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Abstract: An integral method is developed to solve phase-

change problems with/without mushy zones. The method can 

be viewed as a modified version to the classical approach of 

Goodman’s method in which, three non-linear ordinary 

differential equations were obtained at the end of each time, 

solved iteratively using complicated numerical schemes. Solving 

these equations lead to the unknowns in the overall problem. A 

major modification to Goodman’s method is carried out by 

dealing with finite domain and taking the mushy zone into 

consideration. In the present paper, the proposed method starts 

by assuming temperature profile for liquid and solid phase in 

such a way that some –not all– of the boundary conditions will 

be satisfied. Some mathematical manipulation will lead to two 

non-linear algebraic equations at each time step, their solution 

numerically by a proposed scheme will lead to the unknowns 

that appear throughout the whole process. 
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Nomenclature 

iU  Initial temperature 

mU  Melting temperature 

  Thermal diffusivity 

K  Conductivity 

C  Heat capacity 

  Density 

L  Latent heat 

 tR1  Right boundary of the liquid phase and the left 

boundary for the mushy zone 

 tR2  Left boundary of the liquid phase 

 tR3  Right boundary of the mushy zone and left boundary 

of the solid 

 &  Mushy zone parameters 

 

I. INTRODUCTION 

 

oving boundary problems have wide range of 

engineering and industrial applications such as metal 

casting; ground freezing problems and thermal storage [1-

2]. When dealing with different types of Stefan problems, 

which originally the basis of moving boundary problems, it 

should be taken into consideration the criteria of the type 

underhand. In case of existence of mushy zone between 

solid and liquid, the situation is then changed completely as 

in [3]. Since the early stages of modeling and simulation of 

Stefan problems, different restrictions had been taken into 

consideration such as the geometry. The difficulty in solving 

moving boundary problems refers mainly to the non-

linearity caused by the presence of nonlinear boundary 

condition at the moving boundary [4-5]. Approximate 

methods such as heat balance integral method [6] and the 

moment integral method [7] had been applied for solving 

such problems but with sharp interface. In recent years, 

efforts concentrate on the use of numerical techniques due 

to rapid development in computer technology and its high 

performance. Boundary element method becomes one of the 

most popular numerical methods, which applied to a wide 

range of engineering and industrial applications [8-9]. An 

integral method is developed to solve phase-change 

problems with/without mushy zones. The method can be 

viewed as a modified version to the classical approach of 

Goodman’s method in which, three non-linear ordinary 

differential equations were obtained at the end of each 

time, solved iteratively using complicated numerical 

schemes. Solving these equations lead to the unknowns in 

the overall problem. A major modification to Goodman’s 

method is carried out by dealing with finite domain and 

taking the mushy zone into consideration. In the present 

paper, the proposed method starts by assuming temperature 

profile for liquid and solid phase in such a way that some –

not all– of the boundary conditions will be satisfied. Some 

mathematical manipulation will lead to two non-linear 

algebraic equations at each time step, their solution 

iteratively by a proposed scheme will lead to the unknowns 

that appear throughout the whole process. 

 

II. MATHEMATICAL FORMULATION 

 

A solid medium of length,  initially at a uniform 

temperature, iU the boundary 0x  subjected to a high 

input heat flux therefore three phases occurs. In the present 

paper, we mainly consider the third stage in which the vapor 

M 
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will be removed upon formation, therefore, the problem still 

remains two phase with mushy zone separating liquid and 

solid, respectively [10]. 
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In this formulation, we have five unknowns, the temperature 

distribution in the liquid and solid phases and three moving 

boundaries,    tRtR 1,2  and  tR3 . 

 

III. THE PROPOSED METHOD 

 

Step: 1 Assume temperature profiles for the phases that 

appear throughout the whole process: 
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Step: 2 Integrate equation (7) with respect to the space 

variable x from 2Rx   to 1Rx  , and equation (8) with 

respect to the space variable x from 3Rx   to x yields: 
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Step: 3 Derivation a relation between moving boundary 

velocities and potential derivative. It is known that the total 

derivative of temperature at the moving boundaries is zero; 

  0,2 tRu
Dt

D

                                                 (11) 

Equation (11) can be written in an expanded form as follow: 
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Therefore; the velocities at 3R  and 1R  can be written as 

follow: 
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Similarly for solid phase; 
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Step: 4 Analytical treatment of equation (9), this step 

started by differentiating assumed potential profile for liquid 

phase, then, substituting into the right hand side, one can 

ensure that this side will equal to zero. The first term in the 

right hand side is integrated first based on the assumed 

profile, then differentiating the result w. r. t. time, 

meanwhile, make use of equations (13) and (14), then after 

long mathematical manipulation, one can obtain the 

following equation: 
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Where 
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Step: 5 Similar procedure are carried out again but on 

equation (10), the result for this step is as follow: 
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It is clear from equation (16), that it contains three 

unknowns one of them is the unknown function in the 

assumed profile, given by equation (7). Meanwhile, equation 

(17) contains two of them is the unknown function in the 

assumed profile given by equation (8), therefore the 

procedure for solution will be illustrated in the next section. 

 

IV. SOLUTION PROCEDURE 

 

(1) Specify initial input data for both mushy zone 

parameters,  and   

(2) Assume initial position for both 1R and 3R  

(3) From equation (16) evaluate 2B  

(4) Evaluate the error in equation (5) making use of 

equation (7) 

(5) Repeat steps (1) to (4) till satisfying step (4) with 

prescribed tolerance 

(6) From equation (17) evaluate 3B and then the error 

in equation (6) but taking into consideration the last and 

accurate value for the first term in the left-hand side. If the 

error is not within a prescribed error, update the moving 

boundaries location, if it is satisfied, then go to the next time 

step. 

 

V.  NUMERICAL RESULTS 

 

To test the proposed method and check its applicability, 

three test problems are solved herein. Two types of 

problems are solved, the first two problems with sharp 

interface, i.e.; without mushy zone and the last one take the 

existence of the mushy zones into consideration. Also in the 

third problem, two major parameters that control the mushy 

zone are studied well from their effect on the formation of 

the mushy zone and the movement of the overall moving 

fronts that appear throughout the whole process. 

 

5.1 Problems Without Mushy Zones 

A sub-cool medium exposed to a large heat flux until 

vaporization, therefore, three phases appear. The medium is 

exposed to two different cases of heat flux, constant and 

linear. Summary of the two problems are shown in table (1) 

[10]. In these problems, it is expected appearing two moving 

interfaces, the first one separating liquid and solid phases 

while, the second separates gas and liquid respectively. The 

location of these moving interfaces is shown in figures (1) 

and (2) respectively. The location of the moving boundaries 

separating solid-liquid and liquid-gas for case problem (1) 

are shown in figure (1), while the same results for case 

problem (2) are shown in figure (2). The results in both 

figures are compared with numerical results from the source 

and sink method. A good agreement between the two 

methods is obtained. It is also clear from these figures that, 

the curvature upward for liquid-solid interfaces increases for 

linear heat flux and decreases for constant case. The 

downward curvature increases for liquid-gas interface in 

case of linear heat flux and decreases but still clear in case 

of constant flux. In the next subsection existence of the 

mushy zone is taken into consideration and the results from 

the present method only due to the lake of available results 

for such a problem. 

 

5.2. Problems with Mushy ZoneS 

The numerical data input of this problem is taken from S. G. 

Ahmed [4]. In this problem, aluminum occupies mould of 

length,   initially at uniform temperature iU . An input heat 

flux is applied at 0x ; therefore, three phases are 

appearing. The vapor is removed upon formation and so the 

problem still two phase with mushy zone separating liquid 

and solid. The thermo-physical is shown in table (2). The 

results of this problem are shown in figures (3-7). Let us 

start discussion by figure (3) which shows the variation of 
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solid-liquid and ablated surface against time. One major 

observation from the computation is the effect of the mushy 

zone parameters  & on the movement of these moving 

interfaces. As it is clear that the mushy zone parameter has 

no direct effect on the movement of  tR1 , while its effect 

appears on the movement of  tR3 . Therefore, three 

different cases of are used in the computations and plotted 

as seen in figure (3). Also, one can conclude that by 

increasing  and at the same time step the moving boundary 

location increases. Mushy zone thickness against time and 

for three different values of mushy zone parameter  is 

plotted against time as can be seen in figure (4). As seen 

from this figure, the thickness increases by increasing the 

mushy zone parameter at the same time step, and this 

prove the same results from figure (3). Following up the 

results of test problem (3), figure (5) shows the variation of 

the left hand side of liquid phase,  tR2 against time. It is 

important herein to mention that mushy zone parameters 

have no effect on the movement of this moving interface. To 

complete the results of this problem, temperature variation 

in both solid and liquid phases are plotted in figures (6) and 

(7), respectively. One important notation should be taken 

into consideration is that the last point in the liquid 

temperature variation is completely different from the 

starting point in the solid phase temperature variation, this 

occurs due to the width of the mushy zone. 

 

CONCLUSION 

 

The suggested method based mainly on the first basic 

principle of the classical heat balance integral method. The 

mathematical manipulation and solution procedure are 

completely different from the classical approach. The 

suggested method has advantages over the classical 

approach as follow: 

(7) In classical approach three non-linear ordinary 

differential equations are obtained, while in the present 

method only two non-linear algebraic equations are 

obtained. Therefore less time consumed at each time step to 

find the solution. 

(8) The classical approach did not take mushy zone 

into consideration while the present method takes it. 

(9) The present method has the flexibility to solve 

phase change problem with and without mushy zone. 

(10) The present method has the advantage to analyze 

the direct and indirect effects of the mushy zone parameters. 

Finally, we can conclude that the present method gives the 

promise to solve higher dimensional problems and ensure 

that its results are very close to the real physical behavior of 

the problem underhand and its wide range of applications. 
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Figure 1: Problem (1) Solid-Liquid and Ablated interfaces 
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Figure 2: Problem (2) Solid-Liquid and Ablated interfaces 
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Figure 3: Problem (3)  tR1 and  tR3  location verses time over 
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Figure 5: Location of  tR2 , the left side of the liquid phase 
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Figure 6: Problem (3) Liquid temperature 
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Figure 7: Problem (3) Solid temperature at different times 
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Problem description Input heat flux 

   sec,/, 2 tmWtG  

Type of the problem Exact solution 

Three phase 

m
U

i
U

K
i

U



 300

 

Constant   6105tG  
Combined ablation 

and Stefan 

Not available 

 

Linear   ttG 4103  

 

Table (1) 

iu  932 K   

Vu  2543 K  

L  376560 KgJ /  

K  200 mKW /  

  
2710 

3/ mKg  

C  1200 KKgJ /  

 

Table (2) 

 


