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Abstract:  In this paper an approximate analysis of free 

convective flow of a non-Newtonian liquid between two co-axial 

cylinders has been carried out by two techniques. The equation 

of motion and energy including viscous dissipative terms are a 

pair of simultaneous non-linear ordinary differential equations. 

These equations under appropriate boundary conditions have 

been solved by the fourth order Runge-Kutta method and the 

back propagation neural networks method. The truncation 

errors involved in Runge-Kutta method of solution have been 

determined for one set of values of parameters and have been 

noted to be O(10
-5

). It has been observed that the elastic 

parameter has greater influence on the velocity field than on the 

temperature field. The effect of other parameters Pr (Prandatl 

number), E (Eckert number) etc. on flow and temperature field. 

The solution has been compared with the results obtained from 

the ANN model. This study so far reveals that skin friction, 

Nusselt number both at outer and inner cylinder can 

alternatively be modeled using the ANN within a reasonable 

accuracy. The results obtained from the ANN model are in very 

good agreement with the numerical results. The designed ANN 

model can be considered and useful alternative and one of the 

best techniques for solving non-Newtonian fluid flow problems. 

Key words: artificial neural network, back-error propagation, 

non-Newtonian fluid, skin friction, Nusselt number. 

I. INTRODUCTION 

he free convective viscous flow between vertical heated 

plates was investigated by [1], [2],[3],[4],[5]. Likewise 

[6], [7] have studied the free convective viscous flow through 

a vertical circular pipe when it is heated or cooled uniformly. 

The magnetohydrodynamic (MHD) flow of non-Newtonian 

fluids was examined by [8]. The same problems including the 

effect of frictional heating and distributed sources or sinks 

was considered by [9]. In the past years free convective 

laminar flow of a non-Newtonian liquid has gained substantial 

importance and has attracted the attention of several 

researchers. The problem of free convective non-Newtonian 

flow have studied by [10], [11], [12], [13], [14], [15], [16]. 

Stochastic solvers based on artificial neural networks has been 

examined widely by the researchers to solve a variety of linear 

and non-linear differential equations by [17], [18], [19]. The 

solved paper Estimation of MHD boundary layer slip   flow 

over a permeable stretching cylinder in the presence of 

chemical reaction through numerical and ANN modeling by 

[20]. The solved paper Estimation of the flow and heat 

transfer in MHD flow of a power law fluid over a porous plate 

ANNs by [21]. As described by [21] we have solved our 

present problem.  

              This paper has been arranged as follows: Section 2 

formulations of the problem. In section 3 solutions by method 

of iteration and artificial neural network method are presented. 

Section 4, concluded the achievement of this study. 

II. FORMULATION OF THE PROBLEM 

  The rheological equation of state of the elastic-

viscous liquid model considered in this paper by [22] in the 

following form 

𝑝𝑖𝑗 + 𝜆1𝑝 𝑖𝑗 = 2𝜂0𝑒𝑖𝑗 + 4𝜇𝑐𝑒𝑖𝛼𝑒𝛼𝑗              (i)           where 

𝑝 𝑖𝑗 =
𝜕𝑝𝑖𝑗

𝜕𝑡
+ 𝑝,𝑘

𝑖𝑗
𝑣𝑘 − 𝑝𝑖𝑘𝑣,𝑘

𝑗
− 𝑝𝑘𝑗 𝑣,𝑘

𝑖 + 𝑝𝑖𝑗 𝑣,𝑘
𝑘  

            and  𝜇𝑐  is the cross viscous co-efficient. 

          The desired equations of motion and energy have 

been solved by iteration technique, the skin friction and the 

Nusselt number (Nu) at the boundary of the inner and outer 

wall of the cylinder is calculated. The same skin friction and 

the Nusselt number (Nu) has been estimated by an artificial 

neural network (ANN) scheme. And these two results were 

compared by tables and figures.   

           We consider a fully developed laminar free 

convective flow of an incompressible elastic-viscous fluid 

contained in the annular space between two co-axial circular 

cylinders. The cylinders are assumed to be vertical and 

infinitely long. 

         We work through cylindrical polar co-

ordinates(𝑟, 𝜃, 𝑧). Let the common axis of the cylinders 

T 
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coincide with the z-axis and radii of the cylinders be 𝑎 and 𝑏 

(𝑎 > 𝑏). The velocity field (𝑢, 𝑣, 𝑤) compatible with the 

equation of continuity is given by 

𝑢 = 0, 𝑣 = 0 𝑎𝑛𝑑 𝑤 = 𝑤 𝑟                                           2.1  

  The surviving stress components from equation (i) 

and (2.1) are given by 

𝑝𝑟𝑟 = 𝜇𝑐  
𝑑𝑤

𝑑𝑟
 

2

                                                               (2.2) 

𝑝𝑟𝑧 = 𝜇  
𝑑𝑤

𝑑𝑟
 + 𝜆1𝜇𝑐  

𝑑𝑤

𝑑𝑟
 

3

                                         2.3  

    and 

𝑝𝑧𝑧 =  𝜇𝑐 + 2𝜆1𝜇  
𝑑𝑤

𝑑𝑟
 

2

+ 2𝜆1
2𝜇𝑐  

𝑑𝑤

𝑑𝑟
 

4

                                (2.4) 

The dissipation function 𝜑 is given by   

𝜑 = 𝜇  
𝑑𝑤

𝑑𝑟
 

2

+ 𝜆1𝜇𝑐  
𝑑𝑤

𝑑𝑟
 

4

                                          2.5  

  Since the buoyancy force is only due to gravity 

acting vertically down words, the components of the 

extraneous force are  

𝐹𝑟 = 0, 𝐹𝜃 = 0  𝑎𝑛𝑑  𝐹𝑧 = 𝑓𝑧                                           2.6  

  Using the Boussine equation approximation the 

equation of motion can be written as  

      
𝑑2𝑤

𝑑𝑟2
+

1

𝑟

𝑑𝑤

𝑑𝑟
+
𝜆1𝜇𝑐
𝜇

 
𝑑

𝑑𝑟
 
𝑑𝑤

𝑑𝑟
 

3

+
1

𝑟
 
𝑑𝑤

𝑑𝑟
 

3

 +
𝜌𝛽𝑓𝑧
𝜇

𝜃′

= 0                                  (2.7)  

  Where 𝛽 is the volumetric co-efficient of thermal 

expansion and 𝜃′  is the temperature. 

   The energy equation including viscous dissipative term is 

given by  

𝑑2𝜃′

𝑑𝑟2
+

1

𝑟

𝑑𝜃′

𝑑𝑟
+
𝜇

𝑘
 
𝑑𝑤

𝑑𝑟
 

2

+
𝜆1𝜇𝑐
𝑘

   
𝑑𝑤

𝑑𝑟
 

4

= 0         (2.8)  

where 𝑘 is the thermal conductivity of the fluid. Assuming 

that the inner cylinder to be moving parallel to itself in the z-

direction with constant velocity 𝑤 and the outer one to be 

fixed, the boundary conditions for the momentum equation 

(2.7) are  

       
𝑟 = 𝑏 ∶  𝑤 = 𝑊

𝑟 = 𝑎 ∶ 𝑤 = 0  
                                                   (2.9) 

  Further assuming the temperatures of the inner and 

outer cylinders to be 𝜃𝑏
′  and 𝜃𝑎

′  and 𝜃𝑏
′ > 𝜃𝑎

′ (= 0), the 

boundary conditions to which the energy equation (2.8) is 

subjected to 

               
𝑟 = 𝑏 ∶  𝜃′ = 𝜃𝑏

′

𝑟 = 𝑎 ∶  𝜃′ = 0
                                              (2.10) 

  We now introduce the following quantities for non-

dimensionalizing the above equations. 

ℎ = 𝑎 − 𝑏,   𝜆 =
ℎ

𝑏
,     𝜂 =

𝑟 − 𝑏

𝑎 − 𝑏
,                                

     𝑤 =
𝑤

𝑊
,      𝜏 =

𝜃′

𝜃𝑏
′  ,    𝐺 =

𝜌𝛽𝑓𝑧ℎ
2𝜃𝑏

′

𝑤𝜇
,               (2.11) 

    𝑅𝑐 =
𝜆1𝜇𝑐𝑤

2

𝜇ℎ2
,     𝐸 =

𝑤2

𝜃𝑏
′ 𝜃

,     𝑃𝑟 =
𝜇𝑐
𝑘

     

where 𝑐 is the specific heat, 𝜃, 𝑅𝑐 , 𝐸 𝑎𝑛𝑑 𝑃𝑟  respectively 

denote the Grashof number, elastic number, Eckert number 

and Prandtl number. Thus the equation of the motion and 

energy and desired boundary conditions are 

𝑑2𝑤 

𝑑𝜂2
+

𝜆

1 + 𝜆𝜂
 
𝑑𝑤 

𝑑𝜂
+ 𝑅𝑐  

𝑑

𝑑𝜂
 
𝑑𝑤 

𝑑𝜂
 

3

+
𝜆

1 + 𝜆𝜂
  
𝑑𝑤 

𝑑𝜂
 

3

 + 𝐺𝜏

= 0                                     (2.12) 

𝑑2𝜏

𝑑𝜂2
+

𝜆

1 + 𝜆𝜂
 
𝑑𝜏

𝑑𝜂
+ 𝐸𝑃𝑟   

𝑑𝑤 

𝑑𝜂
 

2

+ 𝑅𝑐  
𝑑𝑤 

𝑑𝜂
 

4

 

= 0                                              (2.13) 

     and 

                  
𝜂 = 0 ∶  𝑤 = 1,   𝜏 = 1

𝜂 = 1 ∶  𝑤 = 0,   𝜏 = 0
                           (2.14) 

III. SOLUTION OF THE GOVERNING EQUATIONS 

          It is seen that the equation (2.12) and (2.13) are a pair 

of non-linear equations. We solve this pair of equation under 

the boundary conditions (2.14) in two different methods viz 

(i) iteration method and (ii) ANN method. 

3.1 Solution by Method of Iteration  

  Following [23] for solution by iteration we define the 

sequence of functions  𝑤 𝑛  and  𝜏𝑛  given by 

𝑤 𝑛
′′ +

𝜆

1 + 𝜆𝜂
𝑤 𝑛

′ + 𝑅𝑐  
𝑑

𝑑𝜂
 𝑤 𝑛−1

′  3              

             +
𝜆

1 + 𝜆𝜂
 𝑤 𝑛−1

′  3 + 𝐺𝜏𝑛 = 0                         (3.1) 

  𝜏𝑛
′′ +

𝜆

1 + 𝜆𝜂
𝜏𝑛
′ + 𝐸𝑃𝑟  𝑤 𝑛−1

′  2 +  𝑅𝑐 𝑤 𝑛−1
′  4  

= 0                                                     (3.2) 

     
𝑤 𝑛 0 = 𝜏𝑛 0 = 1

𝑤 𝑛 1 = 𝜏𝑛 1 = 0
               𝑛 = 1,2,3, …                 (3.3)                                                   

 and 

                          𝑤 −1
′ = 𝑤 −1

′′ = 0                                    (3.4) 
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Primes in the above equations denote differentiation with 

regard to η.  

      From equation (3.1) - (3.4) the zeroth order iterate 

equations are 

  𝑤 0
′′ +

𝜆

1 + 𝜆𝜂
𝑤 𝑛

′ + 𝐺𝜏0 = 0                                   (3.5) 

𝜏0
′′ +

𝜆

1 + 𝜆𝜂
𝜏0
′ = 0                                                        (3.6) 

  And 

 
𝑤 0 0 = 𝜏0 0 = 1

𝑤 0 1 = 𝜏0 1 = 0
                                                        (3.7) 

The zeroth order solutions are 

                   𝜏0 = 1 −
1

𝐿
log 1 + 𝜆𝜂                                (3.8) 

And 

𝑤 0 = log 1 + 𝜆𝜂 [𝐴1 1 + 𝜆𝜂 2 + 𝐴2] 

                          + 𝐴3 1 + 𝜆𝜂 2 + 𝐴4                              (3.9) 

Where 

𝐿 = log 1 + 𝜆𝜂                                    

𝐴1 =
𝐺

 4𝐿2 
                                               

𝐴2 = −
1

𝐿
 1 +

𝐺

4𝜆2
 1 −

𝜆(2 + 𝜆

𝐿
      

𝐴3 = −
𝐺

4𝜆2
 1 −

1

𝐿
                             

𝐴4 = 1 − 𝐴3                                        

  We next solve the first order iterative equations 

which are obtained by setting n=1 in equations (3.1) – (3.3). 

These equations are  

𝑤 1
′′ +

𝜆

1 + 𝜆𝜂
𝑤 1

′ + 𝑅𝑐  
𝑑

𝑑𝜂
 𝑤 0

′  3                           

               +
𝜆

1 + 𝜆𝜂
 𝑤 0

′  3 + 𝐺𝜏1    = 0                      (3.10) 

𝜏1
′′ +

𝜆

1 + 𝜆𝜂
𝜏1
′ + 𝐸𝑃𝑟  𝑤 0

′  2 +  𝑅𝑐 𝑤 0
′  4  

= 0                                                   (3.11) 

and 

      
𝑤 1 0 = 𝜏1 0 = 1

𝑤 1 1 = 𝜏1 1 = 0
               𝑛 = 1,2,3, … ..       (3.12) 

  Using equations (3.9) in equations (3.10) and (3.11) 

and solving these equations under the boundary conditions 

(3.12). We obtain the first order iterates  𝜏1 , and 𝑤 1 as in 

[23].    

        The solution can be carried to higher order 

approximation but the algebra involved in this becomes 

complicated and for this we stop at the first order 

approximation. 

      From equation (2.3) and (2.11) the skin friction in the 

dimensionless form at the inner and outer cylinder can be 

written as  

  𝜎0 =  ℎ

𝜇𝑤 
𝑝𝑟𝑧  

𝜂=0

                                                        

               =  
𝑑𝑤 

𝑑𝜂
+ 𝑅𝑐  

𝑑𝑤 

𝑑𝜂
 

2

 
𝜂=0

                               (3.13) 

   And 

 𝜎1 =  ℎ

𝜇𝑤 
𝑝𝑟𝑧  

𝜂=1

                                                 

                  =  
𝑑𝑤 

𝑑𝜂
+ 𝑅𝑐  

𝑑𝑤 

𝑑𝜂
 

2

 
𝜂=1

                           (3,14) 

  Now writing 𝑤 = 𝑤 1 in equations (3.13) and (3.14). 

We obtain the skin frictions 𝜎0, 𝜎1 ,and Nusselt numbers 𝑁𝑢0,  

𝑁𝑢1 as in [23].     

3.2 Artificial Neural Network Method 

       The artificial neural network (ANN) is a parallel 

processing architecture consisting of very simple and 

extremely interconnected processors called neurons organized 

in layers. Artificial neural network (ANN) is a mathematical 

model and advanced computing tool that processes 

information using neuro computing technique. ANN has the 

capability for machine learning and pattern matching. In an 

ANN the data or the information is distributed through the 

network and stored in the form of weighted interconnection. 

ANN has been shown to be highly flexible modeling tool with 

the capability of learning the mathematical mapping tool with 

the capability of learning the mathematical mapping between 

input and output. ANN is composed of layers of neurons. The 

input layer of neurons is connected to the output layers of 

neurons through one or more hidden layers of neurons. ANN 

is trained with experimental data and tested with other 

experimental data to reach at an optimum topology and 

weights.  

           A back error propagation (BEP) neural network model 

is considered with one hidden layer with a sigmoid function. 

During the training process ANN adjusts its weights to 

minimize the errors between the predicated result and actual 

output by using Back Propagation algorithm. A schematic 

diagram of a Back propagation Neural Network (BPNN) with 

n inputs nodes, r outputs nodes and a single hidden layer of m 

nodes called processing units is shown in figure 1. Each 

interconnection between the nodes has a weight associate with 

it. The input nodes have a transfer function of unity and the 
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activation function of the hidden and output nodes are 

sigmoidal 𝑆 (. ) and linear, respectively. 

          The output of ANN was determined by giving the 

inputs and computing the output from various nodes 

activation and interconnection weights. The output was 

compared to the experimental output and the mean squared 

error was calculated. The error value was then propagated 

backwards through the network and changes were made to the 

weights at each node in each layer. The whole process was 

repeated, in an iterative fashion, until the overall error value 

drops below a predetermined threshold. 

          In the present study, the numerical values obtained for 

all the parameters were used to train the ANN. The BPNN 

consists of three phases, namely the training, validation and 

test phases. The five parameters (𝜆, 𝐺, 𝑅𝑐  , 𝐸 𝑎𝑛𝑑 𝑃𝑟) 

determined for the samples used in the study were used as the 

input nodes and four parameters (𝑁𝑢0, 𝑁𝑢1, 𝜎0 𝑎𝑛𝑑 𝜎0) in 

these samples were used as the output parameter of the ANN, 

as shown in figure 1. As there exists no proper rule for setting 

the exact number of neurons in the hidden layer to avoid 

overfitting or underfitting of the input parameters and to make 

the learning phase convergent. The number of nodes in the 

hidden layer was selected through trial and error method 

based on the number of epochs needed to train the network. 

After such iterative procedures it was found that the 

convergence between the numerical values and predicted 

values of 𝑁𝑢0, 𝑁𝑢1, 𝜎0 𝑎𝑛𝑑 𝜎0 was achieved with the 

inclusion of one hidden layer with seven neurons. ANN 

structure has been designed and accomplished using the 

MATLAB code. A sigmoid function has been used as the 

activation function of artificial neurons and training has used 

as the activation function of artificial neurons, and training 

has been completed using a fixed (2962) number of epochs 

with a bias of (0.66). The total 27 numerical data set were 

used to train, validate and test the ANN model for the skin 

friction coefficient. The 17 data sets were used for the training 

set, 5 data sets were used for validate and the rest of the data 

were used for testing the result of the model. The 

performances of the 𝑁𝑢0, 𝑁𝑢1, 𝜎0 𝑎𝑛𝑑 𝜎0 for training, 

validation and test sets of the proposed ANN model are shown 

in figure 2(a),(b),(c),(d), figure 3(a),(b),(c),(d), figure 

4(a),(b),(c),(d),  and figure 5 (a),(b),(c),(d), respectively. 

 

       Following [24] from Tables 1-4 the y=mx+c, R2, 

RSME values of the model for all data set were calculated. It 

is observed that the ANN models were properly trained, as 

they simulate complicated relationship between the input and 

output variables. Moreover, the predicted skin friction 

coefficient, Nusselt number both at outer and inner cylinder 

values from the ANN model for training, validation and test 

sets are compared with numerically obtained skin friction 

coefficient, nusselt number both at outer and inner cylinder 

values, which are given in figure 2 (a),(b),(c) and (d) to figure 

5 (a),(b),(c) and (d) respectively. The results obtained from 

the ANN model are in very good agreement with the 

numerical results. This study so far reveals that skin friction, 

Nusselt number both at outer and inner cylinder can 

alternatively be modeled using the ANN within a reasonable 

accuracy. The results obtained from the ANN model are in 

very good agreement with the numerical results.   

IV. CONCLUSION 

         The validity and accuracy of the results by ANN are 

compared with the available results by Runge-Kutta method 

and are shown in tables 1–4. It is observed that the above 

results are found by ANN to be in excellent agreement. The 

values of skin friction coefficient, Nusselt number and the 

both at outer and inner cylinder for various values of the 

involved pertinent parameters are shown in above maintained 

tables. 

       Table 1 and 2 gives the values of 𝜎0 (skin friction at 

the inner cylinder) and 𝜎1 (skin friction at the outer cylinder) 

for different sets of values of the flow parameters. It is 

observed that 𝜎0 increases and 𝜎1 decreases as 

𝐺, 𝑅𝑐  , 𝐸 𝑎𝑛𝑑 𝑃𝑟 increases. However when λ increases both 𝜎0 

and 𝜎1 decreases. Table 3 and 4 gives the values of Nusselt 

number 𝑁𝑢0 (the rate of heat transfer of inner cylinder) and 

𝑁𝑢1 (the rate of heat transfer of outer cylinder) for various 

values of the parameters. It is observed that  λ and 𝑃𝑟 

increases both 𝑁𝑢0 and 𝑁𝑢1 increases when the parameter 

𝑅𝑐   and 𝐸 increases it is seen that 𝑁𝑢0 increases and 𝑁𝑢1 

decreases. However when 𝐺 increases both 𝑁𝑢0 and 𝑁𝑢1 

decreases. 

          The ANN scheme is also employed for the 

estimation of  𝜎0, 𝜎1  𝑁𝑢0  and 𝑁𝑢1. The developed ANN 

scheme is found to be acceptable due to an almost exact 

aquracy during training, validation and test. These estimated 

values of ANN are in agreement of 5% difference from the 

numerically calculated values barring few data. Therefore the 

designed ANN model can be considered and useful alternative 

and one of the best techniques for solving non-Newtonian 

fluid flow problems.  
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Table 1. Skin friction data of 𝜎0 for ANN 𝜎0 and Num 𝜎0 with error. 

Sl. 

No. 
λ G Rc E Pr Num σ0 ANN σ0 % Error 

1 0.8 5 0.00 0.01 1.00 0.53010 0.54231 2.303338993 

2 0.8 5 0.01 0.01 1.00 0.53017 0.53928 1.718316766 

3 0.8 5 0.05 0.01 1.00 0.53029 0.54011 1.851816930 

4 0.8 10 0.00 0.01 1.00 0.54200 0.54298 0.180811808 

5 0.8 10 0.01 0.01 1.00 0.54219 0.55011 1.460742544 

6 0.8 10 0.05 0.01 1.00 0.54276 0.54999 1.332080478 

7 0.8 40 0.00 0.01 1.00 0.54265 0.55019 1.389477564 

8 0.8 40 0.01 0.01 1.00 0.54278 0.54972 1.278602749 

9 0.8 40 0.05 0.01 1.00 0.54295 0.55001 1.300303895 

10 0.2 5 0.00 0.01 1.00 0.69513 0.70925 2.031274726 

11 0.2 5 0.01 0.01 1.00 0.69556 0.73001 4.952843752 

12 0.2 5 0.05 0.01 1.00 0.69578 0.72812 4.648020926 

13 0.2 10 0.00 0.01 1.00 0.70163 0.71018 1.218590995 

14 0.2 10 0.01 0.01 1.00 0.70195 0.71329 1.615499679 

15 0.2 10 0.05 0.01 1.00 0.70223 0.71516 1.841277074 

16 0.2 40 0.00 0.01 1.00 0.70119 0.71008 1.267844664 

17 0.2 40 0.01 0.01 1.00 0.70113 0.71025 1.300757349 

18 0.2 40 0.05 0.01 1.00 0.70186 0.71294 1.578662411 

19 0.8 5 0.01 0.01 0.05 0.64600 0.65018 0.647058824 

20 0.8 5 0.01 0.01 0.70 0.66842 0.67124 0.421890428 

21 0.8 5 0.01 0.01 1.00 0.69555 0.70296 1.065343972 

22 0.8 5 0.01 0.05 0.05 0.67592 0.68012 0.621375311 

23 0.8 5 0.01 0.05 0.70 0.70813 0.71396 0.823295158 

24 0.8 5 0.01 0.05 1.00 0.74887 0.74821 0.088132787 

25 0.8 5 0.01 0.10 0.05 0.98592 0.98012 0.588283025 

26 0.8 5 0.01 0.10 0.70 1.12496 1.13528 0.917365951 

27 0.8 5 0.01 0.10 1.00 1.37464 1.30010 5.422510621 

 

𝑦 = 0.902 𝑥 + 0.072,     𝑅2 = 0.995,     𝑅𝑆𝑀𝐸 = 0.02154 

Figure 2(a) Training 

 

𝑦 = 0.966𝑥 + 0.026 , 𝑅2 = 0.999, 𝑅𝑆𝑀𝐸 = 0.00778 

Figure 2(b) Validation 

 

𝑦 = 1.001𝑥 + 0.012 , 𝑅2 = 0.997, 𝑅𝑆𝑀𝐸 = 0.01626 

Figure 2(c) Test 

 
𝑦 = 0.938 𝑥 + 0.048, 𝑅2 = 0.994, 𝑅𝑆𝑀𝐸 = 0.01877 

Figure 2(d) All 

Figure 2 (a), (b),(c)and(d) Graphical representation of 𝜎0 

Table 2. Skin friction data of 𝜎1 for ANN 𝜎1 and Num 𝜎1 with error 𝜎1 

Sl.

No 
λ G Rc E Pr Num σ1 ANN σ1 

% 

Error 

1 0.8 5 0.00 0.01 1.00 -0.45425 -0.45329 0.21133 

2 0.8 5 0.01 0.01 1.00 -0.45419 -0.4532 0.21797 

3 0.8 5 0.05 0.01 1.00 -0.45318 -0.46128 1.78736 

4 0.8 10 0.00 0.01 1.00 -0.47928 -0.46296 3.40510 

5 0.8 10 0.01 0.01 1.00 -0.47921 -0.47001 1.91982 

6 0.8 10 0.05 0.01 1.00 -0.47781 -0.46925 1.79150 

7 0.8 40 0.00 0.01 1.00 -0.47986 -0.48012 0.05418 

8 0.8 40 0.01 0.01 1.00 -0.47953 -0.47001 1.98527 

9 0.8 40 0.05 0.01 1.00 -0.47886 -0.46992 1.86693 

10 0.2 5 0.00 0.01 1.00 -0.36225 -0.37012 2.17253 

11 0.2 5 0.01 0.01 1.00 -0.36218 -0.35926 0.80622 

12 0.2 5 0.05 0.01 1.00 -0.36017 -0.35958 0.16381 

13 0.2 10 0.00 0.01 1.00 -0.39685 -0.39007 1.70845 

14 0.2 10 0.01 0.01 1.00 -0.39656 -0.38999 1.65674 

15 0.2 10 0.05 0.01 1.00 -0.39617 -0.40003 0.97432 

16 0.2 40 0.00 0.01 1.00 -0.39697 -0.38057 4.13129 

17 0.2 40 0.01 0.01 1.00 -0.39669 -0.39001 1.68393 

18 0.2 40 0.05 0.01 1.00 -0.39625 -0.38826 2.01640 

19 0.8 5 0.01 0.01 0.05 -0.36218 -0.35928 0.80070 

20 0.8 5 0.01 0.01 0.70 -0.37595 -0.36999 1.58531 
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21 0.8 5 0.01 0.01 1.00 -0.41057 -0.40999 0.14126 

22 0.8 5 0.01 0.05 0.05 -0.56329 -0.55012 2.33804 

23 0.8 5 0.01 0.05 0.70 -0.59827 -0.59007 1.37061 

24 0.8 5 0.01 0.05 1.00 -0.68597 -0.67928 0.97526 

25 0.8 5 0.01 0.10 0.05 -0.65093 -0.64993 0.15362 

26 0.8 5 0.01 0.10 0.70 -0.72815 -0.72008 1.10828 

27 0.8 5 0.01 0.10 1.00 -0.8097 -0.79998 1.20044 

 

𝑦 = 0.980𝑥 − 0.005 , 𝑅2 = 0.997, 𝑅𝑆𝑀𝐸 = 0.007372 

Figure 3(a) Training 

 

𝑦 = 0.984𝑥 − 0.004 , 𝑅2 = 0.999, 𝑅𝑆𝑀𝐸 = 0,004741 
 

Figure 3(b) Validation 

 

𝑦 = 1.006𝑥 + 0.013 , 𝑅2 = 0.997, 𝑅𝑆𝑀𝐸 = 0.011562 

Figure 3(c) Test 

 

𝑦 = 0.985𝑥 − 0.001 , 𝑅2 = 0.997, 𝑅𝑆𝑀𝐸 = 0.007946 

 
Figure 3(d) All 

Figure 3 (a), (b), (c) and (d). Graphical representation of 𝜎1 

Table 3. Skin friction data of 𝑁𝑢0 for (Num) 𝑁𝑢0 and (ANN) 𝑁𝑢0 with error. 

Sl. 

No. 
λ G Rc E Pr 

(Num) 

Nu0 

(ANN) 

Nu0 
% Error 

1 0.8 5.0 0.01 0.01 0.5 0.00563 0.00576 2.30905 

2 0.8 5.0 0.01 0.01 0.7 0.00620 0.00598 3.54838 

3 0.8 5.0 0.01 0.01 1.0 0.00798 0.00801 0.37593 

4 0.8 5.0 0.01 0.05 0.5 0.03856 0.03782 1.91908 

5 0.8 5.0 0.01 0.05 0.7 0.04021 0.03942 1.96468 

6 0.8 5.0 0.01 0.05 1.0 0.04336 0.04521 4.26660 

7 0.8 5.0 0.01 0.10 0.5 0.07925 0.08362 5.51419 

8 0.8 5.0 0.01 0.10 0.7 0.08173 0.08269 1.17459 

9 0.8 5.0 0.01 0.10 1.0 0.08927 0.09412 5.43295 

10 0.2 5.0 0.00 0.01 1.0 0.00530 0.00499 5.84905 

11 0.2 5.0 0.01 0.01 1.0 0.00539 0.00542 0.55658 

12 0.2 5.0 0.05 0.01 1.0 0.00547 0.00572 4.57038 

13 0.2 10.0 0.00 0.01 1.0 0.00526 0.00534 1.52091 

14 0.2 10.0 0.01 0.01 1.0 0.00531 0.00557 4.89642 

15 0.2 10.0 0.05 0.01 1.0 0.00538 0.00576 7.06319 

16 0.2 40.0 0.00 0.01 1.0 0.00489 0.00512 4.70347 

17 0.2 40.0 0.01 0.01 1.0 0.00496 0.00492 0.80645 

18 0.2 40.0 0.05 0.01 1.0 0.00508 0.00488 3.93700 

19 0.8 5.0 0.00 0.01 1.0 0.00785 0.00816 3.94904 

20 0.8 5.0 0.01 0.01 1.0 0.00798 0.00812 1.75438 

21 0.8 5.0 0.05 0.01 1.0 0.00816 0.00795 2.57352 

22 0.8 10.0 0.00 0.01 1.0 0.00701 0.00728 3.85164 

23 0.8 10.0 0.01 0.01 1.0 0.00709 0.00697 1.69252 

24 0.8 10.0 0.05 0.01 1.0 0.00723 0.00698 3.45781 

25 0.8 40.0 0.00 0.01 1.0 0.00686 0.00714 4.08163 

26 0.8 40.0 0.01 0.01 1.0 0.00692 0.00729 5.34682 

27 0.8 40.0 0.05 0.01 1.0 0.00705 0.00687 2.55319 
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𝑦 = 1.045𝑥 − 0.000, 𝑅2 = 0.998, 𝑅𝑆𝑀𝐸 = 0.001094 

Figure 4 (a)Training 

 

𝑦 = 1.008𝑥 − 0.000, 𝑅2 = 0.999, 𝑅𝑆𝑀𝐸 = 0.000583                                            

          Figure 4 (b)Validation 

 
𝑦 = 1.056𝑥 − 0.000, 𝑅2 = 0.999, 𝑅𝑆𝑀𝐸 = 0.002331 

Figure 4 (c) Test 

 

          𝑦 = 1.038𝑥 − 0.000, 𝑅2 = 0.999, 𝑅𝑆𝑀𝐸 = 0.001350 
Figure 4 (d)All 

Figure 4 (a), (b), (c) and (d). Graphical representation of 𝑁𝑢0 

Table 4. Skin friction data of 𝑁𝑢1 for (Num) 𝑁𝑢1 and (ANN) 𝑁𝑢1 with error. 

Sl. 

No. 
λ G Rc E Pr 

(Num) 

Nu1 

(ANN) 

Nu1 

% 

Error 

1 0.8 5.0 0.01 0.01 0.5 -0.33657 -0.33001 1.94907 

2 0.8 5.0 0.01 0.01 0.7 -0.33655 -0.32995 1.96107 

3 0.8 5.0 0.01 0.01 1.0 -0.33652 -0.32897 2.24355 

4 0.8 5.0 0.01 0.05 0.5 -0.43921 -0.43321 1.36608 

5 0.8 5.0 0.01 0.05 0.7 -0.43385 -0.43106 0.64307 

6 0.8 5.0 0.01 0.05 1.0 -0.43301 -0.43216 0.19630 

7 0.8 5.0 0.01 0.10 0.5 -0.53623 -0.51567 3.83417 

8 0.8 5.0 0.01 0.10 0.7 -0.53598 -0.51428 4.04865 

9 0.8 5.0 0.01 0.10 1.0 -0.53561 -0.51172 4.46033 

10 0.2 5.0 0.00 0.01 1.0 -0.45415 -0.45000 0.91553 

11 0.2 5.0 0.01 0.01 1.0 -0.45419 -0.44926 1.08544 

12 0.2 5.0 0.05 0.01 1.0 -0.45431 -0.44632 1.75846 

13 0.2 10.0 0.00 0.01 1.0 -0.45664 -0.44213 3.17686 

14 0.2 10.0 0.01 0.01 1.0 -0.45673 -0.42137 7.74217 

15 0.2 10.0 0.05 0.01 1.0 -0.45708 -0.42119 7.85179 

16 0.2 40.0 0.00 0.01 1.0 -0.47939 -0.46013 4.01818 

17 0.2 40.0 0.01 0.01 1.0 -0.48101 -0.46938 2.41904 

18 0.2 40.0 0.05 0.01 1.0 -0.48750 -0.47210 3.16016 

19 0.8 5.0 0.00 0.01 1.0 -0.39660 -0.38221 3.62906 

20 0.8 5.0 0.01 0.01 1.0 -0.39660 -0.38167 3.76344 

21 0.8 5.0 0.05 0.01 1.0 -0.39661 -0.38170 3.75935 

22 0.8 10.0 0.00 0.01 1.0 -0.39656 -0.38516 2.87568 

23 0.8 10.0 0.01 0.01 1.0 -0.39656 -0.38429 3.09530 

24 0.8 10.0 0.05 0.01 1.0 -0.39657 -0.38431 3.09143 

25 0.8 40.0 0.00 0.01 1.0 -0.39639 -0.37121 6.35105 

26 0.8 40.0 0.01 0.01 1.0 -0.39639 -0.38010 4.10931 

27 0.8 40.0 0.05 0.01 1.0 -0.39639 -0.37692 4.91301 
 

 

𝑦 = 0.943𝑥 − 0.010, 𝑅2 = 0.978, 𝑅𝑆𝑀𝐸 = 0.016351 
Figure 5 (a) Training 

 
𝑦 = 0.942𝑥 − 0.009, 𝑅2 = 0.997, 𝑅𝑆𝑀𝐸 = 0.016007 

Figure 5 (b) Validation 
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𝑦 = 0.935𝑥 − 0.013, 𝑅2 = 0.818, 𝑅𝑆𝑀𝐸 = 0.018897 
Figure 5 (c) Test 

 

𝑦 = 0.943𝑥 − 0.010, 𝑅2 = 0.975, 𝑅𝑆𝑀𝐸 = 0.016790 

Figure 5 (d) All 

Figure 5 (a), (b), (c) and (d). Graphical representation of 𝑁𝑢1 
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