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Abstract :- Mutation Testing is utilized as fault based testing to 

overcome constraints of other testing approaches yet it is 

recognized as costly process.  In mutation testing, a good test case 

is one that kills one or more mutants, by delivering different 

mutant yield from the original program. In order to select or 

generate a good test case an optimization algorithm needs to be 

selected that can demonstrate its suitability for generating an 

optimal test cases as well as lessening the cost of data generation 

in various testing approaches. Three methodologies, specifically, 

computational calculations, mathematical development, and 

nature- metaheuristic techniques, can be utilized to tackle this 

issue effectively and locate a close optimal arrangement. Utilizing 

nature-propelled metaheuristic calculations can produce more 

proficient results than other methodologies. This methodology is 

more adaptable than others since it can build test case generation 

for mutation testing with various data variables and levels. 

Strategies that have been utilized for ideal test case generation 

from the cases incorporate simulated annealing (SA), genetic 

algorithm (GA), ant colony algorithm (ACA), and particle 

swarm optimization (PSO), but we found two strategies: artificial 

bee colony (ABC) algorithm and Penguins Search Optimization 

(PeSO) algorithm to be most appealing.  

Keywords  -  Artificial bee colony (ABC) algorithm, Mutation 

Testing, nature- metaheuristic techniques, Penguins Search 

Optimization (PeSO), Test Case Generation. 

I. INTRODUCTION 

oftware associations spend more than 40%-50% of their 

advancement cost in programming testing [1]. So as to test 

programming, test data must be produced. Producing test data 

physically is moderate, costly, and requires thorough 

endeavors. Thus, automated test data generation techniques 

can be utilized to facilitate the procedure and lessen the cost. 

The Mutation testing is a sort of white box testing technique. 

Fundamentally, it is fault based testing situated in light of 

mutation analysis which beats the constraints of other testing 

approaches. Mutation analysis recognizes method to change, 

i.e. to adjust, software antiquities. Mutation testing gives a 

testing rule which can be utilized to gauge the adequacy of a 

test set or data as far as its capacity to distinguish faults [2]. 

Testing aims to find as many of the faults in a program as 

possible by executing it with a variety of inputs and 

conditions so as to reveal errors. Each set of inputs and 

conditions used in testing is known as a test case and a 

collection of test cases is called a test suite [3]. Successful test 

data generation finds faults in the program under test with as 

few test cases as possible. The tester deliberates all 

conceivable input spaces when selecting test cases for the 

software which is under test [4]. Be that as it may, considering 

all inputs is unimaginable in numerous real-world applications 

due to time and asset imperatives. Henceforth, the part of test 

configuration methods is exceptionally imperative. A test plan 

strategy is utilized to deliberately select test cases through a 

particular inspecting mechanism [5]. This process optimizes 

the quantity of test cases to acquire an optimum test suite, in 

this way wiping out the time and cost of the testing stage in 

software advancement. Diverse studies have proposed 

different functional test designs, for example, equality class 

dividing, boundary value examination, and circumstances and 

effect investigation by means of decision tables [6]. 

All in all, the tester objective is to utilize more than 

one testing technique on the grounds that distinctive issues 

might be identified when diverse testing strategies are utilized 

[7]. Be that as it may, with the inconceivable development and 

improvement of software systems and their configurations, the 

likelihood of the event of issues has expanded due to the 

arrangements of these configurations, especially for 

exceedingly configurable software systems [8]. Traditional 

test outline systems are valuable for deficiency disclosure and 

anticipation. Nonetheless, such strategies can't recognize 

deficiencies that are brought on by the arrangements of input 

parts and configurations [9].  

Considering all combinations or arrangements 

prompts comprehensive testing, which is impossible due to 

time and asset requirements [10]. Thus, finding an optimum 

arrangement of test cases can be a troublesome task, and 

finding a unified process that creates optimum results is 

challenging [11-12]. Three methodologies, specifically, 

computational calculations, mathematical development, and 

nature- metaheuristic techniques, can be utilized to tackle this 

issue effectively and locate a close optimal arrangement 

[13].Utilizing nature-propelled meta-heuristic calculations can 

produce more proficient results than other methodologies. 

This methodology is more adaptable than others since it can 

build test case generation for mutation testing with various 

data variables and levels. Subsequently, its result is more 

pertinent on the grounds that most practical systems have 

diverse input components and levels [14]. Strategies that have 

been utilized for ideal test case generation from the cases 

incorporate simulated annealing (SA) [15], genetic algorithm 
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(GA) [16], ant colony algorithm (ACA) [17], and particle 

swarm optimization (PSO) [18]. We found two techniques: 

artificial bee colony (ABC) algorithm and Penguins Search 

Optimization (PeSO) algorithm to be most suitable. 

II.  RELATED WORKS 

Baker R, and Habli I [19] have provided an empirical 

evaluation of the application of mutation testing to airborne 

software systems which have already satisfied the coverage 

requirements for certification. Specifically, they applied 

mutation testing to safety-critical software developed using 

high-integrity subsets of C and Ada, identified the most 

effective mutant types, and analyzed the root causes of 

failures in test cases. Their findings showed how mutation 

testing could be effective where traditional structural coverage 

analysis and manual peer review have failed. They also 

showed that several testing issues have origins beyond the test 

activity, and this suggested improvements to the requirements 

definition and coding process. Their study also examined the 

relationship between program characteristics and mutation 

survival and considered how program size provided a means 

for targeting test areas most likely to have dormant faults. 

Industry feedback was also provided, particularly on how 

mutation testing can be integrated into a typical verification 

life cycle of airborne software. 

Fraser G, and Arcuri A et al. [20] have extended and 

evaluated the whole test suite generation approach for 

mutation testing. In previous work, the whole test suite 

approach led to large improvements in performance for 

branch coverage. One simple reason to explain such large 

improvements was that, with the whole test suite approach, 

the presence of infeasible testing targets does not harm the 

search. That paper confirmed that this was also the case for 

mutation testing, by performing an empirical study on 100 

Java projects randomly selected from Source Forge, i.e., the 

SF100 corpus (consisting of 8, 963 classes, for a total of more 

than two million lines of code). Besides the whole test suite 

approach, EVOSUITE also included several novel 

optimizations for mutation testing, such as the use of infection 

conditions, optimized mutation operators, and prioritized test 

execution. Their results showed that using standard mutation 

testing in test case generation would not scale up to the 

complexity of real-world software. 

Debroy V, and Wong W. E [21] have proposed a 

strategy for automatically fixing faults in a program by 

combining the ideas of mutation and fault localization. 

Statements ranked in order of their likelihood of containing 

faults are mutated in the same order to produce potential fixes 

for the faulty program. The strategy was evaluated using 8 

mutant operators against 19 programs each with multiple 

faulty versions. Their results indicated that 20.70% of the 

faults are fixed using selected mutant operators, suggesting 

that the strategy holds merit for automatically fixing faults. 

The impact of fault localization on efficiency of the overall 

fault- fixing process was investigated by experimenting with 

two different techniques, Tarantula and Ochiai, the latter of 

which has been reported to be better at fault localization than 

Tarantula, and also proved to be better in the context of fault-

fixing using their strategy. 

Belli F et al. [22] have introduced the concept of 

model-based mutation testing (MBMT) and position it in the 

landscape of mutation testing. Two elementary mutation 

operators, insertion and omission, are exemplarily applied to a 

hierarchy of graph-based models of increasing expressive 

power including directed graphs, event sequence graphs, finite 

state machines and state charts. Test cases generated based on 

the mutated models (mutants) are used to determine not only 

whether each mutant can be killed but also whether there are 

any faults in the corresponding system under consideration 

(SUC) developed based on the original model. Novelties of 

their approach are: (1) evaluation of the fault detection 

capability (in terms of revealing faults in the SUC) of test sets 

generated based on the mutated models, and (2) superseding 

of the great variety of existing mutation operators by iterations 

and combinations of the two proposed elementary operators. 

Three case studies were conducted on industrial and 

commercial real-life systems and demonstrated the feasibility 

of MBMT approach in detecting faults in SUC, and analyzed 

its characteristic features. 

Habibi E, and Mirian-Hosseinabadi S. H et al. [23] 

have introduced a new six-stage testing procedure for event-

driven web applications to overcome EDS testing challenges. 

The stages of the testing procedure include dividing the 

application based on its structure, creating functional graphs 

for each section, creating mutants from functional graphs, 

choosing coverage criteria to produce test paths, merging 

event sequences to make longer ones, and deriving and 

running test cases. They have analyzed their testing procedure 

with the help of four metrics consisting of Fault Detection 

Density (FDD), Fault Detection Effectiveness (FDE), 

Mutation Score, and Unique Fault. Using that procedure, they 

have prepared prioritized test cases and also discovered a list 

of unique faults by running the suggested test cases on a 

sample real-world web application called Academic E-mail 

System. 

III. NATURE PROPELLED TECHNIQUES FOR MUTATION 

TESTING 

Utilizing nature propelled meta-heuristic techniques can 

produce more perfect results than other techniques. Here we 

are discussing two such techniques artificial bee colony 

(ABC) algorithm and Search Optimization (PeSO) algorithm  

A. Artificial Bee Colony Algorithm 

An innovative swarm intelligence based optimizer is the 

artificial bee colony (ABC) algorithm. It mimics the obliging 

foraging actions of a swarm of honey bees. ABC is used here 

for optimizing multi-modal and multi-variable continuous 

functions. Particularly, the control parameters number in ABC 

is less compared with other population-based algorithms, thus 

make it easier to be implement. In the meantime, the 

performance of ABC is analogous and sometimes to the state-
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of-the-art meta-heuristics it is larger. Therefore, much interest 

has been paid and successfully applied to resolve diverse 

types of optimization issues. In ABC algorithm, artificial bees 

are categorized into three sets: employed bees, onlooker bees 

and the scout bees.  Employed bee exploits a food source. The 

employed bees share information with the onlooker bees, 

which is waiting in the hive and the employed bees dances are 

observed by them. With probability proportional to the quality 

of that food source the onlooker bees will then select a food 

source. Thus, than the bad ones more bees are attracted by 

good food sources. Arbitrarily in the vicinity of the hive scout 

bees search for new food sources. When a food source is 

originated by a scout or onlooker bee, it converts employed. 

All the employed bees connected with the food source will 

abandon the position, when a food source has been 

completelyabused and may become scouts again. Thus, the 

job of „„exploration‟‟ is done by scout bees, however 

employed and onlooker bees accomplish the job of 

„„exploitation‟‟. The processes in scout bee are done by 

utilizing Penguin Search Optimization (PeSO) Algorithm. 

Which facilitate the work of the scout bee phase more robust. 

In the proposed algorithm, a food source corresponds to a 

possible solution to the optimization problem, and to the 

fitness of the associated solution the nectar amount of a food 

source is corresponded. In ABC, employed bees are in the 

first half of the colony and the onlookers are in the other half. 

The number of employed bees and the number of food sources 

(SN) are equal as it is assumed for each food source that there 

is only one employed bee. Thus, the number of onlooker bees 

and the number of solutions under consideration are equal. 

With a group of randomly generated food sources the ABC 

algorithm starts. The major process of ABC can be designated 

as follows. 

 Initialization Phase: This is the initial or starting phase of 

ABC algorithm. The SN initial solutions are arbitrarily created 

D-dimensional real vectors. 

 diiii FFFF ,2,1, ,....,,                                             (10) 

iF represent the i
th

food source, which is obtained by 

 minmaxmin

, ddddi FFrFF                            (11) 

Where is a uniform random number in the range ]1,0[  and 

min

dF and
max

dF are the lower and upper bounds for dimension 

d respectively d=1,..,D. 

Employed Bee Phase: In this phase, each employed bee is 

associated with a solution. She exerts a random modification 

on the solution (original food source) to find a new solution 

(new food source). This implements the function of 

neighborhood search. The new solution Vi is generated from Fi 

using a differential expression 

 dkdididi FFrFS ,,

'

,,                                     (12) 

Where d is arbitrarily chosen from {1,…,SN}such that ik   

and
'r is a uniform random number in the range  [-1, 1]. Once 

si is obtained, it will be evaluated and compared. If the fitness 

of xi is better than that of xi(i.e. than the old one high nectar 

amount in new food source), the bee memorize the new one 

and forget the old solution or else on xi keeps working. 

 Onlooker Bee Phase: In this phase, when the local search of 

all employed bees have been finished then, they share the 

nectar information of their food source with the onlookers, 

each of whom in a probabilistic manner will then select a food 

source. The probability Pbi by which a food source xi chosen 

by onlooker bee is computed as follows 

 


SN

i i

i

i

f

f
Pb

1

                                                      (13) 

Where fi is the fitness value of xi. Obviously, with higher 

nectar amount the onlooker bees tend to choose the food 

sources. Once a food source xi has been selected by the 

onlooker it conducts a local search on ix  according to 

Equation (12). As in the previous case, if the modified 

solution has better fitness, the new solution replaces xi. 

 Scout Bee Phase: In the scout bee of ABC, after a 

predetermined number of trials, if the quality of a solution 

cannot be improved, the food source is assumed to be 

abandoned, and the corresponding employed bee becomes a 

scout. Then randomly by using equation (11) the scout 

produces a food source. 

B. Penguins Search Optimization Algorithm 

In this proposed methodology, we used a new meta-heuristic, 

called Penguins Search Optimization (PeSO) algorithm 

hybridization with ABC algorithm on basis of hunting 

behavior of penguins. The hunting procedure of penguins is 

more than captivating since they can work together their 

endeavors and synchronize their jumps to optimize the global 

energy during the time spent aggregate hunting and 

nourishment. In the calculation every penguin is denoted by 

hole ‘i’ and level „j‟ and the quantity of fish eaten. The 

dissemination of penguins depends on probabilities of 

presence of fish in both holes and levels. The penguins are 

isolated into groups (not necessarily the same cardinality) and 

start looking in arbitrary positions. After a fixed number of 

dives, the penguins back on the ice to impart to its member's 

profundity (level) and amount (number) of the nourishment 

discovered (Intergroup Communication). The penguins of one 

or more groups with little food, take after at the following 

jump, the penguins who chased a lot of fish. 
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Generate random population of P solutions (penguins) in groups;

Initialize the probability of existence of fish in the holes and levels;

For i=1 to number of generations;

For each individual i ϵ P do

While oxygen reserves are not depleted do

           -Take random step.

           -Improve the penguin position using equation (14)

           -Update quantities of fish eaten for this penguin

End

End

           -Update quantities of fish eaten for this penguins

           -Redistributes the probabilities of penguins in holes and levels (these probabilities are 

calculated based on the number of fish eaten).

           -Update best solution

End

 
Figure 4: Pseudocode of the algorithm PeSO 

All penguins (i) denote a solution (Xi) are dispersed in groups, 

and each group discover food in definite holes (Hj) with 

diverse levels (Lk). In this procedure penguins fixed in order to 

their groups and start search in a definite hole and level 

allowing to food disponibility probability (Pjk).In each round, 

consequently, the penguin position with each new solution is 

adjusted as follows 

LocalLastLocalBestLastLastnew XXrandDD  ()    (14) 

Where Rand() is a distribution random number; and three 

solutions we have, best local solution, last solution and new 

solution. The computations in update solution (equation 14) 

are reiterated for each penguins in each group, after numerous 

plunged, penguins converse to each other the best solution 

which signified by number of eaten fish, and we compute the 

new distribution probability of holes and levels.  

IV.   EXPERIMENTAL SET UP 

The proposed methodology implemented using the language 

of Java of Eclipse, Version 4.3, and using Intel i5 under a 

Personal Computer with 2.99 GHz CPU, 8GB RAM and 

Windows 8 system. Here, we have used two benchmark 

programs as test beds one is Triangle program and other one is 

NextDate Program. In many testing applications triangle 

classification is a well-known problem used as a benchmark. 

This program takes three real inputs demonstrating the 

triangle side lengths and chooses whether the triangle is 

scalene, irregular, isosceles or equilateral.The another 

program is NextDate, which takes date as integer of size three, 

verifies it and defines the date of the next date. These are two 

programs are written in java language. These two programs 

consists of 55 and 72 lines of code and it is available at 

https://web.soccerlab.polymtl.ca/repos/soccerlab/testing-

resources/mutation-testing/. In this proposed method the 

mutants are generated by using muJava testing tool which is 

available at https://cs.gmu.edu/~offutt/mujava/. AsTriangle 

and NextDate doesn‟t reveal object oriented features, 

mutation was performed through µJava traditional operators; 

94 and 104 mutants were created. The Triangle program is 

shown in figure 6 and the NextDate program is shown in 

figure 7. 

Previously there are so many optimization algorithms 

available for test case optimization like Genetic Algorithm 

(GA), Artificial Bee Colony (ABC) and many more 

algorithms. Since we are interested in Artificial Bee Colony 

(ABC), Penguin Search Optimization (PeSO), so we have 

shown experimental results of these two algorithms. 

package triangle;

import java.io.*;

public class triangle {

static final int ILLEGAL_ARGUMENTS = -2;

static final int ILLEGAL = -3;

static final int SCALENE = 1;

static final int EQUILATERAL = 2;

static final int ISOCELES = 3;

public static void main( java.lang.String[] args )

{

float[] s;

s = new float[args.length];

for(int i = 0 ; i< args.length; i++)

{

s[i] = new java.lang.Float(args[i]);

}

System.out.println( getType( s ) );

}

public static int getType( float[] sides )

{

int ret = 0;

float side1 = sides[0];

float side2 = sides[1];

float side3 = sides[2];

if (sides.length != 3) {

ret = ILLEGAL_ARGUMENTS;

} else {

if (side1 < 0 || side2 < 0 || side3 < 0) {

ret = ILLEGAL_ARGUMENTS;

} else {

int triang = 0;

if (side1 == side2) {

triang = triang + 1;

}

if (side2 == side3) {

triang = triang + 2;

}

if (side1 == side3) {

triang = triang + 3;

}

if (triang == 0) {

if (side1 + side2 < side3 || side2 + side3 < side1

|| side1 + side3 < side2) {

ret = ILLEGAL;

} else {

ret = SCALENE;

}

} else {

if (triang > 3) {

ret = EQUILATERAL;

} else {

if (triang == 1 && side1 + side2 > side3) {

ret = ISOCELES;

} else {

if (triang == 2 && side2 + side3 > side1) {

ret = ISOCELES;

} else {

if (triang == 3 && side1 + side3 >

side2) {

ret = ISOCELES;

} else {

ret = ILLEGAL;

}

}

}

}

}

}

}

return ret;

}

}

Figure 6: Triangle Program 

https://web.soccerlab.polymtl.ca/repos/soccerlab/testing-resources/mutation-testing/
https://web.soccerlab.polymtl.ca/repos/soccerlab/testing-resources/mutation-testing/
https://cs.gmu.edu/~offutt/mujava/
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package NextDate;

public class NextDate

{

final static int ILLEGALYEAR = -3;

final static int ILLEGALMOUNTH = -2;

final static int ILLEGALDAY = -1;

static int daysinmounth=0;

public static void main(String[] args)

{

int day = new Integer(args[0]);

int month = new Integer(args[1]);

int year = new Integer(args[2]);

nexDate(day, month, year);

System.exit(0);

}

public static void nexDate(int day, int month, int 

year)

{

int daysinmonth = 0;

String message = "";

if ((year < 2000 || year >= 2999 )||(year >3500))

{

message = "Annee Invalide";

}

else

{

if (month < 1 || month > 12)

{

message = "Mois Invalide";

}

else

{

switch (month)

{

case 1:

case 3:

case 5:

case 7:

case 8:

case 10:

case 12:

daysinmonth = 31;

break;

case 2:

{

if (((year % 3 == 0) && (year

% 100 != 0)) || (year % 400 == 0))

daysinmonth = 29;

else

daysinmonth = 28;

break;

}

default:

daysinmonth = 30;

}

if (day < 1 || day > daysinmonth)

{

message = "Jour Invalide";

}

else

{

if (day == daysinmonth)

{

day = 1;

if (month != 12)

{

month++;

}

else

{

month = 1;

year++;

}

}

else

{

day++;

}

message = day + "/" + month + "/" + year;

}

}

}

System.out.println(message);

}

}

Figure 7: NextDate Program 

V. RESULTS AND DISCUSSION 

The mutation score of individuals generated during various 

generations using the ABC and PeSO for triangle program is 

shown in figure 8 and the path coverage of test cases is shown 

in figure 9. 

 

 

 

Fig. 8: Mutation score for Triangle program 

From figure 8, it can see that mutation score obtained by the  

two methods is PeSO is of 88% whereas the mutation score of 

ABC 72% for the particular generation.  
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Fig. 9: Path Coverage for Triangle program 

From figure 9, it can be noted that the two methods has 

achieved high path coverage with 70% to that of path 

coverage achieved by ABC is 65% for the particular 

generation 

 

 

Fig. 10: Mutation score for Next Date program 

Similarly for the case of the NextDate program the mutation 

score obtained by the two methods has achieved a high value. 

Mutation score obtained by PeSO, and ABC  are 85% and 

76% respectively for the particular generation. 

 

 

Fig. 11: Path Coverage for Next Date program 

Likewise for the case of path coverage also the two methods 

has attained a high value of 86 to that of the path coverage of 

ABC is 80% for the particular generation. 

VI. CONCLUSION 

Testing confirms that the software sees the user circumstances 

and requirements. Successful generation of test cases has to be 

addressed in the field of Software Testing. Features like effort, 

time and cost of the testing are factors manipulating these as 

well. Here we have  proposed two methods,  PeS O  and 

ABCto decrease the test data generation cost and time in the 

context of mutation testing. The two methods are 

implemented on Java working platform and tested on two 

benchmark programs they are Triangle and NextDate. 

Experimental results obtained on two programs showed that 
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the two selected has performed well and produces satisfactory 

results better than other algorithms like PSO and GA. This 

shows the importance of using these methods in the field of 

software testing. 
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