A vanillin-coumarin hybrid molecule, 6E)-6-(4-hydroxy-3-methoxybenzylideneamino)-2H-chromen-2-one (VC) has been found to interact with ascorbic acid (AA) very selectively via intermolecular H-bond formation resulting a 8 fold enhancement of its fluorescence intensity. Interaction has been monitored by different spectroscopic techniques like 1H NMR, QTOF–MS ES+ and FTIR analysis. Structure of VC has been confirmed by single crystal X-ray structure analysis. In DMSO/water (1:4, v/v) at pH 7.4, the method is linear up to 14 µM of AA and can detect as low as 0.5 µM AA. Interference from common cations, anions and some common pharmaceutical compounds with close structural resemblance is negligible. VC can detect intracellular AA in living cells very efficiently.
- Page(s): 01-19
- Date of Publication: 15 October 2017
- Dr. Subarna GuhaFaculty of Chemistry, Central Institute of Plastic Engineering and Technology, Haldia, West Bengal, India
References
[1]. A. Sahana, A. Banerjee, S. Guha, S. Lohar, A. Chattopadhyay, S. K. Mukhopadhyay and D. Das, Analyst 2012, 137, 1544. [2]. A. Banerjee, A. Sahana, S. Das, S. Lohar, S. Guha, B. Sarkar, S. K. Mukhopadhyay, A. K Mukherjee and D. Das, Analyst 2012, 137, 2166. [3]. S. Guha, S. Lohar, A. Sahana, A. Banerjee, and D. Das,Talanta 2012, 91, 18. [4]. S. Guha, S. Lohar, I. Hauli, S. K. Mukhopadhyay, and D. Das, Talanta2011, 85, 1658. [5]. R. Thangamuthu, Y.C. Wu and S.M. Chen, Electroanalysis, 2009, 21, 165. [6]. J. Du, L. Shen and J. Lu, Anal. Chim. Acta, 2003, 489, 183. [7]. O. Arrigoni and C. D. Tullio, Biochim. Biophys. Acta, Gen. Subj., 2002, 1569, 1. [8]. S. Englard and S. Seifter, Annu. Rev. Nutr., 1986, 6, 365. [9]. E. Cameron and A. Campbell, Chem.-Biol. Interact., 1974, 9, 285. [10]. E. Cameron, L. Pauling and B. Leibovitz, Cancer Res., 1979, 39, 663. [11]. K. Hosoya, G. Nakamura, S. Akanuma, M. Tomi and M. Tachikawa, Neurochem. Int., 2008, 52, 1351. [12]. V. Kmetec, J. Pharm. Biomed. Anal., 1992, 10, 1073. [13]. P.W. Washko, R.W. Welch, K.R. Dhariwal, Y.H. Wang, and M. Levine, Anal. Biochem., 1992, 204, 1. [14]. S.P. Arya, M. Mahajan, and P. Jain, Anal. Chim. Acta, 2000, 417, 1. [15]. O. A. Zaporozhets and E.A. Krushinskaya, J. Anal. Chem., 2002, 57, 286. [16]. X. Li and A. A. Franke, J. Chromatogr., B: Anal. Technol. Biomed. Life Sci., 2009, 877, 853. [17]. W. Lee, S. M. Roberts and R. F. Labbe, Clin. Chem., 1997, 43, 154. [18]. Y. Ma, M. Zhou, X. Jin, B. Zhang, H. Chen and N. Guo, Anal. Chim. Acta, 2002, 464, 289. [19]. H. Chen, R. Li, L. Lin, G. Guo and J.-M. Lin, Talanta, 2010, 81, 1688. [20]. S. Zhao, Y. Huang and Y.-M. Liu, J. Chromatogr. A, 2009, 1216, 6746. [21]. X. Sun, Y. Niu, S. Bi and S. Zhang, J. Chromatogr., B: Anal. Technol. Biomed. Life Sci., 2008, 870, 46. [22]. P.-C. Nien, P.-Y. Chen and K.-C. Ho, Sens. Actuators B, 2009, 140, 58. [23]. Y. Sato, D. Kato, O. Niwa and F. Mizutani, Sens. Actuators B, 2005, 108, 617. [24]. H. R. Zare, F. Memarzadeh, M. Mazloum-Ardakani, M. Namazian and S. M. Golabi, Electrochim. Acta, 2005, 50, 3495. [25]. M.H. Pournaghi-Azar, H. Dastangoo, R. Fadakar, Electroanalysis, 2010, 22, 229. [26]. I.B. Agater and R.A. Jewsbury, Anal. Chim. Acta, 1997, 356, 289. [27]. M. ˇZemberyova, J. Bartekova, M. Zavadska and M. ˇSiˇsolakova, Talanta, 2007, 71, 1661. [28]. H.W. Park, S.M. Alam, S.H. Lee, M.M. Karim, S.M. Wabaidur, M. Kang and J.H. Choi, Luminescence, 2009, 24, 367. [29]. C. Xia and W. Ning, Analyst, 2011, 136, 288 [30]. H. M. Nassef, L. Civit, A. Fragoso and C. K. O’Sullivan, Analyst, 2008, 133, 1736 [31]. N. Chauhan, J. Narang and C. S. Pundir, Analyst, 2011, 136, 1938 [32]. C. -J. Weng, Y. -S. Jhuo, Y. -L. Chen, C. -F. Feng,C. -H. Chang,S. -W. Chen, J. -M. Yeh and Y. Wei, J. Mater. Chem., 2011, 21, 15666 [33]. K. Ishii, K. Kubo, T. Sakurada, K. Komori and Y. Sakai, Chem. Commun., 2011, 47, 4932. [34]. S. Guha, S. Lohar, M. Bolte, D. A. Safin and D. Das, Spec. Lett.2012, 45, 225. [35]. G. M. Sheldrick, Acta Crystallogr. A 2008, 64, 112. [36]. K. Ishii, K. Kubo, T. Sakurada, K. Komori and Y. Sakai, Chem. Commun., 2011, 47, 4932. [37]. J. C. Vera, C. I. Rivas, J. Fischbarg and D. W. Golde, Nature, 1993, 364, 79; [38]. J. C. Vera, C. I. Rivas, R. H. Zhang, C. M. Farber and D. W. Golde, Blood, 1994, 84, 1628. [39]. B. S. Winkler, Biochim. Biophys. Acta, 1987, 925, 258. [40]. A. M. Bode, L. Cunningham and R. C. Rose, Clin. Chem., 1990, 36, 1807. [41]. H.A. Benesi, and J.H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703 [42]. W. H. Melhuish, J. Phys. Chem.,1961, 65, 229. [43]. N. Chauhan, J. Narang and C. S. Pundir, Analyst, 2011, 136, 1938
Dr. Subarna Guha "Coumarin Based Highly Selective ‘Turn-On’ Fluorescent Probe for Ascorbic Acid: Single Crystal X-Ray Structure and Cell Staining Properties" International Journal of Research and Scientific Innovation-(IJRSI) vol.4 issue 10, pp.01-19 2017
Innovation has been the most important enabler for the emergence of powerful regions and countries over the past many centuries. The invisible shift in the center of gravity of the power-centers happens relentlessly on the basis of innovations at various hotbeds across the globe. Institutions of higher learning brought in a huge supply of youth and their inventive skills, the corporate organizations created demands for these innovations along with their expertise of innovation management, the strength of implementation and the much-needed supply of fund. This paper presents a new open innovation platform known as Worldwide Academia Industry Network (WAIN) for emerging economies empowered by youth. We have found that though corporate organizations are the leading indicators of the innovativeness of the economy, an important lagging indicator is the quantum and efficacy of research happening at the universities. Therefore, Academia and Industry collaboration is an important factor for an economy to truly leverage innovation for growth.
- Page(s): 20-25
- Date of Publication: 15 October 2017
- Satya Narayanan CL Educate Ltd.A-41, Espire Building, Mohan Cooperative Industrial Area, Main Mathura Road, New Delhi- 110044
- Sujit Bhattacharyya CL Educate Ltd.A-41, Espire Building, Mohan Cooperative Industrial Area, Main Mathura Road, New Delhi- 110044
- Anurag Bansal CL Educate Ltd.A-41, Espire Building, Mohan Cooperative Industrial Area, Main Mathura Road, New Delhi- 110044
- Sarvjeet Herald CL Educate Ltd.A-41, Espire Building, Mohan Cooperative Industrial Area, Main Mathura Road, New Delhi- 110044
- Neha Shreya CL Educate Ltd.A-41, Espire Building, Mohan Cooperative Industrial Area, Main Mathura Road, New Delhi- 110044
- Poulomi Ganguly CL Educate Ltd.A-41, Espire Building, Mohan Cooperative Industrial Area, Main Mathura Road, New Delhi- 110044
References
[1] G. F. Knoll, Radiation detection and measurement, 4th edition ISBN: 978-0-470-13148-0 (hardback) (reprint 2010). [2] William R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer-Verlag (2nd edition, 1994). [3] D. Bettoni et al., “The PANDA experiment at FAIR”, arXiv: 0710.5664 (2007). [4] PANDA Collaboration Technical Progress Report FAIR-ESAC/Pbar 2005. [5] I. Augustin et al., “ New physics at the International Facility for Antiproton and Ion Research (FAIR) next to GSI, Fission and properties of Neutron-rich nuclei”, Proceedings of the Fourth International Conference, World Scientific Publishing Co. Ltd. Singapore 2008, page 128-134, ISBN 9789812833426. [6] A. Gillitzer, A. Kisselev, A. Sanchez-Lorente, L. Schmitt, C. Schwarz, “Motivation of the Barrel Time-of-Flight Detector for PANDA”, PANDA Note (2011). [7] B. Seitz, A. G. Stewart, K. O’Neill, L. Wall and C. Jackson, “Performance evaluation of novel SiPM for medical imaging applications, Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC) IEEE(2013), DOI: 10.1109/NSSMIC.2013.6829685. [8] Ronald Graziosoa et al., “APD-based PET detector for simultaneous PET/MR imaging”, Nucl. Instrum. Meth. A, 569 (2006), 301. [9] A G Stewart, L Wall and J C Jackson, “Properties of silicon photo counting detectors and silicon photomultipliers”, J. Mod. Opt., 56 (2009), 240. [10] E Roncali and Simon R Cherry, “Application of silicon photomultipliers to Positron Emission Tomography”, Ann. Biomed. Eng., 39 (2011), 1358 [11] N. DAscenzo, V. Saveliev, “Study of silicon photomultipliers for medical imaging systems”, Nucl. Instrum. Meth. A, 695 (2012), 265. [12] L. Cosentino, P. Finocchiaro, A. Pappalardo and F. Garibaldi, “High resolution time-of-flight PET with depth-of-interaction becomes feasible: a proof of principle”, arXiv: 1203.0043. [13] S E Brunner, L Gruber, J Marton, K Suzuki, A Hirtl, “New approaches for improvement of TOF-PET”, Nucl. Instrum. Meth. A 732 (2013), 560 [14] Joel S Karp, “Time-of-flight PET”, snm, advancing molecular imaging and therapy, vol 3, issue 3, 2006 [15] D. Renker, “Geiger-mode avalanche photodiodes, history, properties and problems”, Nucl. Instrum. Meth. A, 567 (2006), 48. [16] V. Saveliev, “The recent development and study of silicon photomultiplier”, Nucl. Instrum. Meth. A, 535 (2004), 528. [17] D. Renkar and E. Lorenz, “Advances in solid state photon detectors”, Journal of Instrumentation, 4 (2009), 04004. [18] S. Gundacker et al., “A systematic study to optimize SiPM photo detectors for highest time resolution in PET”, IEEE Transactions on nuclear science, 59 (2012), 1798. [19] Saint Gobain Crystals, http://www.detectors.saint-gobain.com/Plastic_Scintillation [20] Multi Pixel Photon Counter, http://www.hamamatsu.com/eu/en/4004.html [21] PhotoniqueSA, http://www.photonique.ch [22] LAMPS, A Linux based Advanced MultiParameter System, http://www.tifr.res.in/~pell/lamps.html [23] B. J. Roy, H. Orth, C. Schwarz, A. Wilms and K. Peters, “SiPM as photon counter for Cherenkov detectors”, DAE Symp.Nucl.Phys., 54 (2009), 666 .
Satya Narayanan, Sujit Bhattacharyya, Anurag Bansal, Sarvjeet Herald, Neha Shreya, Poulomi Ganguly "New Open Innovation Platform for Emerging Economies" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.20-25 2017
The success of the manufacturing process depends on upon the selection of appropriate process parameters. The selection of optimum process parameters plays a significant role to product quality, cost and productivity. This study investigated the multi – response optimization of the turning process for an optimal parametric combination to yield the minimum tool vibration frequency, surface roughness and maximization of metal removal rate using Genetic Algorithm (GA). A mathematical model of tool vibration frequency has been built up and modal analysis of the tool holder in ANSYS gives resonance frequency and it is used as a n useful for understanding the dynamic performance of any lathe –work piece system. The experiment s were designed and conducted on the lathe machine with high speed steel (AISI T42) as cutting tool and EN-24 Steel bar as work piece material The factors are chosen which influence the tool vibration, surface roughness and MRR of product in turning through design of experiment (DOE). Experimental results show that the tool vibration frequency and surface roughness of the work materials are co related with each other and influence of cutting parameters on frequency and surface roughness.
- Page(s): 26-30
- Date of Publication: 15 October 2017
- Avijit Pramanik Department of Mechanical Engineering, National Institute of Technical Teachers Training and Research, Kolkata, 700106, West Bengal, India
References
[1]. Zhanchen Wang, „Chatter Analysis of Machine Tool System in Turning Processes‟, International Journal of Machine Tool Design Research, Vol.1, pp.325-335. [2]. Vipul Shah, „Experimental Investigation of chatter and critical cutting conditions in turning‟, International Journal of Machine Tools and Manufacturer, Vol. 39, 1999, pp. 1631-1654. [3]. Ramiz Saeed Matty Samarjy, „Estimating the Limits of Stability under Several Working Conditions at Experimental Turning‟, Journal of Engineering for Industry ASME. Vol. 107/ 96 May 1985. [4]. Prof. Dr. M.J. Ostad – Ahmad – Ghorabi, “Comprehensive dynamic cutting force model and its application to wave removing process”, Journal of Engineering for Industry AME, Vol. 110, pp. 153-161. [5]. Ivana Kovacic, “Natural Frequencies and Normal modes of a Spinning Timoshenko Beam with General Boundary Conditions”, Journal of Applied Mechanics, Vol. 59, pp. 197-203. [6]. Mung Chen, “An Integrated Approach toward the Dynamic Analysis of High Speed Spindles, Part 1: system Model”, Journal of Vibration and ACOU~ CVSo, 1.116, pp.506-513. [7]. R.A Mahdavinejad, „A step forward to chatter analysis in turning machines‟. [8]. Arkadiusz Parus, D. W. Wu & C. R. Liu, “Self –Excited Vibrations in Metal Cutting”, Journal of Engineering for Industry, Vol. 81, pp.183-186. [9]. Mr. Ashirbad Swain, „Evaluation of Cutting Forces and Prediction of Chatter Vibrations in Milling‟, Journal of Braz. Soc. Of Mech. Sci. & Eng., January – March 2004, Vol. xxvi, No. 1/81. [10]. Vinay Babu Gada, “The Dynamic Interaction of Cutting Process, Work piece, and Lathe‟s structures in Facing”, Journal of Manufacturing Science and Engineering, Vol. 118, pp. 348-358. [11]. Jui P. Hung, Keneko T., Sato R., Tani Y. and O-hori M.,„Self excited chatter and its marks in turning‟, ASME, Journal of Engineering for industry, Vol. 106, pp. 222-228. [12]. M. Ramesh, R.P Elvin, K. Palanikumar and K. Hemachandra Reddy, „ Surface Roughness Opyimization of Machining Parameters in Machining of Composite Material‟, international Journal of Applied Research in Mechanical Engineering, Vol. 1, pp.26-32, 2011. [13]. Francisco Mata, Issam Hanafi, Abdellatif Khamlichi, Abdallah Jabbouri and Mohammed Bezzazi, „Derivation of statistical models to predict roughness parameters during machining process of PEEK composites using PCD and K10 tools‟, International Journal of Physical Science , Vol. 22 (1),pp. 21-32, 1999. [14]. Muthukrishnan, „Optimization of machining parameter of Al/sic-MMC with ANOVA and ANN analysis‟, J. Mater. Process. Tech, Vol. 209, pp.225-232, 2008.
Avijit Pramanik "Interelation and Optimization of Surface Roughness and Frequency of En24 Steel Turning " International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.26-30 2017
Great cities are defined by their public spaces, which anchor socio-economic activities and help define the unique qualities of their communitiesby supporting multiple uses.Active public spaces invite greater interactions and foster communities that are physically and socio-economically viable. Community participation is an indispensable aspect in promoting strong sense of place that has the potential to influence the physical, socio-economical and emotional health of individuals and communities safeguarding the interest of multiple stakeholders. Several transformative trends such as urban polices, urban local governance, growth of metropolitan cities, blurring city limits, changing time structures, increased mobility choices, advancing technology, etc. have been bringing a radical changes in the functioning of public spaces. Among these trends, advancing technology in in Information and Communications (ICTs)is emerging as a powerful generator of new digital public spaces, producing a strong impact on the physical shape of the city. Contemporary cities are visibly comprised of neighbourhoods and communities of 'super connected' citizens. Diverse characteristics of ICTs are shaping the cognition and social organization. Against this backdrop, the paper discusses various physical and virtual dimensions of public spacesand attempts to deliberate on variousconcepts and approaches at various scales that can be adopted to promote community participationthrough the usage of ICTs advancements in public spaces to turn them into engaging activity hubs stationed in real-time while respecting the needs of the users of the digital era.
- Page(s): 31-38
- Date of Publication: 15 October 2017
- Ar. Bhagyalaxmi MadapurAssociate Professor, B M S College of Architecture, Bengaluru, Karnataka, India
References
[1]. European Council of Town Planners (2003), "The New Charter of Athens 2003 - The European Council of Town Planners' Vision for Cities in the 21st century", Lisbon, 20 November 2003 [2]. Graham, S., & Marvin, S. (2000) 'Urban Planning and the Technological Future of Cities'. In J.O. Wheeler, Y. Aoyama and B. Warf. (Eds.). Cities in the Telecommunications Age, pp. 71-96. (New York, Routledge). [3]. International Telecommunications Union. ICT Free Statistics Home Page. [4]. Katz, James E. 2006. magic in the Air: Mobile Communications and the Transformation of Social life. new Brunswick, NJ: Transaction Publishers [5]. Moss, M. L., & Townsend, A.M.(2000).'How Telecommunications Systems are Transforming Urban Spaces'. In J.O. Wheeler, Y. Aoyama and B. Warf. (eds.). Cities in the Telecommunication Age, pp. 31-41. (New York, Routledge). [6]. Wellman, Barry 2001. 'Physical Place and Cyber place: The Rise of Personalized Networking'. International Journal of Urban and Regional Research 25: 227-52
Ar. Bhagyalaxmi Madapur "Urban Public Spaces in Webbed Cities” International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.31-38 2017
Supergranules are large-scale convection cells in the high solar photosphere that are seen at the surface of the Sun as a pattern of horizontal flows. They are approximately 30,000 kilometres in diameter and have a lifespan of about 24 hours. About 5000 of them are seen at any point of time in the upper photospheric region. A great deal of observational data and theoretical understanding is now available in the field of supergranulation. In this paper, we review the literature on the rotational effect of the supergranules and its relation to the solar dynamo model. .
- Page(s):39-45
- Date of Publication: 15 October 2017
- Sowmya G MGSSS Institute of Engineering & Technology for Women, KRS Road, Meragalli Mysuru-570016, Karnataka, India
- Rajani GGSSS Institute of Engineering & Technology for Women, KRS Road, Meragalli Mysuru-570016, Karnataka, India
- Yamuna MGSSS Institute of Engineering & Technology for Women, KRS Road, Meragalli Mysuru-570016, Karnataka, India
- Paniveni UdayshankarInter-University Centre for Astronomy and Astrophysics, Pune, India
- R SrikanthPoornaprajna Institute of Scientific Research, Devanahalli, Bangaluru-562110, Karnataka, India
- Jagdev SinghIndian Institute of Astrophysics, Koramangala, Bangalore, Karnataka, India
References
[1]. Abramenko, V. I., 2005, Solar Phys., 228, 29 [2]. Asensio Ramos. A., 2009, Astrophys. J., 701, 1032 [3]. Beck. J. G., and Schou. J., 2000, Solar Phys., 193, 333 [4]. Beck. J. G., Schou. J., 2000, Solar Phys., 193, 333, 343 [5]. Berger.T. E., Rouppe van der Voort. L. H. M., Lofdahl. M. G., Carlsson. M., Fossum. A., Hansteen. V. H., Marthinussen. E., Title, A., Scharmer. G., 2004, Astron. Astrophys., 428, 613 - 628. [6]. Berrilli. F., Ermolli. I., Florio. A., Pietropaolo. E., 1999, Astron. Astrophys., 344, 965- 972 [7]. Berrilli. F., Florio. A., Ermolli. I., 1998, Solar Phys., 180, 29- 45. [8]. Bommier. V., Landi Degl'Innocenti. E., Landol. M., Molodij. G., 2007, Astron. Astrophys., 464, 323- 339 [9]. Braun. D. C., Lindsey. C., 2003, H. Sawaya-Lacoste, vol. 517 of ESA Special Publication, 4.4, 4.6.4 [10]. Brickhouse. N. S., Labonte. B. J., 1988, Solar Phys., 115, 43- 60 [11]. D. H. Hathaway., 2012, ApJ., 760, 84 [12]. D. H. Hathaway., J.G. Beck., R.S. Bogart., K.T. Bachmann3 et al., 2000, Solar physics., 193, 299 [13]. D. H. Hathaway., J.G. Beck., S. Han & J. Raymond., 2002, Solar physics., 205, 25 [14]. D. H. Hathaway., P.E. Williams., M. Cuntz., 2005, ApJ., 644, 598-602 [15]. D. H. Hathaway., Peter E. Williams., Kevin Dela Rosa., & Manfred Cuntz., 2010, ApJ., 725, 1082 [16]. Duvall Jr, T. L., 1980, Solar Phys., 66, 213- 221 [17]. Duvall Jr, T. L., Gizon, L., 2000, Solar Phys., 192, 177- 191 [18]. Duvall Jr, T. L., Kosovichev, A. G., Scherrer, P. H., Bogart, R. S., Bush, R. I., de Forest, C., Hoeksema. J. T., Schou. J., Saba. J. L. R., Tarbell. T. D., Title. A. M., Wolfson. C. J., Milford. P. N., 1997, Solar Phys., 170, 63- 73 [19]. Duvall Jr. T.L., 1998, Korzennik. S., Wilson. A., SOHO 6/GONG 98 Workshop, 1{4 June 1998, Boston, Massachusetts, USA, vol. SP-418 of ESA Conference Proceedings, pp. 581 - 585, ESA, Noordwijk, Netherlands 4.4 [20]. Duvall Jr., T. L., 1980, solar phys., 66, 213 [21]. Frazier. E. N., 1970, Solar Phys., 14, 89-111 [22]. Gizon, L., Birch. A. C., 2005, Living Rev. Solar Phys., 2, 6, lrsp-2005-6 [23]. Gizon. L., Duvall Jr, T. L., 2003, Local and Global Helioseismology: the Present and Future, (Ed.) H. Sawaya-Lacoste, vol. 517 of ESA Special Publication, [ADS] 4.5, 5, 7.1 [24]. Gizon. L., Duvall Jr. T. L., 2004, in Multi-Wavelength Investigations of Solar Activity, (Eds.) Stepanov. A. V., Benevolenskaya. E. E., Kosovichev. A. G., vol. 223 of IAU Symposium, 4.5, 4.6.5 [25]. Gizon. L., Duvall Jr. T. L., Larsen. R. M., 2000, Journal of Astrophysics and Astronomy, 21, 339 [26]. Gizon. L., Duvall Jr. T. L., Schou, J., 2003, Nature, 421, 43- 44 [27]. Haber. D. A., Hindman. B. W., Toomre, J., Thompson. M. J., 2004, Solar Phys., 220, 371 - 380 [28]. Hagenaar. H. J., Schrijver. C. J., Title. A. M., 1997, Astrophys. J., 481, 988 [29]. Hagenaar. H. J., Shine. R. A., 2005, Astrophys. J., 635, 659 - 669 [30]. Hart. A. B., 1954, Monthly Notices Royal Astron. Soc., 116, 38 [31]. Hathaway. D. H., Williams. P. E., Cuntz. M., 2006, Astrophys. J., 644, 598-602 [32]. Hindman. B. W., Haber. D. A., Toomre. J., 2009, Astrophys. J., 698, 1749 - 1760 [33]. K. P. Raju, R. Srikanth, Jagdev Singh. The Correlation Lifetimes of Chromospheric CA II K Network Cells. Solar Physics 178, 251 (1998a). [34]. K. P. Raju, R. Srikanth, Jagdev Singh. The Dependence of Chromospheric CA II K Network Cell Sizes on Solar Latitude. Solar Physics 180, 47 (1998b). [35]. Kariyappa. R., Sivaraman. K. R., 1994, Solar Phys., 152, 139 - 144 [36]. Keller. C. U., Deubner. F.-L., Egger. U., Fleck. B., Povel. H. P., 1994, Astron. Astrophys., 286, 626-634 [37]. Komm. R. W., 1995, Solar Phys., 157, 45-50 [38]. Krijger. J. M., Roudier. T., 2003, Astron. Astrophys., 403, 715-723 [39]. L. Gizon., & A. Brich., 2012, PNAS., 109, 11896 [40]. Lindsey. C., Braun. D. C., Je eries, S. M., Woodard. M. F., Fan. Y., Gu, Y., Reddeld. S., 1996, Astrophys. J., 470, 636 [41]. Lisle. J. P., Rast. M. P., Toomre. J., 2004, Astrophys. J., 608, 1167-1174 [42]. Lites. B. W., Kubo. M., Socas-Navarro. H., Berger. T., Frank. Z., Shine. R., Tarbell. T., Title. A., Ichimoto. K., Katsukawa. Y., Tsuneta. S., Suematsu. Y., Shimizu. T., Nagata. S., 2008, Astrophys. J., 672, 1237-1253 [43]. Livingston. W. C., Harvey. J., 1975, in Bulletin of the American Astronomical Society, vol. 7 of Bulletin of the American Astronomical Society, [ADS] 4.6.2 [44]. Livingston. W., Harvey. J., 1971, in Solar Magnetic Fields, (Ed.) R. Howard, vol. 43 of IAU Symposium, [ADS] 4.6.2 [45]. Lopez Ariste, A., Manso Sainz, R., Asensio Ramos, A., Martinez Gonzalez. M. J., Malherbe. J. M., Gelly. B., 2010, Astron. Astrophys. 4.6.2, 15 [46]. Mark P. R., Jason P. Lisle., & Juri Toomre., 2004, ApJ., 608, 1156 [47]. Martin. S. F., 1988, Solar Phys., 117, 243-259 [48]. Meunier. N., 1999, Astrophys. J., 515, 801-811 [49]. Meunier. N., Roudier. T., 2007, Astron. Astrophys., 466, 691-696 [50]. Meunier. N., Roudier. T., Rieutord. M., 2008, \Supergranules over the solar cycle", Astron. Astrophys., 488, 1109-1115 [51]. Meunier. N., Tkaczuk. R., Roudier. T., Rieutord. M., 2007c, Astron. Astrophys., 461, 1141-1147 [52]. Michel Rieutord., Franqois Rincon., 2010, Astrophysics., 1005.5376v, 44-50 [53]. Muenzer. H., Schroeter. E. H., Woehl. H., Hanslmeier. A., 1989, Astron. Astrophys., 213, 431-435 [54]. Muller. R., 1983, Solar Phys., 85, 113-121 [55]. Nisenson. P., van Ballegooijen. A. A., de Wijn. A. G., Sutterlin. P., 2003, Astrophys. J., 587, 458-463 [56]. November. L. J., 1994, Solar Phys., 154, 1-17 [57]. Orozco Suarez. D., Bellot Rubio. L. R., del Toro Iniesta. J. C., Tsuneta. S., Lites. B. W., Ichimoto, K., Katsukawa, Y., Nagata, S., Shimizu, T., Shine, R. A., Suematsu, Y., Tarbell, T. D., Title, A. M., 2007, Astrophys. J. Lett., 670, L61-L64 [58]. Paniveni. U, AJMP., 2012, 1, 17-24 [59]. Paniveni. U, V. Krishan, Jagdev Singh and R.Srikanth Monthly Notices of the Royal Astron. Society 402, 424 (2010). [60]. Paniveni. U, V. Krishan, Jagdev Singh, R. Srikanth. On the fractal Structure of Solar Supergranulation. Solar Physics 231, 1 (2005). [61]. Paniveni. U, V. Krishan, Jagdev Singh, R. Srikanth. Relationship between horizontal flow velocity and cell lifetime for supergranulation from SOHO Dopplergrams. Monthly Not. Royal Astron. Society 347, 1279 (2004). [62]. Paniveni. U, V. Krishan., J. Singh and R. Srikanth., 2011, J. Astrophys.Astr., 32, 265 [63]. R. Srikanth, Jagdev Singh, K. P. Raju. Distribution of Supergranular Sizes. ApJ 534, 1008 (2000). [64]. Rajani G, Sowmya G M, Yamuna M, Paniveni Udayshankar and R. Srikanth. Fractal Dimension of Supergranulation. Int. J. Math. and Physical Sciences Research, 4, 127-131 (2017). [65]. Rast. M. P., Lisle. J. P., Toomre. J., 2004, Astrophys. J., 608, 1156-1166 [66]. Roudier. T., Muller. R., 2004, Astron. Astrophys., 419, 757-762 [67]. Roudier. T., Rieutord. M., Brito. D., Rincon. F., Malherbe. J. M., Meunier. N., Berger. T., Frank. Z., 2009, Astron. Astrophys., 495, 945-952 [68]. Rouppe van der Voort. L. H. M., Hansteen. V. H., Carlsson. M., Fossum. A., Marthinussen. E., van Noort. M. J., Berger. T. E., 2005, Astron. Astrophys., 435, 327-337 [69]. Schou. J., 2003, Astrophys. J. Lett., 596, L259-L262 [70]. Simon. G. W., Leighton. R.B., 1964, ApJ., 140, 1120 [71]. Simon. G. W., Title. A. M., Topka. K. P., Tarbell. T. D., Shine. R. A., Ferguson. S. H., Zirin. H., SOUP Team, 1988, Astrophys. J., 327, 964-967 [72]. Snodgrass. H. B., Ulrich. R. K., 1990, Astrophys. J., 351, 309-316 [73]. Solanki. S. K., 1993, Space Sci. Rev., 63, 1-188. [74]. Stenflo. J. O., Holzreuter. R., 2002, in SOLMAG 2002. Proceedings of the Magnetic Coupling of the Solar Atmosphere Euroconference, (Ed.) H. Sawaya-Lacoste, vol. 505 of ESA Special Publication, [ADS] 4.6.3 [75]. Stenflo. J. O., Holzreuter. R., 2003, Astron. Nachr., 324, 397 [76]. Trujillo Bueno. J., Shchukina. N., Asensio Ramos. A., 2004, Nature, 430, 326-329 [77]. Krishan, U. Paniveni Jagdev Singh, R. Srikanth. Relationship between horizontal flow velocity and cell size for supergranulation using SOHO Dopplergrams. Monthly Not. Royal Astron. Society 334, 230 (2002). [78]. Krishnakumar, P. Venkatakrishnan, R. Srikanth. Morphology of Ca II K bright points and their link to G band bright points. BASI 28, 123 (2000). [79]. Woodard. M. F., 2007, Astrophys. J., 668, 1189-1195 [80]. Worden. S. P., Simon. G.W., 1976, Solar Physics., 46, 73 [81]. Zhao. J., Kosovichev. A. G., 2003, GONG+ 2002. Local and Global Helioseismology: the Present and Future, (Ed.) Sawaya-Lacoste, H., vol. 517 of ESA Special Publication, [ADS] 4.4
Sowmya G M, Rajani G, Yamuna M, Paniveni Udayshankar, R Srikanth, Jagdev Singh "Rotational Effects on Supergranulation- A Survey" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.39-45 2017
In the present study an attempt is made to evaluate the strength and dilatancy parameters of glass beads and etched (rough) glass beads. A series of direct shear tests were performed on sample of glass beads and etched glass beads. The size of glass beads was varied from 1mm-1.7mm,1.7mm-2.36mm and 2.36mm-4.75mm and mixed together to obtain the required sample. The different relative densities at which tests were conducted for smooth glass beads are 20%,50% and 80% respectively, with corresponding unit weights are 14.1kN/m3, 14.4kN/m3 and 14.7kN/m3 respectively and for etched glass beads the different unit weights at which tests were conducted are 14.65 KN/m3,14.93 KN/m3 and 15.2 KN/m3 with corresponding relative densities of 30.86%, 54.5% and 76.48% respectively. Most of the direct shear tests were conducted to shear strain in excess of 30%. The stress strain response was observed and recorded, and the shear strength and dilatancy parameters were obtained for each relative density and normal stresses. The normal stress was varied from 50 kPa to 400 kPa. The tests were conducted on smooth and etched glass beads; the etched surface of glass beads was obtained by keeping the glass beads in a bath of hydrochloric acid. Also in the present work a correlation between peak friction angle, dilatancy angle and critical state friction angle was obtained for glass beads and etched glass beads. The present data was also compared with those of established correlations by Bolton (1986) and Kumar et.al (2007).
- Page(s): 46-52
- Date of Publication: 15 October 2017
- K.V.S.B. Raju Assistant Professor, Department of Civil Engineering, University Visvesvaraya College of Engineering (U.V.C.E), Bangalore University, Bangalore, Karnataka, India
- Nivya E.C Formerly Post Graduate Student, University Visvesvaraya College of Engineering (U.V.C.E), Bangalore University, Bangalore, Karnataka, India
Reference
[1]. Bishop, A. W. (1966): “The Strength of Soils as Engineering Materials”, Geotechnique, 16(2), pp. 91-128. [2]. Bishop, A. W. (1972): “Shear Strength Parameters for Undisturbed and Remoulded Soil Specimens”, In Stress-Strain Behaviour of Soils, R.H.G. Parry, (Ed.), London: Foulis, pp. 3-58. [3]. Bolton, M. D. (1986): “The Strength and Dilatancy of Sands”, Geotechnique, 36(1), pp. 65-78. [4]. Casagrande, A. (1936): “Characteristics of Cohesionless Soils affecting the Stability of Slopes and Earth Fills”, Journal of Boston Society of Civil Engineers, 23(1), pp. 13-32. [5]. IS-1498-1970, Reaffirmed (2002): “Classification and Identification of Soils for Engineering Purposes”, Bureau of Indian Standards, New Delhi. [6]. Kumar, J. Raju, K. V. S. B., and Kumar,A(2007):Relationship between rate of dilation, peak and critical state friction angles, Indian Geotechnical Journal, Vol 37(1),No.1, 53 – 63 [7]. Raju K.V.S.B and Mohamed Shoaib Khan (2014)“The effect of grading on strength and dilatancy parameters of sands” Proc Indian Geotechnical Conference, IGC – Kakinada, 168-176 [8]. Reynolds, O. (1885): “The Dilating of Media Composed of Rigid Particles in Contact”, Philosophical Magazine, December issue. [9]. Roscoe, K. H. (1953): “An Apparatus for the Application of Simple Shear to Soil Samples,” Proc. of the 3rd Int. Conf. Soil Mech. and Found. Engg., Zurich,1, pp. 186 - 191. [10]. Roscoe, K. H., Schofield, A. N. and Wroth, D. P. (1958): “On the Yielding of Soils”, Geotechnique, 9, pp. 22-53. [11]. Rowe, P. W. (1962): “The Stress-Dilatancy Relation for Static Equilibrium of an Assembly of Particles in Contact”, Proc. Royal Soc., London, 269 A, pp. 500-527. [12]. Salgado, R., Bandini, P. and Karim, A. (2000): “Shear Strength and Stiffness of Silty Sand”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 126 (5), pp. 451-462. [13]. Skempton, A. W. and Bishop, A. W. (1950): “Measurement of Shear Strength of Soils”, Discussion by A.W. Bishop, Geotechnique, 4 (2), pp. 70. [14]. Taylor, D. W. (1948): Fundamentals of Soil Mechanics, John Wiley and Sons, New York.
K.V.S.B. Raju and Nivya E.C "Strength and Dilatancy of Granular Materials" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.46-52 2017
This study aims at evaluating and comparing the response of G+10, G+15, G+20 systems with vertical irregularities as described by the ATC-40 and the FEMA-440 using nonlinear static procedures, with described acceptance criteria. The methodologies are applied to G+10, G+15, G+20 systems with vertical irregularity with bracings and with masonry struts. The non linear response of structure with vertical irregularity has been done using SAP2000 17 with an intent to evaluate importance of several factors in the non linear static analysis which includes time period, displacement, base shear etc,. It is observed that irregularity in elevation of building reduces lateral forces resisting capacity of the structure which in turn reduces the performance of the building and there is also decrease in deformation or displacement of the building.
- Page(s): 53-56
- Date of Publication: 15 October 2017
- Mohd Nazim RazaDepartment of Civil Engineering, MJCET, Hyderabad, India
- Syed Jawwad AhmedDepartment of Civil Engineering, MJCET, Hyderabad, India
References
[1]. “Effect of Vertical Irregularity onPerformance of Reinforced Concrete Framed Buildings”, Saraswathy B, Udaya K L, Rahul Leslie, ISBN: 978-1-63248-030-9 DOI: 10.15224/ 978-1-63248-030-9-11. [2]. “Accuracy Evaluation of the ModalPushover Analysis Method in the Prediction of Seismic Response of Vertically Irregular Frames” N. Fallah, S. Pourze Ynali And M.I. Hafezi,, IJST , Vol. 35, No. C2, pp 171-184. [3]. “Equivalent Strut Width For Modeling R.C. Infilled Frames”, K. H. Abdelkareem, F. K. Abdel Sayed, M. H. Ahmed, N. AL-Mekhlafy,, J-1640, 28 february 2013. [4]. “Seismic Response of Vertically Irregular RC Frame with Stiffness Irregularity at Fourth Floor”, Shaikh Abdul Aijaj Abdul Rahman, Girish Deshmuk ISSN 2250-2459, Volume 3, Issue 8, August 2013. [5]. “Pushover Analysis of Medium Rise Multi-Story RCC Frame Withand Without Vertical Irregularity” Mohommed Anwaruddin Md. Akberuddin, Mohd. Zameeruddin, Mohd. Saleemuddin,, Vol. 3, Issue 5, Sep-Oct 2013, pp.540-546
Mohd Nazim Raza, Syed Jawwad Ahmed "Non Linear Static Analysis of 3D Framed Structures with Vertical Irregularities including Steel Bracings and Masonry Struts" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.53-56 2017
In recent past automobile industry is growing enormously. All the manufacturers of automobiles are in the process of supplying them at low cost. The cost of the automobile depends on the materials used in the processes. So, all the researchers are concentrating on new materials which will be strong enough, low cost, less weight, recyclable, high specific strength, non abrasive, eco-friendly, fairly good mechanical properties with biodegradable characteristics. In nature, none of the single material will have all the required properties. Hence much amount of research is intensified on the composite materials. In India, large amount of borassus fruit fibre and coconut leaf sheath fibre is available in different states which can be utilized for the preparation of composite materials. To obtain this new composite material in different ratios, the present experimental work is planned accordingly with the above materials. Physical tests such as Impact & Flexural test will be conducted to evaluate Impact & Flexural strength of the composites.
- Page(s): 57-60
- Date of Publication: 15 October 2017
- M. Lava Kumar Associate Professor, Dept. Mechanical Engineering, SIETK, Puttur, AP, India
- P.K.Venu P.G.Students, Dept. Mechanical Engineering, SIETK, Puttur, AP, India
- Dr. M. Amala Justus Selvam Head & Professor, Dept. Automobile Engineering, Vel Tech University, Chennai, TN, India
References
[1]. Obi Reddy K. Sivamohan Reddy G Uma Maheswari C.Varada Rajulu A. Madhusudhana Rao K. Structural characterization of coconut tree leaf sheath fiber reinforcement,(2010)21(1): pp.53−58. [2]. J.B.Sajin and R.Sivasubramanian Investiagtions of the Mechanical properties of coconut and sisal composite for structural applictions,Int J Adv Engg Tech/vol.VII/ Issue.II,(2016), pp. 355–357. [3]. U.Ramesh, A. Venkata Dinesh, G. Durga Prasad, Evaluation of Mechanical properties aluminium , Borassus Flabellifer fibre polyster composite , IJERT, Vol. 4, Issue.08 2015, pp.26-28. [4]. Sumaila M., Amber I., Bawa M., Effect of Fiber Length on the Physical and Mechanical Properties of Random Oriented, Nonwoven Short banana (Musa Balbisiana) Fiber/Epoxy Composite, Asian Journal of Natural & Applied Sciences, 2 (2013), pp. 39-49. [5]. Mukhopadhyay S., Fangueiro R., Arpaç Y., Şentürk Ü., Banana fibre –Variability and Fracture Behavior, Journal of Engineered fibre and Fabrics, 3(2008), pp. 39 –45. [6]. Pothan L. A, Thomas S., Neelakantan N. R., Short Banana Fiber Reinforced Polyester Composites: Mechanical, Failure and Aging Characteristics, Journal of Reinforced Plastics and Composites, 16(1997), pp. 744-765. [7]. Laban B. G., Corbiere-Nicollier T., Leterrier Y., Lundquist L., Manson J. -A. E., Jolliet O., Life Cycle Assessment of Bio fibre Replacing Glass fibre as Reinforcement in plastics, Resources Convertion and Recycling, 33(2001), pp. 267-287. [8]. Prasanna G. V., Subbaiah, K. V., Modification, Flexural, Impact, Compressive Properties & Chemical Resistance of Natural fibre Reinforced Blend Composites, Malaysian Polymer Journal, 8 (2013), pp. 38-44. [9]. Madhukiran J., Rao S. S., Madhusudan S., Fabrication and Testing of Natural Fiber Reinforced Hybrid Composites Banana/Pineapple, International Journal of Modern Engineering Research, 3 (2013), pp. 2239-2243. [10]. Venkateshwaran N., Elayaperumal A., Banana Fiber Reinforced Polymer Composites - A Review, Journal of Reinforced Plastics and Composites, 29 (2010), pp. 2387-2396. [11]. Kiran C. U., Reddy G. R., Dabade B. M., Rajesham S., Tensile Properties of Sun Hemp, Banana and Sisal Fiber Reinforced Polyester Composites, Journal of Reinforced Plastics and Composites, 26 (2007), pp. 1043-1050. [12]. Haneefa A., Bindu P., Aravind I., Thomas S., Studies on Tensile and Flexural Properties of Short Banana/Glass Hybrid Fiber, Journal of Composite Materials, 42 (2008), pp. 1471-1489. [13]. Mubashirunnisa A., Vijayalakshmi K., Gomathi T., Sudha P. N., Development of Banana/Glass Short Hybrid Fiber Reinforced Nanochitosan Polymer Composites, Der Pharmacia Lettre, 4 (2012), pp. 1162-1168. [14]. Kularni A. G., Satyanaranaya K. G., Rohatgi P. K., Vijayan K., Mechanical Properties of Banana Fiber, Journal of Material Science, 18 (1983), pp. 2290-2296. [15]. Joseph S., Sreekala M. S., Oommena Z., Koshy P., Thomas S., A Comparison of the Mechanical Properties of Phenol Formaldehyde, Composites Reinforced with Banana Fibres and Glass Fibres, Composites Science and Technology, 62 (2002), pp. 1857–1868. [16]. Selzer R., Friedrich K, Mechanical Properties and Failure Behavior of Carbon Fibre-Reinforced Polymer Composites under the Influence of Moisture, Composites Part A: Applied Science and Manufacturing, 28 (1996), pp. 595-604. [17]. Palanikumar K., Ramesh M., Reddy K. H., Comparative Evaluation on Properties of Hybrid Glass Fiber- Sisal/Jute Reinforced Epoxy Composites, Procedia Engineering, 51 (2013), pp. 745 – 750. [18]. Khalil H. P. S. A., Bhat I. U. H., Jawaid M., Zaidon A., Hermawan D., Hadi Y. S., Bamboo Fibre Reinforced Biocomposites: A Review, Materials and Design, 42 (2012), pp. 353–368. [19]. Kushwaha P. K., Kumar R., Bamboo Fiber Reinforced Thermosetting Resin Composites: Effect of Graft Copolymerization
M. Lava Kumar, P.K.Venu and Dr. M. Amala Justus Selvam "Physical Properties of Hybrid Particulate Composite Materials" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.57-60 2017
Shear wall are used in tall buildings as supporting element to resist earthquake loading. In order to enhance the ductility of the structural system the walls are connected together with lateral beams. Many researchers have investigated the behavior of shear walls using different methods. Analytical methods are one of the early techniques used in analysis of shear walls. During an earthquake, damage to building is largely caused by dynamic loads. Therefore, in order to design buildings resistant to earthquake, dynamic characteristics of building must be known. Generally asymmetric tall buildings may consist of any combination of structural forms, such as frames, shear walls, structural cores, and coupled shear walls. Lateral forces caused by wind, earthquake, and uneven settlement loads, in addition to the weight of structure and people living; create torsion in structure. In this study Response Spectrum method is used to analyse horizontally unsymmetrical structure. Aim of this study to decrease torsion using shear wall in structure. ETABS is computer software used to prove the point. Five different cases to analyse the structure i.e. four concentric shear walls at lift, shear wall parallel to X axis, shear wall parallel to Y axis, shear walls placed at exterior corners and two shear wall placed parallel to X axis and three parallel to Y axis. Different thicknesses of shear wall i.e. 150mm, 200mm, 300mm, and 400mmare used in all these cases. It has been observed that the torsion, drift and displacement in structure decreased by using concentric shear wall at corners. This study will be useful while positioning of shear wall in structure. .
- Page(s): 61-81
- Date of Publication: 15 October 2017
- Gaikwad Ujwala VithalMaster of Engineering - Civil Engineering (Structures), SCOE, Pune, Maharashtra, India
References
[1]. Adnan Fadih Ali Albasry ,Prof.P.Banerji, Structure idealization for Earthquake response of shear wall core system, (1993) [2]. A.Jalali, F.Dashti; Nonlinear behavior of reinforced concrete shear walls using macroscopic and microscopic models, , Engineering Structures 32(2010)2959-2968 [3]. Ashraf, Z.A. Siddiqi and M.A. Javed; Configuration of a multi storey building subjected to lateral forces Department of Civil Engineering, University of Engineering and Technology, Lahore ,Pakistan Asian journal of Civil engineering (building and housing)(2008) 525-57 [4]. Clifford D’souza, Prof. D.N.Buragohain; Earthquake analysis of three dimensional shear wall-frame assembly on pile foundations considering soil structure interaction , (,1984) [5]. Ho jung Leea, Mark A. Aschheimb, Daniel Kuchma; Inter-story drift estimates for low-rise flexible diaphragm structures, ,Engineering Structures 29 (2007) 1375-1397 [6]. H.S.Kim, D.G.Lee; Analysis of shear wall with opening using super element, Architectural Engineering Sungkyunkwan University ,25(2003)981-991 [7]. J.L. Humar and S.Yavari; Design of concrete shear wall building for earthquake induced forces. Department of civil and Environmental Engineering, Carleton University, Ottawa, Canada, 4th Structural Specialty Conference of the Canadian Society for Civil Engineering (2002) [8]. J.Kobaynshi, T.Korenaga, A.Shibata, K.Akino, T.Taira; Effect of small opening on strength and stiffness of shear walls in reactor building, Nuclear Engineering and Design(1995)17-27 [9]. llker Fatih Kara, Cengiz Dundar; Prediction of deflection of reinforced concrete shear walls, Advances in Engineering Software 40(2009)777-785 [10]. M.Paknahad, J.Noorzaei, M.S.Jaafar, Waleed A.Thanoon, Analysis of shear walls structure using optimal membrane triangle element, Finite Elements in Analysis and Design 43(2007)861-869 [11]. O.A.Pekau, Yuzhu Cui; Progressive collapse simulation of precast panel shear walls during earthquakes, Computers and Structures 84(2006)400-412 [12]. Paulay T.; Earthquake resisting shear walls NEW Zealand Design Trends, Journal ACI, (1980, No.3) [13]. R.K.L.Su, S.M.Wong; Seismic behavior of slender reinforced concrete shear walls under high axial load ratio, The University of Hong Kong ,29 (2007) 1957-1965 [14]. Saher Raffat Ibrahim EI-khoriby, Prof.P.Banerji,(Structure– foundation interaction in coupled shear wall subjected to earthquake ground motion , 1992) [15]. S.A.Meftah, R.Yeghnem, A.Tounsi, E.A.Adda bedia; Seismic behavior of RC coupled shear walls repaired with CFRP laminates having variable fibers spacing , Construction and Building Materials 21(2007)1661-1671 [16]. S.A.Meftah, A.Tounsi, A.Megueni, E.A.Adda Bedia; Lateral stiffness and vibration characteristics of RC shear walls bonded with thin composite plates, Composite Structure 73(2006)110-119 [17]. Sachin G. Maske, Dr. P. S. Pajgade; Torsional Behavior of asymmetrical Buildings, International Journal of Modern Engineering Research (IJMER) Vol.3, Issue.2, March-April. 2013 pp-1146-1149 [18]. S Edward D.Thomsona, Maria E.Perdomob, Ricardo Picon, Maria E.Maranteb, Julio Florez-Lopez; Simplified model for damage in squat RC shear walls, Engineering Structures 31 (2009) 2215-2223 [19]. S.S.AI-Mosawi, M.P.Saka, Optimum design of single core shear walls, Computers and Structures 71(1999)143-162 [20]. Sid Ahmed Mehtaf, Abdelouahed Tounsi, Adda Bedia Ei Abbas; A simplified approach for seismic calculation of a tall building braced by shear walls and thin-walled open section structures, Engineering Structures 29 (2007) 2576-2585 [21]. S.S.Badiet, D.C.Salmon and A.W.Beshara; Analysis of shear walls structures on elastic foundation , Computer & Structures Vol.65.No.2 (1995) [22]. Y.F. Rashed; Analysis of building shear walls using boundary elements, Engineering analysis with Boundary Elements 24(2000)287-293 [23]. Youssef Belmouden, Pierino Lestuzzi; Analytical model for predicting nonlinear reversed cyclic behavior of reinforced concrete structure walls, Engineering Structures 29(2007)1263-1276
Gaikwad Ujwala Vithal "Effect of Shear Wall on Sesmic Behavior of Unsymmetrical Reinforced Concrete Structure" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.61-81 2017
Successful Marketers are strong enough to stand alone, smart enough to know when they need help and brave enough to ask for it when required. Success in the field of marketing is not talent, the smartness in putting talent to work is success. Marketers make choices, these choices make their company. India has multiple problems on the rural front. The paper visits various businesses and finds the solutions to the problems through a new angle, entrepreneurship. How marketing smartness by these entrepreneurs solves this problem of the rural India. How training can impact their businesses and how the training can be customized. The research was conducted for over 7 weeks in rural towns of Mangalore and Udupi regions. The findings of this research is that smartest people in business survive and how entrepreneurs become smart, it’s by training they undergo and how they utilise the training. .
- Page(s): 82-84
- Date of Publication: 01 November 2017
- Mithun S UllalAssistant Professor,Sahyadri College of Engineering & Management, Mangalore, Karnataka, India
References
[1]. Bartels, R. 1977. ‘Marketing and Economic Development’, in C. Slater (ed.), Macro-Marketing: Distributive Processes from a Societal Perspective, pp. 211–17. Boulder: Graduate School of Business Administration, University of Colorado . [2]. Bernard Felix. (2006). High tech industries and knowledge based services: The importance of R&D and human resources in science and technology. Statistics in focus: Science and Technology, 13, 1–6. [3]. Chevalier A. (2003). Measuring over-education. Economica, 70(279), 509–531. [4]. Elais Peter, Kate Purcell. (2004). SOC (HE): A classification of occupations for studying the graduate labour market (Research Paper No. 6). Researching Graduate Careers Seven Years On: A research project jointly funded by the Economic and Social Research Council and the Higher Education Careers Services Unit, Institute for Employment Research, Warwick. [5]. Eurostat. (2007a). ‘High-technology’ and ‘knowledge-intensive services. Eurostat Metadata. Retrieved [6]. Eurostat. (2007b). ‘High-technology’ and ‘knowledge-based services’ aggregations based on NACE Rev. Eurostat Metadata. Retrieved from http://epp.eurostat.ec.europa.eu/cache/ITY_SDDS/Annexes/htec_esms_an3.pdfGoogle Scholar [7]. FICCI & NMIMS. Industry –Academia convergence: Bridging the skill gap. Mumbai: NIMIMS. [8]. Freeman R. B. (1976). The overeducated American. New York: Academic Press. [9]. Groot Wim, Massen van den Brink, Henriette (2000). Overeducation in the Labor Market: A Meta-analysis. Economics of Education Review, 19(2), 149–158. [10]. Joop Hertog. (2000). Over-education and earnings: Where are we, where should we go? Economics of Education Review, 19(2), 131–147 [11]. Kashya P and S. Raut 2006, The Rural Marketing Book, New Delhi: Biztantra [12]. Keefe.L 2004What is the meaning of marketing? Marketing News 38(15), 15 Semptember 17-18 [13]. Kotler.P, K.Keller, A.Koshy and M.Jha 2007. Marketing Management : A South Asian Prespective New Delhi : Pearson Prentice Hall [14]. Kotler, P 2000, Marketing Management NJ:Prentice Hall [15]. Leuven Edwin, Oosterbeek H. (2011, February). Overeducation and Mismatch in the Labor Market. Discussion Paper No. 5523, Germany: IZA. [16]. McGuinness S. (2006). Overeducation in the labor market. Journal of Economic Surveys, 20(3), 387–341. [17]. Sanghi S. (2012). Skill development for employability. Vikalpa, 37(3), 89–94. [18]. Torres-Freire C., Abdel A (2010 October). High-tech industries knowledge-intensive services: Why are these activities the core businesses for Sao Paulo’s competitiveness? Paper presented at VIII Triple Helix Conference Triple Helix in the Development of Cities of Knowledge, Expanding Communities and Connecting Regions, Madrid
Mithun S Ullal "Survival of the Smartest" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.82-84 2017
Aggressive Packet Combining (APC) scheme is the well-established protocol in case of reliable data transport in wireless network. APC has different type of limitations which includes low throughput. Several modifications are made in earlier researches to achieve higher throughput. In this particular we are establishing the existing work numerically. Throughput efficiency of the proposed method is higher than conventional ARQ technique.
- Page(s): 85-88
- Date of Publication: 01 November 2017
- Mayuri KunduComputer Science and Engineering, National Institute of Technology, Arunachal Pradesh, India-791112
- Swarnendu K ChakrabortyComputer Science and Engineering, National Institute of Technology, Arunachal Pradesh, India-791112
References
[1]. C. T. Bhunia, "A few modified ARQ techniques." In Proceedings of the International Conference on Communications, Computers & Devices, ICCCD-2000, vol. 2, 2000. [2]. C. T. Bhunia, and A. Chowdhury. "ARQ technique with variable number of copies in retransmission." In Proceedings of Conference on Computer Networking and Multimedia (COMNAM-2000), 2000. [3]. C. T. Bhunia "ARQ with two level coding with generalized parity and i (i> 1) copies of parts in retransmission." In Proceedings of National Conference on Data Communications (NCDC-2000), 2000. [4]. Bhunia, Chandan T. "ARQ Review and Modifications." IETE Technical Review 18, no. 5, 2000. [5]. C. T. Bhunia, et al., "Performance analysis of ARQ techniques used in computer communication using delay as a parameter." In Proceedings of Conference on Computer Networking and Multimedia (COMNAM-2000), Jadavpur University, Calcutta, India, 2000. [6]. R.J. Beniece, et al., “An Analysis of Retransmission Schemes”, IEEE Trans CommTech (COM-12), 1964. [7]. S. Lin, et al., “Automatic repeat request error control schemes”, IEEE Commun. Mag. vol. 22, 1984. [8]. A.R.K. Sastry, “Improving automatic repeat request (ARQ) per- formance on satellite channels under high error rate conditions”, IEEE Trans. Commun., vol. 23(4),1977. [9]. S.S. Chakraborty et al., “An ARQ scheme with packet combining”, IEEE Commun. Lett. vol. 2(7), 1995. [10]. E.J. Weldon Jr., “An improved selective repeat ARQ strategy”, IEEE Trans. Commun. vol. 30(3), pp. 480–486, 1982. [11]. D. Bertsekas et al., “Data Networks”, chap. 2 Prentice Hall of India, New Delhi, India, 1992. [12]. G.E. Keiser, “Local Area Networks “,McGraw-Hill, USA, 1995. [13]. N.D. Birrell, “Pre-emptive retransmission for communication over noisy channels”, IEE Proc. Part F 128, 1981. [14]. H. Bruneel, M. Moeneclacey, “On the throughput performance of some continuous ARQ strategies with repeated transmissions”, IEEE Trans. Commun. vol. 34(3), 1986. [15]. S Lin, D. Costello Jr., and M J Miller, “Arutomatic Repeat request error control schemes”, IEEE Comm Mag, vol 22, Dec 1984 [16]. Swarnendu Kumar Chakraborty, et al., "Studies of several new modifications of Aggressive Packet Combining to achieve higher throughput, based on correction capability of disjoint error vectors." Journal of The Institution of Engineers (India): Series B, vol. 97, no. 2,,2016. [17]. D. Towsley, “The shutter go back-N ARQ protocol”, IEEE Trans. Commun. vol. 27(6),1979. [18]. S.S. Chakraborty et al., “An exact analysis of an adaptive GBN scheme with sliding observation interval mechanism”, IEEE Commun. Lett. vol. 3(5), 1999. [19]. S.S. Chakraborty et al., “An adaptive ARQ scheme with packet combining for time varying channels” IEEE Commun. Lett. vol. 3(2),1999. [20]. C.T. Bhunia, “Modified Packet Combining Scheme Using Error Forecasting Decoding to Combat Error in Network”, Proceedings of the ICITA ‘05, vol. 2, Sydney, 4–7 July, 2005. [21]. S.B. Wicker, “ Adaptive rate error control through the use of diverse combining and majority logic decoding in hybrid ARQ protocol”, IEEE Trans. Commun. 39(3), (1991) [22]. S K Chakraborty, et al ., “Investigation of two new protocols of Aggressive packet combining scgheme in achieving better throughput” J. Inst. Eng India Ser. B, vol.96(2), 2015 [23]. M. Zorzi, et al., “Lateness probability of a retransmission scheme for error control on a two-state Markov channel”, IEEE Trans. Commun., vol. 47(10), 1999. [24]. Swarnendu K. Chakraborty, et al., "Two new modified schemes of Aggressive Packet Combining Schemes in Achieving Better Throughput." In Information Technology: New Generations (ITNG), 2013 Tenth International Conference on, IEEE, 2013.
Mayuri Kundu, Swarnendu K Chakraborty "Mathematical Comparison of throughput Analysis of ARQ Mechanism" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.85-88 2017
A fluorescent sensor, 6-(bis((1H-benzo[d]imidazol-2-yl)methyl)amino)-2H-chromen-2-one (BIC), based on 2-chloromethyl benzimidazole with 6-amino coumarin as receptor, was synthesized. Both BIC and its Cr(III) complex are well characterized by different spectroscopic techniques like 1HNMR, QTOF–MS ES+, FTIR and elemental analysis as well. BIC exhibits fluorescence enhancement upon binding Cr(III) in aqueous (water: methanol =7:3, v/v) solutions. Detection limit of the method is 1 x10-7 M. Binding constant is estimated with the Benesi-Hildebrand method and the value 1.39 x105 indicates a fairly strong interaction between BIC and Cr(III) . There has no fluorescence response seen towards other competing cations. BIC a water soluble off-on type ratiometric Cr(III) selective fluorescent probe and used for biological applications like living cell imaging at physiological pH using a confocal microscope. The fluorescence enhancement can be ascribed to the CHEF effect associated with better rigidity and planarity of the sensor molecules induced by chelation of Cr(III). The design strategy and remarkable photophysical properties of sensor BIC help to extend the development of fluorescent sensors for metal ions. .
- Page(s): 89-102
- Date of Publication: 01 November 2017
- Subarna GuhaCentral Institute of Plastic Engineering and Technology, Haldia, West Bengal, India
References
[1]. V. Gómez, M.P. Callao, Trend.Anal. Chem. 25 (2006) 1006–1015. [2]. R.D. Mount, J.R. Hockett, Water Res. 34 (2000) 1379–1385. [3]. H. F. Maltez, E. Carasek, Talanta 65(2005)537-542. [4]. R. A. Anderson, Chromium, Trace Elements in Human and Animal Nutrition, Academic Press, New York, 1987, pp 225-244. [5]. J. B. Vincent, Nutr. Rev., 58(2000)67–72. [6]. A. Ramesh Kumar, P. Riyazuddin, Microchem. J. 93 (2009) 236–241. [7]. M.J. Marques, A. Salvador, A. Morales-Rubio, M. de la Guardia, Fresenius J. Anal.Chem. 367 (2000) 601–613. [8]. L.-L. Wang, J.-Q. Wang, Z.-X. Zheng, P. Xiao, J. Hazard. Mater. 177 (2010)114–118. [9]. M. Zayed, T. Norman, Plant Soil, 249(2003)139-156. [10]. J. L. Pincus, C. Jin, W. Huang, H. K. Jacobs, A. S. Gopalan, Y. Song, J. A. Shelnutt, D.Y. Sasaki, J. Mater. Chem., 15(2005) 2938–2945. [11]. B. Demirata, Mikrochim. Acta 136 (2001) 143–146. [12]. A. Tunceli, A.R. Turker, Talanta 57 (2002) 1199–1204. [13]. A. Xue, S. Qian, G. Huang, L. Chen, J. Anal. Spectrom. 15 (2000) 1513–1515. [14]. F. Shemirani, M. Rajabi, Fresenius J. Anal. Chem. 371 (2001) 1037–1040. [15]. M. Sugiyaura, O. Fujino, S. Kihara, M. Matsui, Anal. Chim. Acta 181 (1986) 159–168. [16]. S. Peräniemi, M. Ahlgré, Anal. Chim. Acta 315 (1995) 365–370. [17]. I. Turyan, D. Mandler, Anal. Chem. 69(1997) 894-897. [18]. D. V. Vukomanovic, G. V. Vanloon, K. Nakatsu, D. E, zoutman, Microchem. J. 57(1997) 86-95. [19]. K.S. Subramanian, Anal. Chem. 60 (1988) 11–15. [20]. A. Beni, R. Karosi, J. Posta, Microchem. J. 85 (2007) 103–108. [21]. F.S. Shemirani, D. Abkenar, A. A. Mirroshandel, M.S. Niasari, R. R. Kozania, Anal. Sci. 19 (2003) 1453–1456. [22]. M.T.S. Cordero, E.I.V. Alonso, A.G. Torres, J.M.C. Pavon, J. Anal. At. Spectrom. 19 (2004) 398–403. [23]. K. Yoshimura, Analyst 113 (1988) 471–474. [24]. K.O. Saygi, et al., J. Hazard. Mater. 153 (2008) 1009–1014. [25]. S. Saracoglu, M. Soylak, L. Elci, Anal. Lett. 35 (2002) 1519–1530. [26]. M. Tuzen, M. Soylak, J. Hazard. Mater. 129 (2006) 266–273. [27]. K. Yoshimura, Analyst 113 (1988) 471–474. [28]. K.O. Saygi, J. Hazard. Mater. 153 (2008) 1009–1014. [29]. M. Sarkar, S. Banthia, A. Samanta, Tetrahedron Lett., 47(2006)7575-7578. [30]. J. Mao, L. Wang, W. Dou, X. Tang, Y. Yan, W. Liu, Org. Lett. 9 (2007) 4567–4570. [31]. K. Huang, H. Yang, Z. Zhou, M. Yu, F. Li, X. Gao, T. Yi, C. Huang, Org. Lett. 10 (2008) 2557–2560. [32]. Z. Zhou, M. Yu, H. Yang, K. Huang, F. Li, T. Yi, C. Huang, Chem. Commun., (2008)3387-3389. [33]. H. Wu, P. Zhou, J. Wang, L. Zhao, C. Duan, New J. Chem., 33(2009)653-658. [34]. V. Camel, Spectrochim. Acta, Part B 58 (2003) 1177-1233. [35]. I. P. Kostova, I. Manolov, I. Nikolova, N. Danchev, Farmaco 56 (2001) 707-713. [36]. G. J. Finn, B. S. Creaven, D. A. Egan, Melanoma Res. 11 (2001) 461-467. [37]. P. Laurin, M. Klich, C. Dupis-Hamelin, P. Mauvais, P. Lassaigne, A. Bonnefoy, B. Musicki, Bioorg. Med. Chem. Lett. 9 (1999) 2079-2084. [38]. R. J. S. Hoult, M. Paya, Gen. Pharmacol. 27 (1996) 713-722. [39]. S. P. Pillai, S. R. Menon, L. A. Mitscher, C. A. Pillai, D. A. Shankel, J. Nat. Prod. 62 (1999) 1358-1360. [40]. Y. Kimura, H. Okuda, S. Arichi, K. Baba, M. Kozawa, Biochim. Biophys. Acta 834(1985)224-229. [41]. S. Guha, S. Lohar, I. Hauli, S. K. Mukhopadhyay, D. Das, Talanta 85(2011) 1658-1664. [42]. H. A.Benesi, J. H. Hildebrand, J. Am. Chem. Soc.71 (1949) 2703-2707. [43]. D. Karak, A. Banerjee, A. Sahana, S. Guha, S. Lohar, S. Sekhar Adhikari and D. Das. J. Hazard. Mater. 188(2011)274-280. [44]. J. Mao, Q. He, and W. Liu, Anal Bioanal Chem 396(2010)1197-1203. [45]. B. Tang, T. Yue, J. Wu, Y. Dong, Y. Ding, and H. Wang, Talanta 64 (2004) 955-960. [46]. S. Guha, S. Lohar, A. Banerjee, A. Sahana, A. Chaterjee, S. K. Mukherjee, J. S. Matalobos, D. Das, Talanta xx (2011) xxx–xxx, doi:10.1016/j.talanta.2011.12.014
Subarna Guha "Coumarin Based Highly Sensitive and Selective Ratiometric Fluorescence Sensor for Chromium Ions in Aqueous Media" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.89-102 2017
India’s rapid economic growth has put the country on a progressive mode but it has had its fair share of problems, traffic being one of them. Vehicular traffic on Indian roads have increased substantially over the last decade and the country’s urban road infrastructure needs a much awaited overhaul to address the problems of ever increasing traffic. This paper attempts to address the traffic problem at Akhbharnagar roundabout in the city of Ahmedabad. In this paper feasibility of the rotary has been checked according to IRC clauses and a corrective measure of implementing a traffic signal system has been suggested.
- Page(s): 103-105
- Date of Publication: 01 November 2017
- Hemang DalwadiDepartment of Civil Engineering, Institute of Technology, Nirma University
- Rahul PasawalaDepartment of Civil Engineering, Institute of Technology, Nirma University
- Shubham BhandariDepartment of Civil Engineering, Institute of Technology, Nirma University
- Rahul UpadhyayDepartment of Civil Engineering, Institute of Technology, Nirma University
- Pareejat S.Department of Civil Engineering, Institute of Technology, Nirma University
- Shreyans T.Department of Civil Engineering, Institute of Technology, Nirma University
References
[1]. IRC 65-1976, (1990)-Recommended practices for traffic rotaries [2]. Marilo Martin-Gasulla, (2016) “Capacity and operational improvement of metering roundabout in Spain.” International symposium on Enhancing Highway Performance. Volume 15 295-307 [3]. Mauro, R. and Branco, F. (2010). & quot; Comparative Analysis of Compact Multilane Roundabouts and Turbo-Roundabouts.& quot; J. Transp. Eng., ASCE)TE.1943- 5436.0000106, 316-322. [4]. Marian Tracz, (2012) Performance and Safety of Roundabouts with Traffic Signals.“Sciencedirect”. 11 (1) 23-42 [5]. L. R Kadiyali (2011). Traffic Engineering and Transportation Planning. Khanna Publishers, New Delhi [6]. Raffaele (2010) Calculations of Roundabout, Italy
Hemang Dalwadi, Rahul Pasawala, Shubham Bhandari, Rahul Upadhyay, Pareejat S., Shreyans T. "Rotary Feasibility at Akhbarnagar Circle" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 10, pp.103-105 2017