m
Ca

FV
Ca Ca z

F V RTI P z
FVRT

z
RT

  



 

           - (4)      

                                               

where 2[ ]iCa  and 2[ ]oCa  are the intracellular and extracellular 

concentrations respectively.
CaP is the permeability of calcium 

ion. Caz is the valency of calcium ion, F is Faraday’s constant 

and 
mV is membrane potential. R is real gas constant and T is 

the absolute temperature. 

 

Equation (4) is converted into moles/second by using the 

following equation. 

 

Ca
Ca

Ca nervecells

I

z FV
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The negative sign in equation (5) is taken by the convention 

that the inward current is to be negative. Combining equations 

(3) and (5), we get 
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Considering the point source of calcium at x=0, the boundary 

condition can be given as 
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Also the background concentration of 2[ ]Ca   is considered 

0.1 M. As 2Ca  moves away from the mouth of the channel, 

the another boundary condition is expressed as  
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In equation (6), we consider 
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Therefore, equation (6) is converted as 
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The initial and boundary conditions are given as 
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lim[ ] 0
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C
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We have fixed the calcium concentration of post synaptic cleft 

around 22-23 M . Therefore the condition    becomes 

 

          0[ ] | 0tC                                                            --- (14) 

Now we employ the similarity transformation in equation (10).  

By considering the coordinate transforms given by [8 ] 

 

          
0( )x x ut    , t                                        --- (15) 

Where  is moving reference frame spatial coordinate. For the 

sake of convenience, origin is assumed at the mouth of the 

channel (x=0) is cytosole i.e. x=0 is the injector point of tracer 

where the 2Ca  flux enter into cytosole. v is the mean velocity 

of flow of 2Ca  and ut  is the distance travelled by the 2Ca 

flux. Using the coordinate transfer equation (14) and (15), 

equation (10) is converted using chain rule as 
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which is reduced to  
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which is one dimensional partial differential equation with 

diffusion term. Applying the transformation on initial and 

boundary conditions on (12), (13) and (14), 
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And 
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The point source solution of equation (17) is obtained using 

Laplace transform. Applying the Laplace transform on (17) 

and      using the initial condition (20), we obtain 
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Applying the Laplace transform along boundary 

conditions, we get 
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The solution of equation (21) is given as, 
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The 1c and 2c is obtained using the boundary conditions (22) 

and (23) and are given as below 
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Now from equation (25), solution of equation (24) is given as 
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Now we apply inverse Laplace transform on (26) [20], we 

obtain  
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Using transform (15) in equation (27), we get 
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B. Results and Discussion   

The numerical values of parameter to obtain the results for 

calcium profile are given in Table-1 unless stated along with 

figures. The source amplitude is converted into µM/s and it is 

divided by diffusion coefficient for applying boundary 

condition and computing the results. 

Table I. 

Values of physiological parameters. [11] 

 
Symbol Parameter 

Values 

   

CaD
 

Diffusion Coefficient 
200–300 µ

2m /s 

σ                Source Amplitude 1 pA 

[Ca2+]∞ Background[Ca2+] Concentration 0.1 µM 

nervecellsv
 

Volume of Cytosol 
5.233 × 1013l 

 
F 

Faraday’s Constant 96, 485 C/mol 

R Ideal Gas Constant 8.31 J/(mol.K) 

T Temperature 300 K 

Pout Rate of Calcium Efflux from the 

Cytosol 0.5 
1s  

CaZ  Valance of [Ca2+] ion 2 
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Fig. 2 (b) 

 

Fig. 2 (c) 

 

Fig. 2 (d) 

Fig. 2: Calcium distribution along x-direction in presence and absence of 

advection at different time steps in presence of VGCC 

In figure 2(a, b, c, d), the variation in calcium profile is 

shown to see the effect of advection term in presence of 

VGCC at different time steps. In all the figures, (2a, 2b, 2c, 

2d) it is observed that the calcium concentration is lesser in 

presence of advection than the absence of advection. But it 

increases along x-axis at x=0.5 µM (fig 2a), x=0.6 µM (fig 

2b), x=0.8 µM (fig 2c) and x=1 µM (fig 2d) as it moves far 

away from the source. It maintains the background 

concentration level thereafter at x=2.6 µM, 3.7 µM, 4.9 µM 

in figure 2a, 2b, 2c respectively. As time increases upto t=4 

ms, calcium ion moves far away from the calcium profile 

that are found in absence of advection. Thus it is observed 

that the calcium concentration maintain the higher level 

throughout the region. The role of advection is found 

significant and matched with the results found by Jha et.al. 

We have found more deviation due to the speed of flux, 

100 µM/s,   

 

Fig. 3 (a) 

 

Fig. 3 (b) 
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Fig. 3 (c) 

 

Fig. 3 (d) 

Fig. 3: Calcium distribution along x-direction in   absence and presence of 

advection at different time steps in absence of VGCC 

 In figure 3(a, b, c, d), the variation in calcium profile is 

shown to see the effect of advection term in absence of 

VGCC at different time steps. In all the figures (3a, 3b, 3c, 

3d) it is observed that the calcium concentration is lesser in 

presence of advection than the absence of advection. But it 

increases along x-axis at x=0.5 µM (fig 3a), x=0.6 µM (fig 

3b), x=0.8 µM (fig 3c) and x=1 µM (fig 3d) as it moves far 

away from the source. It maintains the background 

concentration level thereafter at x=2.6 µM, 3.7 µM, 4.9 µM 

in figure 3a, 3b, 3c respectively. As time increases upto t=4 

ms, calcium ion moves far away from the calcium profile 

that found in absence of advection. Thus it is observed that 

the calcium concentration maintain the higher level 

throughout the region. The role of advection is found 

significant in presence of VGCC. The speed of 2Ca  flux at 

mouth of channel is taken 100 µM/s. It is observed that the 

effect of VGCC from Fig. 2 and Fig. 3 is surpassed by 

advection diffusion. To check the significant effect of 

VGCC on cytosolic calcium distribution in nerve cell, the 

speed of 2Ca  flux is assumed 10 µM/s. 

 

Fig. 4 (a) 

 

Fig. 4 (b) 

 

Fig. 4 (c) 
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Fig. 4 (d) 

Fig. 4: Calcium distribution along x-direction in absence and presence of 

advection at different time steps 

In Fig. 4(a, b, c, d), the effect of VGCC on cytosolic 

calcium distribution is shown along x-axis. It is observed 

that the calcium concentration is maximum at the source 

,x=0,  and it decreases sharply upto x=1.5 µM and after that 

decreases slowly upto x=2.5 µM. Finally it attends the 

background concentration (0.1 µM). In presence of VGCC, 

initially the calcium concentration level is not increasing 

significantly but as time increases the significant effect of 

VGCC is visible. In Fig. 4(c and d), behavior of 2Ca 

profile is same as fig 4 (a and b) and the effect of VGCC on 
2Ca  profile is significant. It happens due to low speed of 
2Ca  flux at source. Comparing Fig. 3 and Fig. 4, it is 

observed that the effect of VGCC is significant at low 

speed flux only. 

 

II.  CONCLUSIONS 

 
A mathematical model is developed in form of advection 

diffusion equation. To find the analytical solution of 

equation (10), Laplace transforms and similarity transforms 

are employed. The behavior of 2Ca   profile is matched 

with the previous results [14] throughout the region. The 

effect of VGCC and advection on cytosolic 2Ca   

concentration in nerve cells is shown. It is observed that the 

effect of VGCC is significant in absence of advection term 

or at low speed flux at source. The effect of advection on 
2Ca   profile is significant throughout the region of low and 

high speed flux as time increases. The 2Ca  level in 

cytosole is higher as time increases, in presence of 

advection than that of only diffusion. Physiologically more 

transmitter will be released from the cytosol in presence of 

advection. On the other side, if 2Ca 

 level remains high for 

long time, than this will have toxic effect on the nerve cells. 

The effect of buffers, ER, mitochondria, IP3 receptor, etc 

needs to be included to observe the effect of advection and 

to obtain more transformed  result. 
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