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Abstract: Moving boundary problems require special care of 

treatment due to the its complex nature and high non-linearity 

represented by so many factors, one of these factors the nature of 

the boundary conditions at the moving boundary. Since long 

time ago, numerical methods became more suitable for solution. 

In the present paper, a hybrid numerical method is developed to 

solve these types of problems. A hybrid collocation and grid 

method based radial basis function is derived herein with 

simultaneous numerical iterative algorithm to solve moving 

boundary problems. Two test practical problems are solved, the 

first is the dissolution in binary alloys and the second is the 

solidification in a two dimensions prism. For the first test 

problem, the computed results are compared with available 

numerical solution, while the second one, no analytical solution 

available, but the computed results are compared with available 

numerical results. The present method promises well as a new 

trend of numerical methods of solution for moving boundary 

problems. 

Keywords: Moving boundary problem, phase change problems, 
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I. INTRODUCTION 

oving boundary problems are old field of research and 

still new up to more upcoming years due to its wide 

applications in science, technology and engineering 

applications. If one wants to describe or give brief definition 

to moving boundary problems, easiest way of definition is a 

set of partial differential equations with associated boundary 

and initial conditions, one or more of its boundaries are 

varying with time and should be determined as a major part of 

the required solution. The moving boundary problems are 

highly non-linear due to existence of heat balance, mass 

balance or both at the moving interfaces. Heat transfer is one 

type of moving boundary problems. Heat treatment of metals 

is often necessary to optimize their mechanical properties both 

for further processing and final use during the heat treatment 

the metallurgical state of the alloy changes [1-2]. This change 

can either involve the phases being present or the morphology 

of the various phases [3]. Aluminum alloys usually contain 

precipitates and in-homogeneities, these in-homogeneities can 

be removed with a thermal treatment, during which the 

precipitates dissolve. Although precipitate dissolution is not 

the only metallurgical process-taking place during 

homogenization, it is often the most critical of the processes 

occurring. Precipitates dissolution can be modeled as one, two 

or three moving boundary problem. Till now, there are neither 

general models for micro structural changes nor general 

models for the kinetics of these changes [4-5]. Models 

describing the process as a moving boundary problem is also, 

referred to as Stefan problems [6]. In recent years, the simpler 

models covering binary and ternary alloys have been extended 

to cover multi-component particles [7]. Due to the complex 

nature of the moving boundary problems very few analytical 

solutions are available and limited to infinite or semi-infinite 

domain problems. Existence and uniqueness of analytical 

solutions had been proved by Evan and Douglas, respectively 

in [8-9]. For long time researchers recognized problems such 

as, labor intensive, time-consuming and error-prone task when 

using a mesh-based method such as finite element method 

[10]. One way for their efforts to overcome these problems 

was the automatic mesh generation the second way to 

overcome such problems was developing the mesh-less 

methods. Mesh-less methods for solving boundary value 

problems have been extensively popularized owing to their 

flexibility in engineering applications, especially for problems 

with discontinuities and because of high accuracy of the 

computed results [11]. Mesh-free methods do not require a 

mesh to discretize the domain of the problem under 

consideration, and the approximate solution is constructed 

entirely based on a set of scattered nodes. For long time the 

researchers recognized problems when using a mesh-based 

method such as finite element method [12-13]. One way for 

their efforts to overcome these problems was the automatic 

mesh generation. Automatic mesh generation is difficult to be 

fully generated in a wide range of engineering applications. 

The second way to overcome such problems was developing 

the mesh-less methods [14]. The initial idea of mesh-less 

methods dates back to the smooth particle hydrodynamics 

method for modeling astro-physical phenomena [15]. Several 

domain type mesh-free methods such as element free Galerkin 

method [16], reproducing kernel particle method [17], the 

point interpolation method [18] and the mesh-less Petrov-

Galerkin method [19] have been proposed and achieved 

remarkable progress in solving a wide range of static and 

M 



International Journal of Research and Scientific Innovation (IJRSI) | Volume IV, Issue V, May 2017 | ISSN 2321–2705 

www.rsisinternational.org Page 2 
 

 

 

dynamic problems for solid and structures. Advection-

diffusion equation is one of the most important partial 

differential equations and observed in a wide range of 

engineering and industrial applications [20]. It has been used 

to describe heat transfer in a draining film [21], water transfer 

in soil [22], dispersion of tracers in porous media [23], 

contaminant dispersion in shallow lakes [24], the spread of 

solute in a liquid flowing through a tube, long-range transport 

of pollutants in the atmosphere [25] and dispersion of 

dissolved salts in groundwater [26]. Accurate numerical 

solution of the advection-diffusion equation is usually 

characterized by a dimensionless parameter, called Peclect 

number. These results become increasingly difficult as the 

Peclect number increases due to onset of spurious oscillations 

or excessive numerical damping if finite difference [27] or 

finite element formulations are used [28]. In the present paper, 

a hybrid numerical method is developed to solve these types 

of problems. A hybrid collocation and grid method based 

radial basis function is derived herein with simultaneous 

numerical iterative algorithm to solve moving boundary 

problems. Two test practical problems are solved, the first is 

the dissolution in binary alloys and the second is the 

solidification in a two dimensions prism. For the first test 

problem, the computed results are compared with available 

analytical solution, while the second one, no analytical 

solution available, but the computed results are compared with 

available numerical results. The present method promises well 

as a new trend of numerical methods of solution for moving 

boundary problems. 

II. MATHEMATICAL FORMULATION 

Consider a domain  ,0  that is composed by a particle 

whose domain is denoted by   tspart ,0  and diffusive 

phase   ,tsphdif  . We consider the concentration 

 txc ,  of certain material within 
phdifpart   . 

Assume the concentration of the particle is constant and 

denoted by 
partc . The configuration of the problem is shown 

in figure (1). 

 

Figure (1): Problem configuration 

The state equations with the associated boundary and initial 

conditions are as follow: 

   
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  0,,  txctxc partpart
  

                                             (2) 

    0,, sol  ttxctxc                                                                

                                                                                               (3) 

Condition represents the mass balance of atoms transferred to 

the diffusive phase: 

    
  0,

,
, sol 




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                                                                                               (4) 

It is assumed in the model that there is no concentration 

transport, i.e., 

 
0,or0,0

,



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Assume also a piecewise initial concentration of the form: 

 
















xsc

sxc

sxc

txc sol

part

00

0

00

,    

                                                       (6) 

III. ANALYTICAL DERIVATION OF THE METHOD 

Starting the derivation by dealing with equation (1) and let us 

approximate the concentration as follows: 

  ab

bN

j

ijj

iNbN

j

ijj NNibatc  






,...,2,1,,x
11



                                                      (7) 

Apply equation (7) into equation (1), the latter will be: 
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                                                 (8) 

By making use of forward approximation to the time 

differentiation in equation (8), this will leads to: 





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
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

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                                                 (9) 

where
1kc and

kc are the concentration at times  1k and

 k , t is the time step, ib NN , are boundary and internal 
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nodes, respectively and finally, 
jj ba , are unknown constants 

to be determined as a major part of the proposed method. 

Equation (9), can now be re-written as: 
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                                                                                (10) 

By summing up the corresponding terms in the left hand side 

of equation (10), leads to: 
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                                                                                            (11) 

In a simple compact matrix form, equation (11) can now take 

the form: 

   kjijjij

k
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The next step is to deal with the boundary conditions at the 

moving boundary, and let us start with the boundary condition 

given by equation (3): 

Isol

11

cba
bN

j

ijj

iNbN

j

ijj 






                                            (13) 

                          where I is a unit vector of dimension

 1 ib NN . This equation in a simplified matrix form 

takes the following form: 

  solu jijjij aFbD                 (14)
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From equation (14), one can get: 

jijijijj bDFFa 11solu 


           

                                                     (15) 

Next, let us dealing with the other boundary condition as 

follows: 
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In a compact matrix form, equation (16) can be re-written as: 

j
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From equation (17), one can get the unknown
ja as follows: 
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Equating equations (15) and (18), leads to: 
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Simplifying equation (19), leads to: 
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Finally, let us deal with the boundary condition given by 

equation (5), leads to: 
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In a compact matrix form, equation (21) can be re-written as 

follows: 
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                                                                (22) 
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Equation (22) is a direct relation between the unknown 

constants
jj ba & , from which one can get the following 

form: 

jijj ba KL-1

ij                   (25)                                       

Now then, we have two direct system of relations for the 

unknown
ja and two systems for

jb one of them is direct and 

the other is indirect. These relations will be used in two 

different ways, the first is a computation purpose and the other 

is a check in the iterative procedure, as will be seen in the next 

section. 

IV. NUMERICAL ITERATIVE ALGORITHM 

In the present paper, a new suggested iterative numerical 

algorithm is developed as follows: 

1. Guess an initial position for the moving boundary 

and subsequently its velocity, assuming linear 

variation between them. 

2. Solve system given by equation (15) at the time step

kt  to get 
Eq.15ja  

3. Solve system given by equation (25) at the time step

kt  to get 
25 Eq.ja  

4. Compute the error    
15 Eq.25 Eq. jj aaE   

5. Solve system given by equation (20) at the time step

kt  to get
jb  

6. Check step, if PrescribedE , go to the next time 

step, if not update both moving interface position and 

its velocity and repeat steps 2-6 

V. NUMERICAL RESULTS 

Example -1- 

This example is a direct application of the proposed new 

method to the problem given by the system of the governing 

equation and the associated boundary and initial condition 

given by equations (1-6) with the numerical data given in 

table (1). 
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Table 1: Numerical data 

PartC  oC    
0s  D  

53.0  1.0  0.1  2.0  1  

 

Starting the computations based on the proposed new method 

and the proposed iterative algorithm, the movement of the 

moving boundary is shown in figure (2). 

Figure (2): Movement of the moving boundary for example -1- 

As it is appear the present solution is close to the analytical 

similarity solution. In the beginning of the time and up to time 

nearly equal 0.3 an agreement between the two solutions with 

some errors. Fellow up the computations based the proposed 

new method, the concentration in both phases via space 

variable at different times 0.1,1.0,05.0,01.0 are plotted as 

shown in figures (3-6), respectively. 

 

Figure (3): Concentration in both phases at time = 0.01 

Figure (4): Concentration in both phases at time = 0.05 

Figure (5): Concentration in both phases at time = 0.10 

Figure (6): Concentration in both phases at time = 1.0  
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As it is clear the concentration in the particle domain is 

always constant and equals to the boundary condition 0.53. 

On the other side the concentration in the diffusive phase 

starts at the point very close to the moving boundary at the 

time of computations. Therefore, the starting point of these 

curves is different from case to another due to the position of 

the moving boundary at these times. The behavior of the 

concentration at these times is the same and agrees with 

physical behavior of the problem. The variation of the 

concentration with time at three different points is also 

computed using the present method and the results are shown 

in figures (7-9) respectively. 

 

Figure (7): Concentration at x = 0.25 -Example (1) 

 

Figure (8): Concentration at x = 0.35- Example (1) 

 

Figure (9): Concentration at x = 0.45-Example (1) 

It is clear from figures (7-9) that the concentrations at time 

zero equal the initial condition. The behavior of the 

concentration after that decreases till the concentration at the 

moving boundary, then jump in the concentration profile 

occur at behave constant value at equal to the particle 

concentration. 

Example -2- 

A square of dimensions 22 initially filled with liquid at the 

melting temperature. The surface is suddenly cooled at time 

zero to the temperature 0u and the solidification proceeds 

inwards. Two phases will appear, solid and liquid, 

respectively. This problem is a classical Stefan problem and 

solved using different numerical methods before. One of these 

methods given by Rao, and the results due to the present 

method are compared with the results due to Rao. The 

following non-dimensional (normalized) parameters are used 

in the computation. 
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The results started by a comparison between the present 

method and the method proposed by Rao et. al.. The 

comparison started by plotting the moving interfaces due to 

both methods at three different times as shown in figure (6). 

As it is clear there is a very good agreement between the 

results. Also it is clear that the behavior of the moving 

interface moves as a one-dimensional case at the beginning of 

the process and the effect of two dimension starts appearing at 

later times. 

 

Figure (7): 2-D moving interface without mushy zone at three different times 

The normalized temperature due to the present algorithm is 

presented in figure (7) and compared with the results due to 

Rao et. al. The temperature verses time at two different points

 2.0,1 and  4.0,1  is plotted, as seen an acceptable 

agreement is obtained and the error can be neglected.  

 

Figure (8): Non-dimensional temperature variation at two different times 

VI. CONCLUSION 

Dealing with moving boundary problems in general case, 

needs special care due to the non-linearity inherent at the 

moving boundary as well as its complex nature. The proposed 

method herein, is a hyprid collocation and Cartesian grid 

numerical method. It is clear that the mathematics of the 

proposed method is so simple compared with other numerical 

methods such as finite element and boundary elements 

methods. The computations of the proposed method are so 

easily just need careful with matrices. The collocation based 

radial basis function itself is an easy numerical technique and 

it does not need to deal with the overall domain, also the 

Cartesian grid method is easily manipulated but requires 

special care. The proposed hybrid method collects the 

advantages of both methods and avoid the disadvantages. The 

results due to the present method give promises to solve wide 

range of moving boundary problems with acceptable error. 
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