A fluorescent Zn2+ sensor 4-Methyl-2, 6-bis (((2H-chromen-2-one) imino) methyl) - phenol (MCP) based on the 6-aminocoumarin platform has been synthesized. This sensor acts as a highly sensitive and selective fluorescent ON-OFF probe and strong binding ability towards Zn2+ in DMSO/water 9:1, v/v (100 mM HEPES buffer; pH 7.4) at room temperature. Other common alkali, alkaline earth and transition metal ions have negligible interference. MCP used for bio-medical applications like living cell imaging at physiological pH using a confocal microscope.
- Page(s): 01-19
- Date of Publication: 16 November 2017
- Dr. Subarna GuhaFaculty of Chemistry, Central Institute of Plastic Engineering and Technology, Haldia, West Bengal, India
References
[1]. J. M. Berg and Y. Shi, Science 271(1996)1081. [2]. M. Ebadi, F. Perini, K. Mountjoy and J. S. Garvey, J. Neurochem., 66 (1996) 2121. [3]. C. J. Frederickson, Int. ReV. Neurobiol., 31(1989)145. [4]. P. D. Zalewski, S. H. Millard, I. J. Forbes, O. Kapaniris, A. Slavotinek, W. H. Betts, A.D. Ward, S. F.Lincoln and I. Mahadevan, J. Histochem. Cytochem., 42(1994)877. [5]. P.D. Zalewski, X. Jian, L.L.L. Soon, W.G. Breed, R.F. Seamark, S.F. Lincoln, A.D. Ward and F.Z. Sun, Fertil. Dev., 8(1996)1097. [6]. A.Q. Truong-Tran, L.H. Ho, F. Chai and P.D. Zalewski, J. Nutr., 130(2000) 1459S. [7]. D.W. Choi and J.Y. Koh, Annu. ReV. Neurosci., 21(1998)347. [8]. C.J. Frederickson, M.D. Hernandez and J.F. McGinty, Brain Res., 480(1989)317. [9]. J.Y. Koh, S.W. Suh, B.J. Gwag, Y.Y. He,C.Y. Hsu and D.W.T. Choi, Science 272 (1996) 1013. [10]. C.T. Sheline, M.M Behrens and D.W. Choi, J. Neurosci., 20(2000)3139. [11]. E.C.Yeiser, A.A. Lerant, R.M. Casto and C.W. Levenson, Neurosci. Lett., 277(1999)75. [12]. S.W. Suh, K.B. Jensen, M.S. Jensen, D.S. Silva, P.J. Kesslak, G. Danscher and C.J. Frederiskson, Brain Res., 852(2000)274. [13]. C.C. Curtain, F. Ali, I. Volitakis, R.A. Cherny, R.S. Norton, K. Beyreuther, C.J. Barrow, C.L. Masters, A.I. Bush and K.J. Barnham, J. Biol. Chem., 276 (2001) 20466. [14]. K. Suzuki, T. Miura and H. Takeuchi, Biochem. Biophys. Res. Commun., 285(2001) 991. [15]. A.I. Bush, W.H. Pettingell, G. Multhaup, M. Paradis, J.-P. Vonsattel, J. F. Gusella, K. Beyreuther, C.L. Masters and R.E. Tanzi, Science 265 (1994)1464. [16]. A.B. Chausmer, J. Am. Coll. Nutr., 17(1998)109. [17]. S. Maruyama, K. Kikuchi, T. Hirano, Y. Urano and T. Nagano, J. Am. Chem.Soc.,124 (2002)10650. [18]. M.Taki, J.L. Wolford and T.V. O’Halloran, J. Am. Chem. Soc., 126 (2004) 712. [19]. K. Komatsu, K. Kikuchi, H. Kojima, Y. Urano and T. Nagano, J. Am. Chem. Soc., 127 (2005)10197. [20]. A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher and T.E. Rice, Chem. Rev., 97 (1997) 1515. [21]. W.-M. Liu, L.-W. Xu, R.-L. Sheng, P.-F. Wang, H.-P. Li and S.-K. Wu, Org. Lett., 9 (2007) 3829. [22]. R.R. Gagne, C.L. Spiro, T.J. Smith, C.A. Hamann, W.R. Thies and A.K. Schiemke, J. Am. Chem. Soc.,103 (1981) 4073. [23]. S. Roy, T. K. Mondal, P. Mitra, E.L. Torres and C. Sinha Polyhedron 30, (2011) 913. [24]. Gaussian 03, Rev.C.02 (Gaussian Inc., Wallingford CT), 2004 [25]. J.J. Grzybowski and F.L. Urbach, Inorg. Chem., 19 (1980) 2604. [26]. R.R. Gagne, C.L. Spiro, T.J. Smith, C.A. Hamann, W.R. Thies and A.K. Schiemke, J. Am. Chem. Soc., 103(1981) 4073. [27]. C. J. Fahrni and T. V. O’Halloran, J. Am. Chem. Soc., 121(1999) 11448. [28]. H. A.Benesi and J. H. Hildebrand, J. Am. Chem. Soc.,71(1949) 2703.
Dr. Subarna Guha "Coumarin-Based Receptor for Recognition of Zn2+ Ion: Spectroscopic Evidence and Imaging Application in Living Cells" International Journal of Research and Scientific Innovation-(IJRSI) vol.4 issue 11, pp.01-19 2017
In this paper an approximate analysis of free convective flow of a non-Newtonian liquid between two co-axial cylinders has been carried out by two techniques. The equation of motion and energy including viscous dissipative terms are a pair of simultaneous non-linear ordinary differential equations. These equations under appropriate boundary conditions have been solved by the fourth order Runge-Kutta method and the back propagation neural networks method. The truncation errors involved in Runge-Kutta method of solution have been determined for one set of values of parameters and have been noted to be O(10-5). It has been observed that the elastic parameter has greater influence on the velocity field than on the temperature field. The effect of other parameters Pr (Prandatl number), E (Eckert number) etc. on flow and temperature field. The solution has been compared with the results obtained from the ANN model. This study so far reveals that skin friction, Nusselt number both at outer and inner cylinder can alternatively be modeled using the ANN within a reasonable accuracy. The results obtained from the ANN model are in very good agreement with the numerical results. The designed ANN model can be considered and useful alternative and one of the best techniques for solving non-Newtonian fluid flow problems.
- Page(s): 20-27
- Date of Publication: 16 November 2017
- U. K. Tripathy Retd. Professor & Head Dept of Mathematics, V.S.S.University, Burla-768017, Sambalpur, India
- S. M. PatelLecturer, Department of Mathematics, Sundargarh Engineering School, Sundargarh. 7700073, India
References
[1] Ostrach, S., (1952). NACA, TN, 2863. [2] Ostrach, S., (1954). Jbid, 3141. [3] Ostrach, S., (1955)(a). Sondrdruck aus, 50, Jhara, Grenz, Viewg, Braun, 226. [4] Ostrach, S., (1955)(b). NACA, TN, 3458. [5] Ostrach, S., (1957). INTUM, Boundary Layer Research Freiburgh, 185. [6] Morton, B.R., (1960). J. Fluid. Mech. 8, 227. [7] Tau, L.N., (1960). Appl. Sci. Res. A(9), 357. [8] Sarpakaya, T., (1961). Flow of non-Newtonian fluids in a magnetic field, AICHE Journal, 7(2): 324-328. [9] Nanda, R.S. and Sharma, V.P., (1962). Appl. Sc. Res. A(11) 279. [10] Acrivos, A., (1960). A. J. Ch. E. Journal, 6,584. [11] Mishra, S.P., (1965). Proc. Ind. Acad. Sci., 61(4A), 219. [12] Hansen, A.J. and Na,T.Y., (1966). Int. J. Heat and Mass Transfer, 9, 261. [13] Kabeir, V.G. and Pai, D.C.T., (1968). A.R.C.11, 855. [14] Emery, A.F., Chi, H.W. and Dale, J.D., (1971).Trans, ASME 93(2), 164. [15] Mishra, S. P. and Acharya, B.P., (1972). Ind. J. Phys., 46,469. [16] Acharya, B.P., (1975). Prc. Ind. Acd. Sci, 3, 99. [17] McFal, K.S., (2013). Automated design parameter section for neural networks solving coupled partial differential equations, Journal of the Franklin Institute-Engineering and Applied Mathematics, 350(2): 300-317. [18] Tsoulos, I.J., Gavrilis, D. and Glavas, E., (2009). Solving differential equations with constructed neural networks, Neurocomputing, 72 (10-12): 2385-2391. [19] Choi, B. and Lee, J.H., (2009). Comparison of generalization ability on solving differential equations using backpropagation and reformulated radial basis function networks, Neurocomputing, 73(1-3): 115-118. [20] Reddy, P.B.A. and Das, R., (2016). Estimation of MHD boundary layer slip flow over a permeable stretching cylinder in the presence of chemical reaction through numerical and ANN modeling, Engineering Science and Technology, an International Journal, doi: 10. [21] Shahri, M.F. and Nezhad, A.F., (2014). Estimation of the flow and heat transfer in MHD flow of a power law fluid over a porous plate ANNs, Middle East J. Sci. Res. 22(9) 1422-1429 [22] Noll, W., (1955). J. Rat. Mech. Anal., 4, 3. [23] Tripathy, U.K., (1980). Ph.D. Thesis, Utkal University, Bhubaneswar. [24] Tripathy, U.K. and Patel S.M., (2017). On Heat Transfer in case of a Viscous Flow over a Plane Wall with Periodic Suction by Artificial Neural Network. IJMTT-Vol. 44 number 2 April.
U. K. Tripathy and S. M. Patel "Solution of Flow and Heat Transfer of an Elastico-viscous Liquid Between Two Co-axial Cylinders by Artificial Neural Network" International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 11, pp.20-27 2017
A coumarin based efficient fluorescent probe selective for Hg2+ and Pb2+ ions was synthesized by coupling 6-amino-coumarin with 2-hydroxy naphthaldehyde. The probe and its metal complexes were well characterized by different spectroscopic techniques. The probe could detect up to 1µM Hg2+ and Pb2+ in aqueous methanol solution. The method showed linearity up to 10 μM for both Hg2+ and Pb2+. Interference from other common cations is almost negligible. The probe showed a strong binding to Hg2+ and Pb2+ ions as evident from their binding constant values (2.2×104 and 1.4×104 respectively) estimated by Benesi-Hildebrand method. Computational studies (Ab-initio, Hartree Fock) indicated a molecular level interaction between the probe and Hg2+ and Pb2+ ions.
- Page(s): 28-51
- Date of Publication: 16 November 2017
- Dr. Subarna Guha Faculty of Chemistry, Central Institute of Plastic Engineering and Technology, Haldia, West Bengal, India
References
[1]. I. Hoyle, and R.D. Handy, (2005), Dose-dependent inorganic mercury absorption by isolated perfused intestine of rainbow trout, Oncorhynchus mykiss, involves both amiloride-sensitive and energy-dependent pathways, quat. Toxicol. 72, 147-159. [2]. A. B. Kobal, M. Horvat, M. Prezelj, A.S. Briˇski, M. Krsnik, T. Dizdareviˇc, D. Mazej,I. Falnoga, V. Stibilj, N. Arneriˇc, and D. Kobal, (2004),The impact of long-term past xposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners, J. Osredkar, J. Trace Elem. Med. Biol. 17, 261-274. [3]. Z. Marczenko, (1986) Separation and Spectrophotometric Determination of Elements, Ellis Horwood, Chichester, pp.15. [4]. G. Fang, Y. Liu, S. Meng, and Y. Guo, (2002),Spectrophotometric determination of lead in vegetables with dibromo-p-methyl-carboxysulfonazo, Talanta 57,1155-1160. [5]. J. C. Yu, J. M. Lo, and C.M. Wai, (1983), Extraction of Gold and Mercury from Sea-Water with Bismuth Diethyldithiocarbamate Prior to Neutron-Activation Gamma-Spectrometry, Anal. Chim. Acta. 154, 307-312. [6]. P. Ugo, L. M. Moretto, P. Bertoncello, and J. Wang, (1998),Determination of trace mercury in saltwaters at screen-printed electrodes modified with sumichelate Q10R, Electroanalysis 10 ,1017-1021. [7]. L. Bennun, and J. Gomez, (1997), Determination of mercury by total-reflection X-ray fluorescence using amalgamation with gold, Spectrochim. Acta, 52B ,1195-1200. [8]. M. J. Powell, E. S. K. Quan, D. W. Boomer, and D. R. Wiederin, (1992) ,Inductively coupled plasma mass- spectrometry with direct injection mercury analysis of drinking-water, Anal.Chem. 64 ,2233-2237. [9]. M. S. Bispo, M. G. Andrade Korn, E. S. Bao Morto, and L. S. Gomes Teixeira, (2002), Determination of lead in seawater by inductively coupled plasma optical emission spectrometry after separation and pre-concentration with cocrystallized naphthalene alizarin, Spectrochim. Acta Part B 57, 2175-2180. [10]. T.-H. Lee, and S.-J. Jiang, (2000), Determination of mercury compounds by capillary electrophoresis inductively coupled plasma mass spectrometry with microconcentric nebulization, Analytical Chemical Acta, 413, 197-205. [11]. A. D’ulivo, and P. Papoff, (1985), Non-dispersive atomic-fluorescence spectrometric determination of lead by the hydride generation technique, Talanta 32 , 383-386. [12]. C. Burrini, and A. Cagnini, (1997), Determination of mercury in urine by ET-ASS and extraction with cyclohexane, Talanta 44 ,1219-1223. [13]. D. L. Tsalev, L. Lampugnani, R. Georgieva, K. K. Chakarova, and I. I. Petrov Jr., (2002), Electrothermal atomic absorption spectrometric determination of cadmium and lead with stabilized phosphate deposited on permanently modified platforms, Talanta 58, 331-340. [14]. A. Shafawi, L. Ebdon, M. Foulkes, P. Stockwell, and W. Corns, (1999), The preliminary evaluation of adsorbent-based mercury removal systems for gas condensate, Analyst 124,185-189. [15]. Y. Yamini, N. Alizadeh, and M. Shamsipur, (1997), Solid phase extraction and determination of ultra trace amounts of mercury(II) using octadecyl silica membrane disks modified by hexathia-18-crown-6-tetraone and cold vapour atomic absorption spectrometry, Anal. Chim. Acta, 355 69-74. [16]. Q. W. He, E. W. Miller, A. P. Wong, and C. J. Chang, (2006), A selective fluorescent sensor for detecting lead in living cells, J. Am. Chem. Soc. 128 ,9316–9317. [17]. I. B. Kim, A. Dunkhorst, J. Gilbert, and U. H. F. Bunz, (2005), Sensing of lead ions by a carboxylate-substituted PPE: multivalency, Macromolecules 38 ,4560– 4562. [18]. J. P. Desvergne, and A.W. Czarnik (Eds.), Chemosensors for Ion and Molecule Recognition, Kluwer Academic Publishers, Boston, 1997. [19]. A.W. Czarnik, (1994), Chemical Communication in Water Using Fluorescent Chemosensors. Chem. Res. 27, 302-308. [20]. B. Vaidya, J. Zak, G.J. Bastiaans, M.D. Porter, J.L. Hallman, N.A.R. Nabulsi, M.D. Ulterback, B. Strzelbicka, and R.A. Bartsch, (1995), Chromogenic and Fluorogenic Crown Ether Compounds for the Selective Extraction and Determination of Hg(II),Anal. Chem. 67, 4101-4111. [21]. D.Y. Sasaki, and B.E. Padilla, (1998),Dithioamide Metal Ion. Receptors on Fluorescent Lipid Bilayers for the Selective. Optical Detection of Mercuric Ion. Chem. Commun.15, 1581-1582. [22]. Z. -X. Han, H. -Y. Luo, X. -B.Zhang, R. -M. Kong, G.-L. Shen, and R.-Q. Yu, (2009), A ratiometric chemosensor for fluorescent determination of Hg2+ based on a new porphyrin-quinoline dyad, Spectrochimica Acta Part A 72,1084-1088. [23]. G.G. Talanova, N.S.A. Elkarim, V.S. Talanov, and R.A. Bartsch, (1999) A Calixarene-Based Fluorogenic Reagent for Selective Mercury(II) Recognition. Anal. Chem. 71 ,3106-3109. [24]. Y. -C. Hsieh, J. -L. Chir, H. -H. Wu, P. -S. Chang, and A. -T. Wu, (2009),A sugar-aza-crown ether-based fluorescent sensor for Hg2+ and Cu2+, Carbohydrate Research 344, 2236-2239. [25]. A. Banerjee, D. Karak, A. Sahana, S. Guha, S. Lohar, and D. Das, (2011), Methionine–pyrene hybrid based fluorescent probe for trace level detection and estimation of Hg(II) in aqueous environmental samples: Experimental and computational studies, J Hazard. Mat. 186 ,738–744. [26]. A.W. Czarnik, (1994), Chemical communication in water using fluorescent chemosensor, Acc. Chem. Res. 27 ,302-308. [27]. B. Vaidya, J. Zak, G. J. Bastiaans, M. D. Porter, J. L. Hallman, N. A. R. Nabulsi, M. D. Ulterback, B. Strzelbicka, and R. A. Bartsch, (1995), Chromogenic and Fluorogenic Crown Ether Compounds for the Selective Extraction and Determination of Hg(II), Anal. Chem. 67 ,4101-4111. [28]. D.Y. Sasaki, and B.E. Padilla, (1998), Dithioamide metal ion receptors on Fluorescent lipid bilayers for the selective optical detection of mercuric ion, Chem. Commun. 15, 1581-1582. [29]. Z. -X. Han, H. -Y. Luo, X. -B.Zhang, R. -M. Kong, G. -L. Shen, and R. -Q. Yu, (2009), A ratiometric chemosensor for fluorescent determination of Hg2+ based on a new porphyrin-quinoline dyad, Spectrochimica Acta Part A 72,1084–1088. [30]. G. G. Talanova, N. S. A. Elkarim, V. S. Talanov, and R.A. Bartsch, (1999), A calixarene based fluorogenic reagent for selective mercury (II) recognition, Anal. Chem. 71,3106-3109. [31]. Y. -C. Hsieh, J. -L. Chir, H. -H. Wu, P. -S. Chang, and A. -T. Wu, (2009), A sugar-aza-crown ether-based fluorescent sensor for Hg2+ and Cu2+, Carbohyd. Res. 344, 2236–2239. [32]. V. Camel, (2003), Solid phase extraction of trace elements, Spectrochim. Acta, Part B 58 1177-1233. [33]. R. A. Goyer, (1986) In Casarett and Doull’s Toxicology: The basic science of poisons; C.D. Klaassen, M.O. Amdur, J. Doull, Eds.; 3rd ed. Mac Millan publisher: New York, pp 598. [34]. R. Métivier, I. Leray, and B. Valeur, (2003) A highly sensitive and selective fluorescent molecular sensor for Pb(II) based on a calix[4]arene bearing four dansyl groups, Chem. Commun.8, 996 - 997. [35]. F. Y. Wu, S. W. Bae, and J. I. Hong, (2006), A selective fluorescent sensor for Pb(II) in water, Tetrahedron Lett. 47, 8851-8854. [36]. M. Arduini, F. Mancin, P. Tecilla, and U. Tonellato, (2007),Self-organized fluorescent nanosensors for ratiometric Pb2+ detection, Langmuir 23,8632- 8636. [37]. S. S. Bozkurt, S. Ayata, and I. Kaynak, (2009), Fluorescence-based sensor for Pb(II) using tetra-(3-bromo-4-hydroxyphenyl)porphyrin in liquid and immobilized medium, Spectrochim. Acta A 72, 880-883. [38]. L. Ma, Y. Li, L. Li, Y. Wu, R. Buchet, and Y. Ding, (2009),Clarification of the binding model of lead(II) with a highly sensitive and selective fluoroionophore sensor by spectroscopic and structural study, Spectrochim. Acta A 72 ,306-311. [39]. X. L. Ni, S. Wang, X. Zeng, Z. Tao, and T. Yamato, (2011), Pyrene-Linked Triazole-Modified Homooxacalix[3]arene: A Unique C3 Symmetry Ratiometric Fluorescent Chemosensor for Pb2+, Org. Lett. 13, 552 -555. [40]. S. Goswami, and R. Chakrabarty, (2010), Highly Selective Colorimetric Fluorescent Sensor for Pb2+,Eur. J. Org. Chem.2010(20),3791-3795. [41]. T. Lan, K. Furuya, and Y. Lu, (2010), A highly selective lead sensor based on a classic lead DNAzyme, Chem. Commun. 46, 3896- 3898. [42]. H. Ju, M. H. Lee, J. Kim, J. S. Kim, and J. Kim, (2011), Rhodamine-based chemosensing monolayers on glass as a facile fluorescent “turn-on” sensing film for selective of Pb2+ , Talanta 83, 1359- 1363. [43]. U. P. Masche, K. M. Rentsch, Avon Felten, P. J. Meier, and K. E. Fittinger, (1999), No clinically relevant effect of Iornoxicam intake on acenocoumarol pharmacokinetics and pharmacodynamics, Eur. J. Clin. Pharmacol. 5, 865-868. [44]. I. P. Kostova, I. Manolov, I. Nikolova, and N. Danchev, (2001),New metal complexes of 4- methyl-7-hyd.roxycouma.rin sodium salt and their pharmacological activity. Farmaco 56 ,707-713. [45]. F. A. Jimenez-Orozco, J. A. Molina-Guarneros, N. Mendoza- Patino, F. Leon-Cedeno, B. Flores-Perez, E. Santos-Santos, and J. J. Mandoki, (1999), Cytostatic activity of coumarin metabolites and derivatives in the B16-F10 murine melanoma cell line. Melanoma Res. 9(3),243-248. [46]. G. J. Finn, B. S. Creaven, and D. A. Egan, (2001),Study of the in vitro cytotoxic potential of natural and synthetic coumarin derivatives using human normal and neoplastic skin cell lines, Melanoma Res. 11,461-467. [47]. P. Laurin, M. Klich, C. Dupis-Hamelin, P. Mauvais, P. Lassaigne, A. Bonnefoy, and B. Musicki, (1999), Synthesis and in vitro evaluation of novel highly potent coumarin inhibitors of gyrase, Bioorg. Med. Chem. Lett. 9,2079-2084. [48]. R. J. S. Hoult, and M. Paya, (1996), Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential, Gen. Pharmacol. 27, 713-722. [49]. S. P. Pillai, S. R. Menon, L. A. Mitscher, C. A. Pillai, and D. A. Shankel, (1999), Umbelliferone Analogues and Their Potential to Inhibit Benzo(a)pyrene and Hydrogen Peroxide Induced Mutations. J. Nat. Prod. 62, 1358-1360. [50]. Y. Kimura, H. Okuda, S. Arichi, K. Baba, and M. Kozawa, (1985), Inhibition of the formation of 5-hydroxy-6,8,11,14-eicosatetraenoic acid from arachidonic acid, Biochim. Biophys. Acta, 834,224-229. [51]. J. Hoffmanova, A. Kozubik, and L. Dusek, (1998), Inhibitors of lipoxygenase metabolism exert synergistic effects with retinoic acid on differentiation of human leukemia HL-60 cells J. Pachernik, Eur. J. Pharmacol. 350, 273-284. [52]. G. J. Finn, B. S. Creaven, and D. A. Egan, (2004), A study of the role of cell cycle events mediating the action of coumarin derivatives in human malignant melanoma cells, Cancer Lett. 214 ,43-54. [53]. G. J. Finn, B. S. Creaven, and D.A. Egan, (2005), Activation of mitogen activated protein kinase pathways and melanogenesis by novel nitro-derivatives of 7-hydroxycomarin in human malignant melanoma cells, Eur. J. Pharm. Sci. 26,16-25. [54]. Gaussian 03, Rev.C.02, Gaussian Inc., Wallingford CT, 2004
Dr. Subarna Guha "Coumarin Derived Efficient Fluorescent Probe for Trace Level Determination of Hg(II) and Pb(II) in Environmental Samples: Experimental and Computational Studies " International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 11, pp.28-51 2017
Composites in today's world play an important role as they are being used as replacements for conventional materials. Aluminum is most widely used as base matrix in a composite because of its low density high strength property. To maintain similar density range along with improvement in material strength, Beryl (Beryllium aluminum cylcosilicate) is used as the reinforcement. The combination of aluminum and beryl enhances the material properties of aluminum without any drastic increase in the total mass density of the composite. Stir-casting technique has been employed to cast Al-Beryl MMC by varying beryl's percentage each time. Friction, wear, hardness and tensile tests has been carried out in this work. Taguchi method is performed on the results obtained from the experiments .Optimization of parameters using S/N ratio and ANOVA is carried out.
- Page(s): 52-56
- Date of Publication: 03 December 2017
- A KarthikM.Tech Student, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India
- M Shivapratap Singh YadavAssistant Prof, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India
- Reddappa H NAssociate Prof, Bangalore Institute of Technology, Bangalore, Karnataka, India
- Ravikumar MAssistant Prof, R L Jalappa Institute of Technology, Bangalore, Karnataka, India
References
[1] Aluminium Alloy-Based Metal Matrix Composites: A Potential Material for Wear Resistant Applications, Runa Dasgupta, ISRN Metallurgy(2012). [2] Tribological Properties of Aluminium 2024 Alloy– Beryl Particulate MMC’s, H.B. Bhaskar and Abdul sharief, Bonfring International Journal of Industrial Engineering and Management Science, Vol. 2, No. 4, December 2012. [3] Studies on Mechanical and Wear Properties of Al6061/Beryl Composites, Hosur Nanjireddy Reddappa, Journal of Minerals and Materials Characterization and Engineering, (2012)11, 704-708. [4] Application Of Taguchi Method For Optimization Of Process Parameters In Improving The Surface Roughness Of Lathe Facing Operation, Srinivas Athreya , Dr Y.D.Venkatesh-IRJES Vol 1, Nov 2012, pp. 13-19.
A Karthik, M Shivapratap Singh Yadav, Reddappa H N, Ravikumar M "Tribological Behavior of Al6061-Beryl Metal Matrix Composite and Optimization of Parameters using Taguchi Method” International Journal of Research and Scientific Innovation-IJRSI vol.4 issue 11, pp.52-56 2017