
International Journal of Research and Scientific Innovation (IJRSI) | Volume IV, Issue VIIS, July 2017 | ISSN 2321–2705

www.rsisinternational.org Page 145

Nature Propelled Mutation Testing Techniques: PeSO

and ABC

Jyoti Chaudhary
1
, Dr. Mukesh Kumar

2

1,2
Department of Computer Engineering, The Technological Institute of Textile & Sciences, Bhiwani, India

1
Research Scholar, UIET, MDU, Rohtak, India

Abstract :- Mutation Testing is utilized as fault based testing to

overcome constraints of other testing approaches yet it is

recognized as costly process. In mutation testing, a good test case

is one that kills one or more mutants, by delivering different

mutant yield from the original program. In order to select or

generate a good test case an optimization algorithm needs to be

selected that can demonstrate its suitability for generating an

optimal test cases as well as lessening the cost of data generation

in various testing approaches. Three methodologies, specifically,

computational calculations, mathematical development, and

nature- metaheuristic techniques, can be utilized to tackle this

issue effectively and locate a close optimal arrangement. Utilizing

nature-propelled metaheuristic calculations can produce more

proficient results than other methodologies. This methodology is

more adaptable than others since it can build test case generation

for mutation testing with various data variables and levels.

Strategies that have been utilized for ideal test case generation

from the cases incorporate simulated annealing (SA), genetic

algorithm (GA), ant colony algorithm (ACA), and particle

swarm optimization (PSO), but we found two strategies: artificial

bee colony (ABC) algorithm and Penguins Search Optimization

(PeSO) algorithm to be most appealing.

Keywords - Artificial bee colony (ABC) algorithm, Mutation

Testing, nature- metaheuristic techniques, Penguins Search

Optimization (PeSO), Test Case Generation.

I. INTRODUCTION

oftware associations spend more than 40%-50% of their

advancement cost in programming testing [1]. So as to test

programming, test data must be produced. Producing test data

physically is moderate, costly, and requires thorough

endeavors. Thus, automated test data generation techniques

can be utilized to facilitate the procedure and lessen the cost.

The Mutation testing is a sort of white box testing technique.

Fundamentally, it is fault based testing situated in light of

mutation analysis which beats the constraints of other testing

approaches. Mutation analysis recognizes method to change,

i.e. to adjust, software antiquities. Mutation testing gives a

testing rule which can be utilized to gauge the adequacy of a

test set or data as far as its capacity to distinguish faults [2].

Testing aims to find as many of the faults in a program as

possible by executing it with a variety of inputs and

conditions so as to reveal errors. Each set of inputs and

conditions used in testing is known as a test case and a

collection of test cases is called a test suite [3]. Successful test

data generation finds faults in the program under test with as

few test cases as possible. The tester deliberates all

conceivable input spaces when selecting test cases for the

software which is under test [4]. Be that as it may, considering

all inputs is unimaginable in numerous real-world applications

due to time and asset imperatives. Henceforth, the part of test

configuration methods is exceptionally imperative. A test plan

strategy is utilized to deliberately select test cases through a

particular inspecting mechanism [5]. This process optimizes

the quantity of test cases to acquire an optimum test suite, in

this way wiping out the time and cost of the testing stage in

software advancement. Diverse studies have proposed

different functional test designs, for example, equality class

dividing, boundary value examination, and circumstances and

effect investigation by means of decision tables [6].

All in all, the tester objective is to utilize more than

one testing technique on the grounds that distinctive issues

might be identified when diverse testing strategies are utilized

[7]. Be that as it may, with the inconceivable development and

improvement of software systems and their configurations, the

likelihood of the event of issues has expanded due to the

arrangements of these configurations, especially for

exceedingly configurable software systems [8]. Traditional

test outline systems are valuable for deficiency disclosure and

anticipation. Nonetheless, such strategies can't recognize

deficiencies that are brought on by the arrangements of input

parts and configurations [9].

Considering all combinations or arrangements

prompts comprehensive testing, which is impossible due to

time and asset requirements [10]. Thus, finding an optimum

arrangement of test cases can be a troublesome task, and

finding a unified process that creates optimum results is

challenging [11-12]. Three methodologies, specifically,

computational calculations, mathematical development, and

nature- metaheuristic techniques, can be utilized to tackle this

issue effectively and locate a close optimal arrangement

[13].Utilizing nature-propelled meta-heuristic calculations can

produce more proficient results than other methodologies.

This methodology is more adaptable than others since it can

build test case generation for mutation testing with various

data variables and levels. Subsequently, its result is more

pertinent on the grounds that most practical systems have

diverse input components and levels [14]. Strategies that have

been utilized for ideal test case generation from the cases

incorporate simulated annealing (SA) [15], genetic algorithm

S

International Journal of Research and Scientific Innovation (IJRSI) | Volume IV, Issue VIIS, July 2017 | ISSN 2321–2705

www.rsisinternational.org Page 146

(GA) [16], ant colony algorithm (ACA) [17], and particle

swarm optimization (PSO) [18]. We found two techniques:

artificial bee colony (ABC) algorithm and Penguins Search

Optimization (PeSO) algorithm to be most suitable.

II. RELATED WORKS

Baker R, and Habli I [19] have provided an empirical

evaluation of the application of mutation testing to airborne

software systems which have already satisfied the coverage

requirements for certification. Specifically, they applied

mutation testing to safety-critical software developed using

high-integrity subsets of C and Ada, identified the most

effective mutant types, and analyzed the root causes of

failures in test cases. Their findings showed how mutation

testing could be effective where traditional structural coverage

analysis and manual peer review have failed. They also

showed that several testing issues have origins beyond the test

activity, and this suggested improvements to the requirements

definition and coding process. Their study also examined the

relationship between program characteristics and mutation

survival and considered how program size provided a means

for targeting test areas most likely to have dormant faults.

Industry feedback was also provided, particularly on how

mutation testing can be integrated into a typical verification

life cycle of airborne software.

Fraser G, and Arcuri A et al. [20] have extended and

evaluated the whole test suite generation approach for

mutation testing. In previous work, the whole test suite

approach led to large improvements in performance for

branch coverage. One simple reason to explain such large

improvements was that, with the whole test suite approach,

the presence of infeasible testing targets does not harm the

search. That paper confirmed that this was also the case for

mutation testing, by performing an empirical study on 100

Java projects randomly selected from Source Forge, i.e., the

SF100 corpus (consisting of 8, 963 classes, for a total of more

than two million lines of code). Besides the whole test suite

approach, EVOSUITE also included several novel

optimizations for mutation testing, such as the use of infection

conditions, optimized mutation operators, and prioritized test

execution. Their results showed that using standard mutation

testing in test case generation would not scale up to the

complexity of real-world software.

Debroy V, and Wong W. E [21] have proposed a

strategy for automatically fixing faults in a program by

combining the ideas of mutation and fault localization.

Statements ranked in order of their likelihood of containing

faults are mutated in the same order to produce potential fixes

for the faulty program. The strategy was evaluated using 8

mutant operators against 19 programs each with multiple

faulty versions. Their results indicated that 20.70% of the

faults are fixed using selected mutant operators, suggesting

that the strategy holds merit for automatically fixing faults.

The impact of fault localization on efficiency of the overall

fault- fixing process was investigated by experimenting with

two different techniques, Tarantula and Ochiai, the latter of

which has been reported to be better at fault localization than

Tarantula, and also proved to be better in the context of fault-

fixing using their strategy.

Belli F et al. [22] have introduced the concept of

model-based mutation testing (MBMT) and position it in the

landscape of mutation testing. Two elementary mutation

operators, insertion and omission, are exemplarily applied to a

hierarchy of graph-based models of increasing expressive

power including directed graphs, event sequence graphs, finite

state machines and state charts. Test cases generated based on

the mutated models (mutants) are used to determine not only

whether each mutant can be killed but also whether there are

any faults in the corresponding system under consideration

(SUC) developed based on the original model. Novelties of

their approach are: (1) evaluation of the fault detection

capability (in terms of revealing faults in the SUC) of test sets

generated based on the mutated models, and (2) superseding

of the great variety of existing mutation operators by iterations

and combinations of the two proposed elementary operators.

Three case studies were conducted on industrial and

commercial real-life systems and demonstrated the feasibility

of MBMT approach in detecting faults in SUC, and analyzed

its characteristic features.

Habibi E, and Mirian-Hosseinabadi S. H et al. [23]

have introduced a new six-stage testing procedure for event-

driven web applications to overcome EDS testing challenges.

The stages of the testing procedure include dividing the

application based on its structure, creating functional graphs

for each section, creating mutants from functional graphs,

choosing coverage criteria to produce test paths, merging

event sequences to make longer ones, and deriving and

running test cases. They have analyzed their testing procedure

with the help of four metrics consisting of Fault Detection

Density (FDD), Fault Detection Effectiveness (FDE),

Mutation Score, and Unique Fault. Using that procedure, they

have prepared prioritized test cases and also discovered a list

of unique faults by running the suggested test cases on a

sample real-world web application called Academic E-mail

System.

III. NATURE PROPELLED TECHNIQUES FOR MUTATION

TESTING

Utilizing nature propelled meta-heuristic techniques can

produce more perfect results than other techniques. Here we

are discussing two such techniques artificial bee colony

(ABC) algorithm and Search Optimization (PeSO) algorithm

A. Artificial Bee Colony Algorithm

An innovative swarm intelligence based optimizer is the

artificial bee colony (ABC) algorithm. It mimics the obliging

foraging actions of a swarm of honey bees. ABC is used here

for optimizing multi-modal and multi-variable continuous

functions. Particularly, the control parameters number in ABC

is less compared with other population-based algorithms, thus

make it easier to be implement. In the meantime, the

performance of ABC is analogous and sometimes to the state-

International Journal of Research and Scientific Innovation (IJRSI) | Volume IV, Issue VIIS, July 2017 | ISSN 2321–2705

www.rsisinternational.org Page 147

of-the-art meta-heuristics it is larger. Therefore, much interest

has been paid and successfully applied to resolve diverse

types of optimization issues. In ABC algorithm, artificial bees

are categorized into three sets: employed bees, onlooker bees

and the scout bees. Employed bee exploits a food source. The

employed bees share information with the onlooker bees,

which is waiting in the hive and the employed bees dances are

observed by them. With probability proportional to the quality

of that food source the onlooker bees will then select a food

source. Thus, than the bad ones more bees are attracted by

good food sources. Arbitrarily in the vicinity of the hive scout

bees search for new food sources. When a food source is

originated by a scout or onlooker bee, it converts employed.

All the employed bees connected with the food source will

abandon the position, when a food source has been

completelyabused and may become scouts again. Thus, the

job of „„exploration‟‟ is done by scout bees, however

employed and onlooker bees accomplish the job of

„„exploitation‟‟. The processes in scout bee are done by

utilizing Penguin Search Optimization (PeSO) Algorithm.

Which facilitate the work of the scout bee phase more robust.

In the proposed algorithm, a food source corresponds to a

possible solution to the optimization problem, and to the

fitness of the associated solution the nectar amount of a food

source is corresponded. In ABC, employed bees are in the

first half of the colony and the onlookers are in the other half.

The number of employed bees and the number of food sources

(SN) are equal as it is assumed for each food source that there

is only one employed bee. Thus, the number of onlooker bees

and the number of solutions under consideration are equal.

With a group of randomly generated food sources the ABC

algorithm starts. The major process of ABC can be designated

as follows.

 Initialization Phase: This is the initial or starting phase of

ABC algorithm. The SN initial solutions are arbitrarily created

D-dimensional real vectors.

 diiii FFFF ,2,1, ,....,, (10)

iF represent the i
th

food source, which is obtained by

 minmaxmin

, ddddi FFrFF  (11)

Where is a uniform random number in the range]1,0[and

min

dF and
max

dF are the lower and upper bounds for dimension

d respectively d=1,..,D.

Employed Bee Phase: In this phase, each employed bee is

associated with a solution. She exerts a random modification

on the solution (original food source) to find a new solution

(new food source). This implements the function of

neighborhood search. The new solution Vi is generated from Fi

using a differential expression

 dkdididi FFrFS ,,

'

,,  (12)

Where d is arbitrarily chosen from {1,…,SN}such that ik 

and
'r is a uniform random number in the range [-1, 1]. Once

si is obtained, it will be evaluated and compared. If the fitness

of xi is better than that of xi(i.e. than the old one high nectar

amount in new food source), the bee memorize the new one

and forget the old solution or else on xi keeps working.

 Onlooker Bee Phase: In this phase, when the local search of

all employed bees have been finished then, they share the

nectar information of their food source with the onlookers,

each of whom in a probabilistic manner will then select a food

source. The probability Pbi by which a food source xi chosen

by onlooker bee is computed as follows

 


SN

i i

i

i

f

f
Pb

1

 (13)

Where fi is the fitness value of xi. Obviously, with higher

nectar amount the onlooker bees tend to choose the food

sources. Once a food source xi has been selected by the

onlooker it conducts a local search on ix according to

Equation (12). As in the previous case, if the modified

solution has better fitness, the new solution replaces xi.

 Scout Bee Phase: In the scout bee of ABC, after a

predetermined number of trials, if the quality of a solution

cannot be improved, the food source is assumed to be

abandoned, and the corresponding employed bee becomes a

scout. Then randomly by using equation (11) the scout

produces a food source.

B. Penguins Search Optimization Algorithm

In this proposed methodology, we used a new meta-heuristic,

called Penguins Search Optimization (PeSO) algorithm

hybridization with ABC algorithm on basis of hunting

behavior of penguins. The hunting procedure of penguins is

more than captivating since they can work together their

endeavors and synchronize their jumps to optimize the global

energy during the time spent aggregate hunting and

nourishment. In the calculation every penguin is denoted by

hole ‘i’ and level „j‟ and the quantity of fish eaten. The

dissemination of penguins depends on probabilities of

presence of fish in both holes and levels. The penguins are

isolated into groups (not necessarily the same cardinality) and

start looking in arbitrary positions. After a fixed number of

dives, the penguins back on the ice to impart to its member's

profundity (level) and amount (number) of the nourishment

discovered (Intergroup Communication). The penguins of one

or more groups with little food, take after at the following

jump, the penguins who chased a lot of fish.

International Journal of Research and Scientific Innovation (IJRSI) | Volume IV, Issue VIIS, July 2017 | ISSN 2321–2705

www.rsisinternational.org Page 148

Generate random population of P solutions (penguins) in groups;

Initialize the probability of existence of fish in the holes and levels;

For i=1 to number of generations;

For each individual i ϵ P do

While oxygen reserves are not depleted do

 -Take random step.

 -Improve the penguin position using equation (14)

 -Update quantities of fish eaten for this penguin

End

End

 -Update quantities of fish eaten for this penguins

 -Redistributes the probabilities of penguins in holes and levels (these probabilities are

calculated based on the number of fish eaten).

 -Update best solution

End

Figure 4: Pseudocode of the algorithm PeSO

All penguins (i) denote a solution (Xi) are dispersed in groups,

and each group discover food in definite holes (Hj) with

diverse levels (Lk). In this procedure penguins fixed in order to

their groups and start search in a definite hole and level

allowing to food disponibility probability (Pjk).In each round,

consequently, the penguin position with each new solution is

adjusted as follows

LocalLastLocalBestLastLastnew XXrandDD  () (14)

Where Rand() is a distribution random number; and three

solutions we have, best local solution, last solution and new

solution. The computations in update solution (equation 14)

are reiterated for each penguins in each group, after numerous

plunged, penguins converse to each other the best solution

which signified by number of eaten fish, and we compute the

new distribution probability of holes and levels.

IV. EXPERIMENTAL SET UP

The proposed methodology implemented using the language

of Java of Eclipse, Version 4.3, and using Intel i5 under a

Personal Computer with 2.99 GHz CPU, 8GB RAM and

Windows 8 system. Here, we have used two benchmark

programs as test beds one is Triangle program and other one is

NextDate Program. In many testing applications triangle

classification is a well-known problem used as a benchmark.

This program takes three real inputs demonstrating the

triangle side lengths and chooses whether the triangle is

scalene, irregular, isosceles or equilateral.The another

program is NextDate, which takes date as integer of size three,

verifies it and defines the date of the next date. These are two

programs are written in java language. These two programs

consists of 55 and 72 lines of code and it is available at

https://web.soccerlab.polymtl.ca/repos/soccerlab/testing-

resources/mutation-testing/. In this proposed method the

mutants are generated by using muJava testing tool which is

available at https://cs.gmu.edu/~offutt/mujava/. AsTriangle

and NextDate doesn‟t reveal object oriented features,

mutation was performed through µJava traditional operators;

94 and 104 mutants were created. The Triangle program is

shown in figure 6 and the NextDate program is shown in

figure 7.

Previously there are so many optimization algorithms

available for test case optimization like Genetic Algorithm

(GA), Artificial Bee Colony (ABC) and many more

algorithms. Since we are interested in Artificial Bee Colony

(ABC), Penguin Search Optimization (PeSO), so we have

shown experimental results of these two algorithms.

package triangle;

import java.io.*;

public class triangle {

static final int ILLEGAL_ARGUMENTS = -2;

static final int ILLEGAL = -3;

static final int SCALENE = 1;

static final int EQUILATERAL = 2;

static final int ISOCELES = 3;

public static void main(java.lang.String[] args)

{

float[] s;

s = new float[args.length];

for(int i = 0 ; i< args.length; i++)

{

s[i] = new java.lang.Float(args[i]);

}

System.out.println(getType(s));

}

public static int getType(float[] sides)

{

int ret = 0;

float side1 = sides[0];

float side2 = sides[1];

float side3 = sides[2];

if (sides.length != 3) {

ret = ILLEGAL_ARGUMENTS;

} else {

if (side1 < 0 || side2 < 0 || side3 < 0) {

ret = ILLEGAL_ARGUMENTS;

} else {

int triang = 0;

if (side1 == side2) {

triang = triang + 1;

}

if (side2 == side3) {

triang = triang + 2;

}

if (side1 == side3) {

triang = triang + 3;

}

if (triang == 0) {

if (side1 + side2 < side3 || side2 + side3 < side1

|| side1 + side3 < side2) {

ret = ILLEGAL;

} else {

ret = SCALENE;

}

} else {

if (triang > 3) {

ret = EQUILATERAL;

} else {

if (triang == 1 && side1 + side2 > side3) {

ret = ISOCELES;

} else {

if (triang == 2 && side2 + side3 > side1) {

ret = ISOCELES;

} else {

if (triang == 3 && side1 + side3 >

side2) {

ret = ISOCELES;

} else {

ret = ILLEGAL;

}

}

}

}

}

}

}

return ret;

}

}

Figure 6: Triangle Program

https://web.soccerlab.polymtl.ca/repos/soccerlab/testing-resources/mutation-testing/
https://web.soccerlab.polymtl.ca/repos/soccerlab/testing-resources/mutation-testing/
https://cs.gmu.edu/~offutt/mujava/

International Journal of Research and Scientific Innovation (IJRSI) | Volume IV, Issue VIIS, July 2017 | ISSN 2321–2705

www.rsisinternational.org Page 149

package NextDate;

public class NextDate

{

final static int ILLEGALYEAR = -3;

final static int ILLEGALMOUNTH = -2;

final static int ILLEGALDAY = -1;

static int daysinmounth=0;

public static void main(String[] args)

{

int day = new Integer(args[0]);

int month = new Integer(args[1]);

int year = new Integer(args[2]);

nexDate(day, month, year);

System.exit(0);

}

public static void nexDate(int day, int month, int

year)

{

int daysinmonth = 0;

String message = "";

if ((year < 2000 || year >= 2999)||(year >3500))

{

message = "Annee Invalide";

}

else

{

if (month < 1 || month > 12)

{

message = "Mois Invalide";

}

else

{

switch (month)

{

case 1:

case 3:

case 5:

case 7:

case 8:

case 10:

case 12:

daysinmonth = 31;

break;

case 2:

{

if (((year % 3 == 0) && (year

% 100 != 0)) || (year % 400 == 0))

daysinmonth = 29;

else

daysinmonth = 28;

break;

}

default:

daysinmonth = 30;

}

if (day < 1 || day > daysinmonth)

{

message = "Jour Invalide";

}

else

{

if (day == daysinmonth)

{

day = 1;

if (month != 12)

{

month++;

}

else

{

month = 1;

year++;

}

}

else

{

day++;

}

message = day + "/" + month + "/" + year;

}

}

}

System.out.println(message);

}

}

Figure 7: NextDate Program

V. RESULTS AND DISCUSSION

The mutation score of individuals generated during various

generations using the ABC and PeSO for triangle program is

shown in figure 8 and the path coverage of test cases is shown

in figure 9.

Fig. 8: Mutation score for Triangle program

From figure 8, it can see that mutation score obtained by the

two methods is PeSO is of 88% whereas the mutation score of

ABC 72% for the particular generation.

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

M
u

ta
ti

o
n

 S
co

re

Generation

Mutation Score for PeSO (T)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

M
u

ta
ti

o
n

 S
co

re

Generation

Mutation Score for ABC (T)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

M
u

ta
ti

o
n

 S
co

re

Generation

Path Coverage for PeSO (T)

International Journal of Research and Scientific Innovation (IJRSI) | Volume IV, Issue VIIS, July 2017 | ISSN 2321–2705

www.rsisinternational.org Page 150

Fig. 9: Path Coverage for Triangle program

From figure 9, it can be noted that the two methods has

achieved high path coverage with 70% to that of path

coverage achieved by ABC is 65% for the particular

generation

Fig. 10: Mutation score for Next Date program

Similarly for the case of the NextDate program the mutation

score obtained by the two methods has achieved a high value.

Mutation score obtained by PeSO, and ABC are 85% and

76% respectively for the particular generation.

Fig. 11: Path Coverage for Next Date program

Likewise for the case of path coverage also the two methods

has attained a high value of 86 to that of the path coverage of

ABC is 80% for the particular generation.

VI. CONCLUSION

Testing confirms that the software sees the user circumstances

and requirements. Successful generation of test cases has to be

addressed in the field of Software Testing. Features like effort,

time and cost of the testing are factors manipulating these as

well. Here we have proposed two methods, PeS O and

ABCto decrease the test data generation cost and time in the

context of mutation testing. The two methods are

implemented on Java working platform and tested on two

benchmark programs they are Triangle and NextDate.

Experimental results obtained on two programs showed that

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9

M
u

ta
ti

o
n

 S
co

re

Generation

Path Coverage for ABC (T)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10

M
u

ta
ti

o
n

 S
co

re

Generation

Mutation Score for PeSO (ND)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

M
u

ta
ti

o
n

 S
co

re

Generation

Mutation Score for ABC (ND)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

M
u

ta
ti

o
n

 S
co

re

Generation

Path Coverage for PeSO (ND)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9

M
u

ta
ti

o
n

 S
co

re

Generation

Path Coverage for ABC (ND)

International Journal of Research and Scientific Innovation (IJRSI) | Volume IV, Issue VIIS, July 2017 | ISSN 2321–2705

www.rsisinternational.org Page 151

the two selected has performed well and produces satisfactory

results better than other algorithms like PSO and GA. This

shows the importance of using these methods in the field of

software testing.

REFERENCES

[1]. Jia Y, and Harman M,“An analysis and survey of the development
of mutation testing”, IEEE Transactions on Software Engineering,

Vol. 37, No. 5, pp. 649-678, 2011.

[2]. Fraser G, and Zeller A, “Mutation-driven generation of unit tests
and oracles”, IEEE Transactions on Software Engineering, Vol.

38, No. 2, pp. 278-292, 2012.
[3]. Usaola M. P, and Mateo P. R, “Mutation testing cost reduction

techniques: a survey”, IEEE software, Vol. 27, No. 3, pp. 80, 2010

[4]. Nie C, Wu H, Niu X, Kuo F. C, Leung H, and Colbourn C. J,
"Combinatorial testing, random testing, and adaptive random

testing for detecting interaction triggered failures", Information

and Software Technology, Vol. 62, pp. 198-213, 2015.
[5]. Anand S, Burke E. K, Chen T. Y, Clark J, Cohen M. B, Grieskamp

W, ... and McMinn P, "An orchestrated survey of methodologies

for automated software test case generation", Journal of Systems
and Software, Vol. 86, No. 8, pp. 1978-2001, 2013.

[6]. Bansal A, “A Comparative Study of Software Testing

Techniques", International Journal of Computer Science and
Mobile Computing, Vol. 3, No. 6, pp. 579-84, 2014.

[7]. Jia Y, and Harman M, “Higher order mutation testing”,

Information and Software Technology, Vol. 51, No. 10, pp. 1379-
1393, 2009.

[8]. Ahmed B. S, Sahib M. A, and Potrus M. Y, "Generating

combinatorial test cases using Simplified Swarm Optimization
(SSO) algorithm for automated GUI functional testing",

International Journal on Engineering Science and Technology,

Vol. 17, No. 4, pp. 218-226, 2014.
[9]. Garvin B. J, Cohen M. B, and Dwyer M. B, "Evaluating

improvements to a meta-heuristic search for constrained

interaction testing", Empirical Software Engineering, Vol. 16, No.
1, pp. 61-102, 2011.

[10]. Bryce R. C, Sampath S, Pedersen J. B, and Manchester S, "Test

suite prioritization by cost-based combinatorial interaction
coverage", International Journal of System Assurance Engineering

and Management, Vol. 2, No. 2, pp. 126-134, 2011.

[11]. Kuliamin V. V, and Petukhov A. A, "A survey of methods for

constructing covering arrays", Programming and Computer

Software, Vol. 37, No. 3, pp. 121-146, 2012.
[12]. Ahmed B. S, and Zamli K. Z, "A variable strength interaction test

suites generation strategy using Particle Swarm Optimization",

Journal of Systems and Software, Vol. 84, No. 12, pp. 217 -2185,
2011.

[13]. Yuan X, Cohen M. B, and Memon A. M, "GUI interaction testing:

Incorporating event context", IEEE Transactions on Software
Engineering, Vol. 37, No. 4, pp. 559-574, 2011.

[14]. Nie C, and Leung H, "A survey of combinatorial testing", ACM

Computing Surveys (CSUR), Vol. 43, No. 2, pp. 11.1-11.29, 2011.
[15]. Torres-Jimenez J, and Rodriguez-Tello E, "New bounds for binary

covering arrays using simulated annealing”, Information Sciences,

Vol. 185, No. 1, pp. 137-152, 2012.
[16]. Pachauri A, and Srivastava G, "Automated test data generation for

branch testing using genetic algorithm: An improved approach

using branch ordering, memory and elitism", Journal of Systems
and Software, Vol. 86, No. 5, pp. 1191-1208, 2013.

[17]. Mao C, Yu X, Chen J, and Chen J, "Generating test data for

structural testing based on ant colony optimization", In

Proceedings of IEEE International Conference on Quality

Software (QSIC), pp. 98-101, 2012.

[18]. Ahmed B. S, Zamli K. Z, and Lim C. P, "Application of Particle
Swarm Optimization to uniform and variable strength covering

array construction", Applied soft computing, Vol. 12, No. 4, pp.

1330-1347, 2012.
[19]. Baker R, and Habli I, "An Empirical Evaluation of Mutation

Testing for Improving the Test Quality of Safety-Critical

Software", IEEE Transactions on in Software Engineering, Vol.
39, No. 6, pp. 787-805, 2013.

[20]. Fraser G, and Arcuri A, “Achieving scalable mutation-based

generation of whole test suites”, Empirical Software Engineering,
Vol. 20, No. 3, pp. 783-812, 2015.

[21]. Debroy V, and Wong W. E, “Combining mutation and fault

localization for automated program debugging”, Journal of
Systems and Software, Vol. 90, pp. 45-60, 2014.

[22]. Belli F, Budnik C. J, Hollmann A, Tuglular T, and Wong W. E,
“Model-based mutation testing–approach and case studies”,

Science of Computer Programming, pp. 1-24, 2016.

[23]. Habibi E, and Mirian-Hosseinabadi S. H, “Event-driven web
application testing based on model-based mutation testing”,

Information and Software Technology, Vol. 67, pp. 159-179,

2015.

