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Abstract: Let 𝑬 be a separable Banach space and 𝑺,𝑻:𝛀 × 𝒀 → 𝑬 

be a nonself random commuting mappings defined on arbitrary 

𝒀 satisfying generalized random 𝝋- contractive-like operator 

∥ 𝑻(𝝎,𝒙) − 𝑻(𝝎,𝒚) ∥≤ 𝜹 ∥ 𝑺(𝝎,𝒙) − 𝑺(𝝎,𝒚) ∥ +𝝋(∥ 𝑺(𝝎,𝒙) −
𝑻(𝝎,𝒙) ∥), with 𝑻(𝝎,𝒀) ⊆ 𝑺(𝝎,𝒀) and 𝑺(𝝎,𝒀) a complete 

subspace of 𝑬,𝟎 ≤ 𝜹 < 𝟏,𝝋:ℝ+ → ℝ+ with 𝝋(𝒕) > 0∀𝑡 ∈ (𝟎,∞) 

and 𝝋(𝟎) = 𝟎. It is shown in this paper, that a stochastic version 

of hybrid iterative algorithm called a modified random Jungck-

Mann hybrid iterative algorithm is introduced and is used to 

approximate the unique common random fixed point of 𝑺 and 𝑻 

for a generalized random 𝝋-contractive-like operators in a 

separable Banach space. Strong convergence results for random 

Picard-Mann, random Picard iterative schemes for single map 𝑻 

are deduced as corollaries. Stability results are proved and an 

example is provided to demonstrate the applicability of the 

hybrid scheme. 

Keywords-Random Jungck-Mann iterative schemes, generalized 

random contractive-like operators, random weakly compatible 

maps, unique common random fixed point. 

I. INTRODUCTION 

any real world problems are full of uncertainties and 

ambiguities and an important area of mathematics that 

deals with probabilistic models to solve these problems is 

Probabilistic functional analysis. Random nonlinear analysis 

is a vital area of probabilistic functional analysis that deals 

with various classes of random operator equations and related 

problems and solutions. The development of various random 

methods is on the increase. Random fixed theorems are well 

known stochastic generalizations of classical fixed point 

theorems and are usually needed in the theory of random 

equations, random matrices, random differential equations and 

different classes of random operators emanating in physical 

systems [21]. The first result and other generalizations of 

random fixed point theorems exist in the literature, for 

instance, see ([6], [7], [8], [10], [13], [14], [15], [19], [21], 

[27] and several related papers therein). In 2015, Okeke and 

Kim [21] proved strong convergence and summable 

𝑇 −stability of the random Picard-Mann hybrid iterative 

process for a generalized class of random operators in 

separable Banach spaces.  

We begin with the following well known contractive 

definitions. Throughout this work 𝐸 shall denote Banach 

space and 𝑋 a metric space.  

Definition 1.1. Suppose (Ω, Σ) is a measurable space and 𝐶 be 

a non-empty closed convex subset of a separable Banach 

space 𝐸. A transformation 𝑇:Ω → 𝐶 is termed measurable if 

𝑇−1(ℬ ∩ 𝐶) ∈ Σ for any Borel set ℬ of 𝐸. A transformation 

𝑇:Ω × 𝐶 → 𝐶 is called a random mapping if 𝑇(⋅, 𝑥):Ω → 𝐶 is 

measurable for every 𝑥 ∈ 𝐶. A measurable function 𝑓:Ω → 𝐶 

is called a random fixed point for the transformation 𝑇:Ω ×
𝐶 → 𝐶 if 𝑇(𝜔, 𝑓(𝜔)) = 𝑓(𝜔). 

Definition 1.2. Let (Ω, Σ) be a measurable space and 𝐶 be a 

nonempty closed convex subset of a separable Banach space 

𝐸. A measurable function 𝑓:Ω → 𝐶 is called a random 

coincidence for two random mappings 𝑆,𝑇:Ω × 𝐶 → 𝐶 if 

𝑇(𝜔, 𝑓(𝜔)) = 𝑆(𝜔, 𝑓(𝜔)) for all 𝜔 ∈ Ω. The maps 𝑆,𝑇 are 

said to be random weakly compatible if they commute at their 

random coincidence i.e. if 𝑆(𝜔, 𝑓(𝜔)) = 𝑇(𝜔, 𝑓(𝜔)) for 

every 𝜔 ∈ Ω, then 𝑆(𝑇(𝜔, 𝑓(𝜔))) = 𝑇(𝑆(𝜔, 𝑓(𝜔))) or 

𝑆(𝜔,𝑇(𝜔, 𝑓(𝜔))) = 𝑇(𝜔, 𝑆(𝜔, 𝑓(𝜔))). 

Definition 1.3. Let (Ω, Σ, 𝜇) be a complete probability 

measure space and 𝑌 a non-empty subset of a separable 

Banach space 𝐸. For two random mappings 𝑆,𝑇:Ω × 𝑌 → 𝐸 

with 𝑇(𝜔,𝑌) ⊆ 𝑆(𝜔,𝑌) and 𝐶 a nonempty closed convex 

subset of a separable Banach space 𝐸, there exists a real 

number 𝛿 ∈ [0,1) and a monotone increasing function 

𝜑:ℝ+ → ℝ+ with 𝜑(0) = 0 and for all 𝑥, 𝑦 ∈ 𝐶, we have  

∥ 𝑇 𝜔, 𝑥 − 𝑇 𝜔, 𝑦 ∥≤ 𝛿 ∥ 𝑆 𝜔,𝑥 − 𝑆 𝜔, 𝑦 ∥ 

              +𝜑(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥). 

 (1) 

II.  PRELIMINARIES 

The commonly used iterative algorithms for approximating 

the fixed points of several classes of single and pair of quasi-

contractive operators are: Picard, Mann and Ishikawa, Jungck, 

Jungck-Mann and Jungck-Ishikawa iterations. For example 

see ([1],[3] [5], [5], [11], [12],[16], [20], [22], [23], [24], [25], 

and [27]).  

Suppose 𝐸 is a Banach space, 𝐾, a nonempty convex subset of 

𝐸 and 𝑇:𝐾 → 𝐾 a self map of 𝐾. 

M 
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Definition 2.1 [27]. Suppose 𝑥0 ∈ 𝐾. The Picard iteration 

scheme {𝑥𝑛 }𝑛=0
∞  is defined by  

 𝑥𝑛+1 = 𝑇𝑥𝑛 , 𝑛 ≥ 0.                    (2) 

Definition 2.2 [20]. For any given 𝑥0 ∈ 𝐾, the Mann iteration 

scheme {𝑥𝑛 }𝑛=0
∞  is defined by  

𝑥𝑛+1 =  1 − 𝛼𝑛 𝑥𝑛 + 𝛼𝑛𝑇𝑥𝑛                                         (3) 

 where {𝛼𝑛}𝑛=0
∞  is a real sequence in [0,1] such that 

 ∞
𝑛=0 𝛼𝑛 = ∞. 

Definition 2.3 [12]. Let 𝑥0 ∈ 𝐾. The Ishikawa iteration 

scheme {𝑥𝑛 }𝑛=0
∞  is defined by  

              𝑥𝑛+1 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇𝑦𝑛  

𝑦𝑛 =  1 − 𝛽𝑛 𝑥𝑛 + 𝛽𝑛𝑇𝑥𝑛                               (4) 

 where {𝛼𝑛}𝑛=0
∞ , {𝛽𝑛}𝑛=0

∞  are real sequences in [0,1] such that 

 ∞
𝑛=0 𝛼𝑛 = ∞. 

Observe that if 𝛽𝑛 = 0 for each 𝑛, then the Ishikawa iteration 

process (4) reduces to the Mann iteration scheme (3). 

Khan [18], introduced the following Picard-Mann hybrid 

iterative scheme for a single nonexpansive mapping 𝑇. 

Definition 2.4 [18]. For any initial point 𝑥0 ∈ 𝐾 the sequence 

{𝑥𝑛 }𝑛=0
∞  is defined by  

𝑥𝑛+1 = 𝑇𝑦𝑛  

𝑦𝑛 = (1 − 𝛼𝑛)𝑥𝑛 + 𝛼𝑛𝑇𝑥𝑛 ,𝑛 ≥ 0,            (5) 

 where {𝛼𝑛}𝑛=0
∞  is a real sequence in [0,1]. 

He showed that the hybrid scheme (5) converges faster than 

Picard (2), Mann (3) and Ishikawa (4) iterative algorithms in 

the sense of Berinde [5] for contractions.  

Jungck [16], was the first to introduce an iteration scheme for 

a pair of maps, which is now called Jungck iteration scheme 

[16] to approximate the common fixed points of what is now 

called Jungck contraction maps. Singh et al. [27] in 2005, 

introduced the Jungck-Mann iteration procedure and 

discussed it's stability for a pair of contractive maps. Olatinwo 

and Imoru [23], Olatinwo [23-24] built on the work of [27] to 

introduce the Jungck-Ishikawa scheme and used their 

convergence to approximate the coincidence points (not 

common fixed points) of some pairs of generalized 

contractive-like operators with the assumption that one of 

each of the pairs of maps is injective.  

Let 𝐸 be a Banach space, 𝑌 be an arbitrary set and 𝑆,𝑇:𝑌 → 𝐸 

such that 𝑇(𝑌) ⊆ 𝑆(𝑌). 

Then we have the following definitions. 

Definition 2.5 [16]. For any 𝑥0 ∈ 𝑌, the Jungck iteration is 

defined as the sequence {𝑆𝑥𝑛 }𝑛=1
∞  such that  

 𝑆𝑥𝑛+1 = 𝑇𝑥𝑛 ,𝑛 ≥ 0                    (6) 

 

This procedure becomes Picard iteration (2) when 𝑌 = 𝑋 and 

𝑆 = 𝐼𝑑  where 𝐼𝑑  is the identity map on 𝑋. 

Definition 2.6 [23]. For any given 𝑢0 ∈ 𝑌 , the Jungck-Mann 

iteration scheme {𝑆𝑢𝑛}𝑛=1
∞  is defined by 

𝑆𝑥𝑛+1 =  1 − 𝛼𝑛 𝑆𝑥𝑛 + 𝛼𝑛𝑇𝑥𝑛 .         (7) 

where {𝛼𝑛}𝑛=0
∞  is a real sequence in [0,1] such that 

 ∞
𝑛=0 𝛼𝑛 = ∞. 

Definition 2.7 [23]. Let 𝑥0 ∈ 𝑌. The Jungck-Ishikawa 

iteration scheme {𝑆𝑥𝑛 }𝑛=1
∞  is defined by  

𝑆𝑥𝑛+1 = (1 − 𝛼𝑛)𝑆𝑥𝑛 + 𝛼𝑛𝑇𝑦𝑛  

                           𝑆𝑦𝑛 =  1 − 𝛽𝑛 𝑆𝑥𝑛 + 𝛽𝑛𝑇𝑥𝑛           (8) 

where {𝛼𝑛}𝑛=0
∞ , {𝛽𝑛 }𝑛=0

∞  are real sequences in [0,1] such that 

 ∞
𝑛=0 𝛼𝑛 = ∞. 

The following lemmas will be needed in proving our main 

results. 

Lemma 2.8 [5]: If 𝛿 is a real number such that 0 ≤ 𝛿 < 1 and 

{𝑒𝑛 }𝑛=0
∞  is a sequence of positive numbers such that 

lim𝑛→∞𝑒𝑛 = 0, then for any sequence of positive numbers 

{𝑢𝑛}𝑛=0
∞  satisfying 𝑢𝑛+1 ≤ 𝛿𝑢𝑛 + 𝑒𝑛 ,𝑛 ∈ ℕ. Then we have 

lim𝑛→∞𝑢𝑛 = 0. 

Lemma 2.9. Let (𝑋, ∥. ∥) be a normed linear space and 

𝑆,𝑇:𝑌 → 𝑋 be nonself random commuting operators on an 

arbitrary set 𝑌 with values in 𝑋 satisfying (1) such that  

               𝑇(𝜔,𝑌) ⊆ 𝑆(𝜔,𝑌), 

∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑥)) ∥≤∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥ 

and 

∥ 𝑆 𝜔, 𝑆 𝜔, 𝑥  − 𝑆 𝜔,𝑆 𝜔, 𝑦  ∥≤∥ 𝑆 𝜔, 𝑥 − 𝑆 𝜔, 𝑦 ∥

.  Let 𝜑:ℝ+ → ℝ+ be a sublinear, monotone increasing 

function such that 𝜑(0) = 0 and 𝜑(𝑢) = (1 − 𝛿)𝑢 for all 

0 ≤ 𝛿 < 1,𝑢 ∈ ℝ+. Then for every 𝑖 ∈ ℕ   𝑎𝑛𝑑   𝑥, 𝑦 ∈ 𝑌, we 

have  

∥ 𝑇𝑖(𝜔, 𝑥) − 𝑇𝑖(𝜔, 𝑦) ∥≤ 𝛿𝑖 ∥ 𝑆(𝜔, 𝑥) − 𝑆(𝜔, 𝑦) ∥

+ 𝑖
𝑗=1 (𝑗

𝑖 )𝛿𝑖−𝑗𝜑𝑗 (∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) (9) 

Proof: 

We start the proof by showing that if 𝜑 is subadditive then 

each of the 𝜑𝑗  of 𝜑 is subadditive. Since we assume that 𝜑 is 

subadditive, then 𝜑(𝑥(𝜔) + 𝑦(𝜔)) ≤ 𝜑(𝑥(𝜔)) + 𝜑(𝑦(𝜔)), 
for every 𝑥, 𝑦 ∈ ℝ+. Thus, the subadditivity of 𝜑2 yields the 

following: 

𝜑2(𝑥(𝜔) + 𝑦(𝜔)) = 𝜑(𝜑(𝑥(𝜔) + 𝑦(𝜔)))
≤ 𝜑(𝜑(𝑥(𝜔))) + 𝜑(𝜑(𝑦(𝜔))). 

Similarly, the the subadditivity of 𝜑3 yields the following: 

𝜑3 𝑥 𝜔 + 𝑦 𝜔  = 𝜑  𝜑2 𝑥 𝜔 + 𝑦 𝜔      

≤ 𝜑(𝜑2(𝑥(𝜔))) + 𝜑(𝜑2(𝑦(𝜔)))
= 𝜑3(𝑥(𝜔)) + 𝜑3(𝑦(𝜔)). 

Therefore, in general, 𝜑𝑛  (𝑛 = 1,2,3,… ) is subadditive, and it 
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can be written as:  

𝜑𝑛 𝑥 𝜔 + 𝑦 𝜔  

≤ 𝜑  𝜑𝑛−1 𝑥 𝜔                    

+ 𝜑  𝜑𝑛−1 𝑦 𝜔    

                          = 𝜑𝑛(𝑥(𝜔)) + 𝜑𝑛(𝑦(𝜔)). 

The remaining part of the proof of Lemma 2.9, will be done 

by mathematical induction on 𝑖 as follows: 

Let 𝑖 = 1, then contractive condition (9) becomes  

∥ 𝑇 𝜔, 𝑥 − 𝑇 𝜔, 𝑦 ∥ ≤ 𝛿 ∥ 𝑆 𝜔, 𝑥 − 𝑆 𝜔, 𝑦 ∥
+𝜑 ∥ 𝑆 𝜔, 𝑥 − 𝑇 𝜔, 𝑥 ∥                                                (10) 

Next, suppose 𝑖 = 𝑛, where 𝑛 ∈ ℕ, then (9) becomes  

∥ 𝑇𝑛(𝜔, 𝑥) − 𝑇𝑛(𝜔, 𝑦) ∥≤ 𝛿𝑛 ∥ 𝑆(𝜔, 𝑥) − 𝑆(𝜔, 𝑦) ∥ 

+ 𝑛
𝑗=1 (𝑗

𝑛)𝛿𝑛−𝑗𝜑𝑗  ∥ 𝑆 𝜔, 𝑥 − 𝑇 𝜔, 𝑥 ∥ .                 (11) 

We now show that the statement is true for 𝑖 = 𝑛 + 1 

𝑇𝑛+1 𝜔, 𝑥 − 𝑇𝑛+1 𝜔, 𝑦 ∥  

=∥ 𝑇𝑛(𝜔,𝑇(𝜔, 𝑥)) − 𝑇𝑛(𝜔,𝑇(𝜔, 𝑦)) ∥ 

≤ 𝛿𝑛 ∥ 𝑆(𝜔,𝑇(𝜔, 𝑥)) − 𝑆(𝜔,𝑇(𝜔, 𝑦)) ∥ 

+ 

𝑛

𝑗=1

(𝑗
𝑛)𝛿𝑛−𝑗𝜑𝑗 (∥ 𝑇(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔,𝑇(𝜔, 𝑥)) ∥ 

≤ 𝛿𝑛 ∥ 𝑇(𝜔,𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

+ 𝑛
𝑗=1 (𝑗

𝑛)𝛿𝑛−𝑗𝜑𝑗 (∥ 𝑇(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇 𝜔,𝑇 𝜔, 𝑥    (12) 

 Using (10), we have  

∥ 𝑇 𝜔, 𝑆 𝜔, 𝑥  − 𝑇 𝜔, 𝑆 𝜔, 𝑦  ∥ 

≤ 𝛿 ∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

+𝜑(∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑥)) ∥) 

                                                         (13) 

∥ 𝑇 𝜔, 𝑆 𝜔, 𝑥  − 𝑇 𝜔,𝑇 𝜔, 𝑦  ∥ 

≤ 𝛿 ∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔,𝑇(𝜔,𝑦)) ∥ 

+𝜑(∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑥)) ∥) 

                                                       (14)  

Substituting (13) and (14) into (12), we have  

∥ 𝑇𝑛+1 𝜔, 𝑥 − 𝑇𝑛+1 𝜔, 𝑦 ∥ 

≤ 𝛿𝑛[𝛿 ∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

+𝜑(∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑥)) ∥)] 

+ 

𝑛

𝑗=1

(𝑗
𝑛)𝛿𝑛−𝑗𝜑𝑗 [𝛿 ∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) 

+𝜑(∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑥)) ∥)] 

≤ 𝛿𝑛 ∥ 𝑇(𝜔,𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

+ 

𝑛

𝑗=1

(𝑗
𝑛)𝛿𝑛−𝑗𝜑𝑗 (∥ 𝑇(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔,𝑇(𝜔, 𝑥)) ∥) 

= 𝛿𝑛+1 ∥ 𝑆(𝜔,𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

+𝛿𝑛𝜑(∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑥)) ∥) 

+ 

𝑛

𝑗=1

(𝑗
𝑛)𝛿𝑛+1−𝑗𝜑𝑗 (∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥) 

+ 

𝑛

𝑗=1

(𝑗
𝑛)𝛿𝑛−𝑗𝜑𝑗+1(∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑥)) ∥) 

≤ 𝛿𝑛+1 ∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

+𝛿𝑛𝜑(∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑆(𝜔, 𝑥) ∥) 

+ 

𝑛

𝑗=1

(𝑗
𝑛)𝛿𝑛+1−𝑗𝜑𝑗 (∥ 𝑆(𝜔, 𝑥) − 𝑆(𝜔, 𝑦) ∥) 

+ 

𝑛

𝑗=1

(𝑗
𝑛)𝛿𝑛−𝑗𝜑𝑗+1(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

= 𝛿𝑛+1 ∥ 𝑆(𝜔,𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

+𝛿𝑛𝜑(∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑇(𝜔, 𝑆(𝜔, 𝑥)) ∥) 

+(1
𝑛)𝛿𝑛𝜑(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

+(2
𝑛)𝛿𝑛−1𝜑2(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

+(3
𝑛)𝛿𝑛−2𝜑3(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) + ⋯ 

+(𝑛
𝑛)𝛿𝜑𝑛(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

+(1
𝑛)𝛿𝑛−1𝜑2(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

(2
𝑛)𝛿𝑛−2𝜑3(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

+(3
𝑛)𝛿𝑛−3𝜑4(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) + ⋯ 

+(𝑛
𝑛)𝜑𝑛+1(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

= [(1
𝑛) + (0

𝑛)]𝛿𝑛𝜑(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥)  

+[(2
𝑛) + (1

𝑛)]𝛿𝑛−1𝜑2(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

+[(3
𝑛) + (2

𝑛)]𝛿𝑛−2𝜑3(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

+⋯+ [(𝑛
𝑛) + (𝑛−1

𝑛 )]𝛿𝜑𝑛(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

+𝜑𝑛+1 ∥ 𝑆 𝜔, 𝑥 − 𝑇 𝜔, 𝑥 ∥  

+𝛿𝑛+1𝑖(∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥) 

= [(1
𝑛+1)𝛿𝑛𝜑 + (2

𝑛+1)𝛿𝑛−1𝜑2 + (3
𝑛+1)𝛿𝑛−2𝜑3 + ⋯ 

+𝜑𝑛+1] ∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥) 

+𝛿𝑛+1 ∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

= 𝛿𝑛+1 ∥ 𝑆 𝜔, 𝑆 𝜔, 𝑥  − 𝑆 𝜔, 𝑆 𝜔,𝑦  ∥ 

+ 

𝑛+1

𝑗=0

(𝑗
𝑛+1)𝛿𝑛+1−𝑗𝜑𝑗 (∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥)). 

∥ 𝑇𝑛+1 𝜔, 𝑥 − 𝑇𝑛+1 𝜔, 𝑦 ∥ 
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≤ 𝛿𝑛+1 ∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

+ 𝑛+1
𝑗=0 (𝑗

𝑛+1)𝛿𝑛+1−𝑗𝜑𝑗  ∥ 𝑆 𝜔, 𝑥 − 𝑇 𝜔, 𝑥 ∥                (15) 

 In view of (10) and (15), we have  

∥ 𝑇𝑛+1 𝜔, 𝑥 − 𝑇𝑛+1 𝜔, 𝑦 ∥ 

≤ 𝛿𝑛+1 ∥ 𝑆(𝜔, 𝑆(𝜔, 𝑥)) − 𝑆(𝜔, 𝑆(𝜔, 𝑦)) ∥ 

+𝜑𝑛+1(∥ 𝑆(𝜔, 𝑥) − 𝑇(𝜔, 𝑥) ∥). 

                                                             (16) 

III.  MAIN RESULTS 

3.1  Convergence Results in Separable Banach Spaces 

We shall define a stochastic version of common fixed point 

iteration algorithm call random Jungck-Mann hybrid iterative 

algorithm and prove convergence and stability results with the 

scheme. 

Definition 3.1. Let (Ω, Σ, 𝜇) be a complete probability 

measure space and 𝐸 be a nonempty subset of a separable 

Banach space 𝑋. Let 𝑆,𝑇:Ω × 𝐸 → 𝐸 be two self random 

operators. Let 𝐹(𝑆,𝑇) = {𝑝(𝜔) ∈ 𝐸: 𝑆(𝜔, 𝑝(𝜔)) =
𝑇(𝜔, 𝑝(𝜔)) = 𝑝(𝜔),𝜔 ∈ Ω}be the set of random common 

fixed points of 𝑆,𝑇. The random Jungck-Mann hybrid 

iterative algorithm {𝑆(𝜔, 𝑥𝑛(𝜔))}𝑛=1
∞  is defined by  

𝑆(𝜔, 𝑥𝑛+1(𝜔)) = 𝑇(𝜔, 𝑦𝑛(𝜔)) 

𝑆 𝜔, 𝑦𝑛 𝜔  =  1 − 𝛼𝑛 𝑆 𝜔, 𝑥𝑛 𝜔   

                         +𝛼𝑛𝑇(𝜔, 𝑥𝑛(𝜔)) 

 (17) 

 where {𝛼𝑛}𝑛=0
∞  is a measurable sequence in [0,1]. 

Remark 3.2.: If 𝑆 is an identity map in (17), we obtain a 

modified random Picard-Mann iterative algorithm 

{𝑥𝑛(𝜔)}𝑛=1
∞  as follows: 

𝑥𝑛+1(𝜔) = 𝑇(𝜔, 𝑦𝑛(𝜔)) 

𝑦𝑛(𝜔)) = (1 − 𝛼𝑛)𝑥𝑛(𝜔) 

                           +𝛼𝑛𝑇(𝜔, 𝑥𝑛(𝜔)) 

 (18) 

where {𝛼𝑛}𝑛=0
∞  is a measurable sequence in [0,1]. 

Theorem 3.3. Let 𝐸 be a separable Banach space and 

𝑆,𝑇:Ω × 𝑌 → 𝐸 be a nonself random commuting mappings 

defined on arbitrary 𝑌 such that (10) holds with 𝑇(𝜔,𝑌) ⊆
𝑆(𝜔,𝑌) and 𝑆(𝜔,𝑌) is a complete subspace of 𝐸. Let 𝑝(𝜔) be 

the random coincidence of 𝑆,𝑇, that is, 𝑆(𝜔, 𝑓(𝜔)) =
𝑇(𝜔, 𝑓(𝜔)) = 𝑝(𝜔), then the the random-Jungck-Mann 

hybrid iterative algorithm (17) converges strongly to 𝑝(𝜔). 

In addition, if 𝑌 = 𝐸 and 𝑆,𝑇 commute at 𝑓(𝜔) (that is, 𝑆,𝑇 

are randomly weakly compatible), then 𝑝(𝜔) is the unique 

common random fixed point of 𝑆,𝑇. 

Proof: 

In view of (17) and (10) coupled with the fact that 

𝑇(𝜔, 𝑓(𝜔)) = 𝑆(𝜔, 𝑓(𝜔)) = 𝑝(𝜔) 

∥ 𝑆 𝜔, 𝑥𝑛+1 𝜔  − 𝑝 𝜔 ∥ 

=∥ 𝑇(𝜔, 𝑦𝑛(𝜔)) − 𝑇(𝜔, 𝑓(𝜔)) ∥ 

≤ 𝛿 ∥ 𝑆(𝜔, 𝑓(𝜔)) − 𝑆(𝜔, 𝑦𝑛(𝜔)) ∥ 

+𝜑(∥ 𝑆(𝜔, 𝑓(𝜔)) − 𝑇(𝜔, 𝑓(𝜔)) ∥) 

= 𝛿 ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑦𝑛(𝜔)) ∥. 

 (19) 

In view of (19) and (10) coupled with the fact that 

𝑇(𝜔, 𝑓(𝜔)) = 𝑆(𝜔, 𝑓(𝜔)) = 𝑝(𝜔), we obtain  

∥ 𝑆 𝜔, 𝑦𝑛 𝜔  − 𝑝 𝜔 ∥ 

≤ (1 − 𝛼𝑛) ∥ 𝑆(𝜔, 𝑥𝑛(𝜔)) − 𝑝(𝜔) ∥ 

        +𝛼𝑛 ∥ 𝑇(𝜔,𝑥𝑛(𝜔)) − 𝑇(𝜔, 𝑓(𝜔)) ∥ 

≤ (1 − 𝛼𝑛) ∥ 𝑆(𝜔, 𝑥𝑛(𝜔)) − 𝑝(𝜔) ∥ 

           +𝛼𝑛[𝛿 ∥ 𝑆(𝜔, 𝑓(𝜔)) − 𝑆(𝜔, 𝑥𝑛(𝜔)) ∥ 

       +𝜑(∥ 𝑆(𝜔, 𝑓(𝜔)) − 𝑇(𝜔, 𝑓(𝜔)) ∥)] 

= (1 − 𝛼𝑛) ∥ 𝑆(𝜔, 𝑥𝑛(𝜔)) − 𝑝(𝜔) ∥ 

+𝛿𝛼𝑛 ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑥𝑛(𝜔)) ∥. 

 (20) 

 Substituting (20) in (19), we obtain  

∥ 𝑆 𝜔, 𝑥𝑛+1 𝜔  − 𝑝 𝜔 ∥ 

≤ 𝛿[(1 − 𝛼𝑛) ∥ 𝑆(𝜔, 𝑥𝑛(𝜔)) − 𝑝(𝜔) ∥ 

+𝛿𝛼𝑛 ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑥𝑛(𝜔)) ∥] 

= 𝛿[1 − 𝛼𝑛(1 − 𝛿)] ∥ 𝑆(𝜔, 𝑥𝑛(𝜔)) − 𝑝(𝜔) ∥. (21) 

Since 0 ≤ 𝛿 < 1 and [1 − 𝛼𝑛(1 − 𝛿)] < 1, then lim𝑛→∞ ∥
𝑆(𝜔, 𝑥𝑛+1(𝜔)) − 𝑝(𝜔) ∥= 0. 

Therefore, {𝑆𝑥𝑛 }𝑛=0
∞  converges strongly to 𝑝(𝜔). 

Next, we show that 𝑝(𝜔) is unique common random fixed 

point of 𝑆,𝑇. 

Suppose there exists another point of coincidence 𝑝∗(𝜔) ≠
𝑝(𝜔), such that 𝑇(𝜔, 𝑓∗(𝜔)) = 𝑆(𝜔, 𝑓∗(𝜔)) = 𝑝∗(𝜔), then, 

we show that 𝑝(𝜔) is unique. Thus, using (10) we have 

∥ 𝑝 𝜔 − 𝑝∗ 𝜔 ∥ 

=∥ 𝑇 𝜔, 𝑓 𝜔  − 𝑇 𝜔, 𝑓∗ 𝜔  ∥ 

≤ 𝛿 ∥ 𝑆 𝜔, 𝑓 𝜔  − 𝑆 𝜔, 𝑓∗ 𝜔  ∥ 

+𝜑 ∥ 𝑆 𝜔, 𝑓 𝜔  − 𝑇 𝜔, 𝑓 𝜔  ∥  

= 𝛿 ∥ 𝑝(𝜔) − 𝑝∗(𝜔) ∥. 

Since 0 ≤ 𝛿 < 1, then 𝑝(𝜔) = 𝑝∗(𝜔) and so 𝑝(𝜔) is unique. 

Since, 𝑆,𝑇 are randomly weakly compatible, then, for 

𝑆(𝜔, 𝑓(𝜔)) = 𝑇(𝜔, 𝑓(𝜔)) = 𝑝(𝜔), we have 

𝑇(𝜔, 𝑆(𝜔, 𝑓(𝜔))) = 𝑆(𝜔,𝑇(𝜔, 𝑓(𝜔))).  

Hence 𝑝(𝜔) is a coincidence point of 𝑆,𝑇 and since the point 
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of coincidence is unique, we have  

𝑇(𝜔, 𝑝(𝜔)) = 𝑆(𝜔, 𝑝(𝜔)) = 𝑝(𝜔). 

Therefore, 𝑝(𝜔) is the unique common random fixed point of 

𝑆,𝑇. This ends the proof. 

Theorem 3.3. leads to the following corollary if 𝐸 = 𝑌 and 

𝑆 = 𝐼𝑑  (that is, 𝑆 is an identity map): 

Corollary 3.4. Let (𝐸, ∥. ∥) be a separable Banach space and 

𝑇:Ω × 𝐸 → 𝐸 be a continuous generalized random 𝜑-

contractive-like operator with a random fixed point 𝑝(𝜔) ∈
𝐹(𝑇) which satisfies ∥ 𝑇(𝜔,𝑥) − 𝑇(𝜔, 𝑦)) ∥≤ 𝛿 ∥ 𝑥(𝜔) −
𝑦(𝜔) ∥ +𝜑(∥ 𝑥(𝜔) − 𝑇(𝜔, 𝑥) ∥), for each 𝑥, 𝑦 ∈ 𝐸, 0 ≤
𝛿(𝜔) < 1 and 𝜑:ℝ+ → ℝ+ a continuous and nondecreasing 

function with 𝜑(𝑡) > 0∀𝑡 ∈ (0,∞) and 𝜑(0) = 0. Let 

{𝑥𝑛(𝜔)}𝑛=0
∞  be the modified random Picard-Mann iterative 

algorithm defined by (18). Then (18) converges strongly to 

𝑝(𝜔). 

3.2   Stability Results in Normed Linear Spaces 

Theorem 3.5. Let (𝑋, ∥. ∥) be a normed linear space and 

𝑆,𝑇:Ω × 𝑋 → 𝑋 be two self random weakly compatible 

mappings satisfying (10) such that 𝑇(𝜔,𝑋) ⊆ 𝑆(𝜔,𝑋), where 

𝜑:ℝ+ → ℝ+ is a sublinear monotone increasing function with 

𝜑(0) = 0. Assume that 𝑝(𝜔) is the unique common random 

fixed point of 𝑆,𝑇. If the iterative algorithm {𝑆(𝜔, 𝑥𝑛(𝜔))}𝑛=0
∞  

defined by (17) converges to 𝑝(𝜔), then the modified random 

Jungck-Mann algorithm (17) is (𝑆,𝑇) −stable.  

Proof: 

Let {𝑆(𝜔, 𝑥𝑛(𝜔))}𝑛=0
∞  be the theoretical sequence and 

{𝑆(𝜔, 𝑧𝑛(𝜔))}𝑛=0
∞  be the approximate sequence in 𝑋. 

Let 𝜖𝑛 =∥ 𝑆(𝜔, 𝑧𝑛+1(𝜔)) − 𝑇(𝜔,𝑢𝑛(𝜔)) ∥, 𝑛 = 0,1,2, . . ., 

where 

𝑆(𝜔,𝑢𝑛(𝜔)) = (1 − 𝛼𝑛)𝑆(𝜔, 𝑧𝑛(𝜔)) + 𝛼𝑛𝑇(𝜔, 𝑧𝑛(𝜔))and 

let 𝑙𝑖𝑚𝑛→∞𝜖𝑛 = 0.  

Then, we shall prove that 𝑙𝑖𝑚𝑛→∞𝑆(𝜔, 𝑧𝑛(𝜔)) = 𝑝(𝜔) using 

the generalized 𝜑 − contractive-like operator satisfying 

condition (10). 

That is,  

∥ 𝑆(𝜔, 𝑧𝑛+1(𝜔)) − 𝑝(𝜔) ∥≤∥ 𝑆(𝜔, 𝑧𝑛+1(𝜔)) − 𝑇(𝜔,𝑢𝑛(𝜔))
∥ +∥ 𝑇(𝜔,𝑢𝑛(𝜔)) − 𝑝(𝜔) ∥ 

≤ 𝜖𝑛+∥ 𝑇 𝜔,𝑢𝑛 𝜔  − 𝑝 𝜔 ∥.                                             (22) 

Applying contractive condition (10) on (22), we have  

∥ 𝑆 𝜔, 𝑧𝑛+1 𝜔  − 𝑝 𝜔 ∥≤ 𝜖𝑛  

+𝛿 ∥ 𝑆(𝜔, 𝑝(𝜔)) − 𝑆(𝜔,𝑢𝑛(𝜔)) ∥  

+𝜑(∥ 𝑆(𝜔, 𝑝(𝜔)) − 𝑇(𝜔, 𝑝(𝜔)) ∥). 

 (23) 

Since 𝑆(𝜔, 𝑝(𝜔)) = 𝑇(𝜔, 𝑝(𝜔)) = 𝑝(𝜔) and 𝜑(0) = 0, then 

(24) becomes  

∥ 𝑆 𝜔, 𝑧𝑛+1 𝜔  − 𝑝 𝜔 ∥≤ 𝜖𝑛  

+𝛿 ∥ 𝑝(𝜔) − 𝑆(𝜔,𝑢𝑛(𝜔)) ∥. 

 (24) 

 From (25),  

∥ 𝑝 𝜔 − 𝑆 𝜔,𝑢𝑛 𝜔  ∥ 

=∥ (1 − 𝛼𝑛 + 𝛼𝑛)𝑝(𝜔) − (1 − 𝛼𝑛)𝑆(𝜔, 𝑧𝑛(𝜔))
− 𝛼𝑛𝑇(𝜔, 𝑧𝑛(𝜔)) ∥ 

=∥ (1 − 𝛼𝑛)(𝑝(𝜔) − 𝑆(𝜔, 𝑧𝑛(𝜔)) 

+𝛼𝑛(𝑝(𝜔) − 𝑇(𝜔, 𝑧𝑛(𝜔)) ∥ 

≤  1 − 𝛼𝑛 ∥ 𝑝 𝜔 − 𝑆 𝜔, 𝑧𝑛 𝜔  ∥ 

+𝛼𝑛 ∥ 𝑇(𝜔, 𝑝(𝜔)) − 𝑇(𝜔, 𝑧𝑛(𝜔)) ∥ 

≤ (1 − 𝛼𝑛) ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ 

+𝛼𝑛[𝛿 ∥ 𝑆(𝜔, 𝑝(𝜔)) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ 

+𝜑(∥ 𝑆(𝜔, 𝑝(𝜔)) − 𝑇(𝜔, 𝑝(𝜔)) ∥)] 

=  1 − 𝛼𝑛 ∥ 𝑝 𝜔 − 𝑆 𝜔, 𝑧𝑛 𝜔  ∥ 

+𝛼𝑛[𝛿 ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ 

= (1 − 𝛼𝑛 + 𝛼𝑛𝛿) ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥. 

 (25) 

 Substituting (25) in (24), we have  

∥ 𝑆 𝜔, 𝑧𝑛+1 𝜔  − 𝑝 𝜔 ∥ 

≤ 𝛿[1 − (1 − 𝛿)𝛼𝑛] ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ +𝜖𝑛            (26) 

Since 0 ≤ 𝛿 < 1, using Lemma 2.8 in (26), we obtain 

𝑙𝑖𝑚𝑛→∞𝑆(𝜔, 𝑧𝑛(𝜔)) = 𝑝(𝜔). 

Conversely, let 𝑙𝑖𝑚𝑛→∞𝑆(𝜔, 𝑧𝑛(𝜔)) = 𝑝(𝜔), we show that 

𝑙𝑖𝑚𝑛→∞𝜖𝑛 = 0 as follows:  

𝜖𝑛 = ∥ 𝑆(𝜔, 𝑧𝑛+1(𝜔)) − 𝑇(𝜔,𝑢𝑛(𝜔)) ∥ 

≤∥ 𝑆 𝜔, 𝑧𝑛+1 𝜔  − 𝑆 𝜔, 𝑝 𝜔  ∥ 

+∥ 𝑇(𝜔, 𝑝(𝜔)) − 𝑇(𝜔,𝑢𝑛(𝜔)) ∥  

≤∥ 𝑆 𝜔, 𝑧𝑛+1 𝜔  − 𝑆 𝜔, 𝑝 𝜔  ∥ 

+𝛿 ∥ 𝑆(𝜔, 𝑝(𝜔)) − 𝑆(𝜔,𝑢𝑛(𝜔)) ∥ 

+𝜑(∥ 𝑆(𝜔, 𝑝(𝜔)) − 𝑇(𝜔, 𝑝(𝜔)) ∥) 

+𝜑(∥ 𝑆(𝜔, 𝑝(𝜔)) − 𝑇(𝜔, 𝑝(𝜔)) ∥) 

+φ(∥S(ω,p(ω)) - T(ω,p(ω))∥) 

=    ∥ 𝑆 𝜔, 𝑧𝑛+1 𝜔  − 𝑆 𝜔, 𝑝 𝜔  ∥ 

             +𝛿 ∥ 𝑝 𝜔 − 𝑆 𝜔,𝑢𝑛 𝜔  ∥                                     (27) 

 

From (27),  

∥ 𝑝 𝜔 − 𝑆 𝜔,𝑢𝑛 𝜔  ∥ 

≤  1 − 𝛼𝑛 ∥ 𝑝 𝜔 − 𝑆 𝜔, 𝑧𝑛 𝜔  ∥ 
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+𝛼𝑛 ∥ 𝑇(𝜔, 𝑝(𝜔)) − 𝑇(𝜔, 𝑧𝑛(𝜔)) ∥ 

≤ (1 − 𝛼𝑛) ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ 

+𝛼𝑛[𝛿 ∥ 𝑆(𝜔, 𝑝(𝜔)) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ 

+𝜑(∥ 𝑆(𝜔,𝑝(𝜔)) − 𝑇(𝜔, 𝑝(𝜔)) ∥ 

= (1 − 𝛼𝑛) ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ 

      +𝛼𝑛𝛿 ∥ 𝑆(𝜔, 𝑝(𝜔)) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ 

         = (1 − 𝛼𝑛 + 𝛼𝑛𝛿) ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ 

= [1 − (1 − 𝛿)𝛼𝑛] ∥ 𝑝(𝜔) − 𝑆(𝜔, 𝑧𝑛(𝜔)) ∥ 

 (28) 

Substituting (28) in (27), we have  

𝜖𝑛 ≤∥ 𝑆(𝜔, 𝑧𝑛+1(𝜔)) − 𝑝(𝜔) ∥ 

+𝛿[1 − (1 − 𝛿)𝛼𝑛] ∥ 𝑆(𝜔, 𝑧𝑛(𝜔)) − 𝑝(𝜔) ∥. 

 (29) 

Since 𝑙𝑖𝑚𝑛→∞𝑆(𝜔, 𝑧𝑛(𝜔)) = 𝑝(𝜔) by our assumption, then 

we have 𝑙𝑖𝑚𝑛→∞𝜖𝑛 = 0. 

Therefore, the modified random Jungck-Mann hybrid iterative 

scheme (17) is (𝑆,𝑇)-stable. This ends the proof. 

Theorem 3.6 yields the following corollary: 

Corollary 3.7. Let (𝑋, ∥. ∥) be a normed linear space and 

𝑇:Ω × 𝑋 → 𝑋 be a self random mapping satisfying the 

contractive-like condition 

∥ 𝑇(𝜔, 𝑥) − 𝑇(𝜔, 𝑦)) ∥ 

≤ 𝛿 ∥ 𝑥 𝜔 − 𝑦 𝜔 ∥ 

+𝜑(∥ 𝑥(𝜔) − 𝑇(𝜔, 𝑥) ∥) 

where 𝛿 ∈ [0,1) and 𝜑:ℝ+ → ℝ+ a sublinear monotone 

increasing function with 𝜑(0) = 0. Assume that 𝑝(𝜔) is the 

unique random fixed point of 𝑇. If the iterative algorithm 

{𝑥𝑛(𝜔)}𝑛=0
∞  defined by (18) converges to 𝑝(𝜔), then the 

modified random Picard-Mann algorithm (18) is 𝑇 − stable.  

 

Corollary 3.8. Let (𝑋, ∥. ∥) be a normed linear space and 

𝑇:Ω × 𝑋 → 𝑋 be a self random mapping satisfying the 

contractive-like condition  

∥ 𝑇(𝜔, 𝑥) − 𝑇(𝜔, 𝑦)) ∥≤ 𝛿 ∥ 𝑥(𝜔) − 𝑦(𝜔) ∥ 

+𝜑(∥ 𝑥(𝜔) − 𝑇(𝜔, 𝑥) ∥) 

where 𝛿 ∈ [0,1) and 𝜑:ℝ+ → ℝ+ a sublinear monotone 

increasing function with 𝜑(0) = 0. Assume that 𝑝(𝜔) is the 

unique random fixed point of 𝑇. If the random Picard iterative 

scheme {𝑥𝑛(𝜔)}𝑛=0
∞  defined by (2) converges to 𝑝(𝜔), then 

the random Picard scheme (2) is 𝑇 − stable.  

Example 3.9. Let (𝑋,𝑑) = ([0,20], |. |). 

Define 𝑆 and 𝑇 by 

𝑆 𝜔, 𝑥 =  
3      𝑖𝑓     𝑥 ∈  0,2 

0      𝑖𝑓     𝑥 ∈  0 ∪  2,20 
  

and  

𝑇 𝜔, 𝑥 =  

0          𝑖𝑓        𝑥 = 0

𝑥 + 8     𝑖𝑓      𝑥 ∈  0,2 

𝑥 − 2        𝑖𝑓     𝑥 ∈  2,20 

  

Then 

(i). 𝑆(𝜔, 𝑥) = 𝑇(𝜔, 𝑥) iff 𝑥 = 0, 

𝑆(𝜔,𝑇(𝜔, 0)) = 𝑇(𝜔, 0) = 0, 𝑇(𝜔, 𝑆(𝜔, 0)) = 𝑆(𝜔, 0) = 0. 
Therefore 𝑆 and 𝑇 are weakly compatible. 

Example 3.10. Let (Ω, Σ) be a measurable space and 𝐶 be a 

nonempty closed convex subset of a separable Banach space 

𝐸 and 𝑓:Ω → 𝐶 a random coincidence for two random 

mappings 𝑆,𝑇:Ω × 𝐶 → 𝐶. Consider the equation 𝑔(𝜔, 𝑥) =
0, where 𝑔 is the real random function defined on interval 

[0,
𝜋

2
] by 𝑔(𝜔, 𝑥) = 𝑥2 −  

𝜋

2
 

2

cos(𝑥). 𝑔 can be decomposed 

as 𝑔 =
𝜋

2
(𝑆 − 𝑇), where the maps 𝑆 and 𝑇 are the self random 

mappings in [0,
𝜋

2
] defined by 𝑆(𝜔, 𝑥): =

2

𝜋
𝑥2 and 𝑇(𝜔, 𝑥): =

𝜋

2
cos(𝑥). They satisfy inequality (10). They coincide at 

𝑓(𝜔) ≈ 1.0792 and we have 𝑝(𝜔) = 𝑆(𝜔, 𝑓(𝜔)) =
𝑇(𝜔, 𝑓(𝜔)) ≈ 0.7415. Thus, 𝑓(𝜔) is solution to the equation 

𝑓(𝜔, 𝑥) = 0. From  Theorem 3.3, the random Jungck-Mann 

iterative algorithm {𝑆(𝜔, 𝑥𝑛(𝜔))} defined in (18) converges 

to 𝑝(𝜔) = 𝑆(𝜔, 𝑓(𝜔)). Using MATHEMATICA 10.2, we 

have the following table: 

n        𝑥𝑛 𝜔      𝑆 𝜔, 𝑥𝑛 𝜔   

0       0.1000        0.1000 

1       1.0484        0.6996 

2       1.0769        0.7401 

3       1.0793        0.7414 

.             .                  . 

.             .                  . 

.             .                  . 

5       1.0792        0.7415 

.             .                  . 

.             .                  . 

.             .                  . 

7        1.0792       0.7415 

Thus, {𝑆(𝜔, 𝑥𝑛(𝜔))} converges to 𝑆(𝜔, 𝑓(𝜔)) implies that the 

sequence {𝑥𝑛(𝜔)} converges to 𝑓(𝜔), the zero of 𝑔. 
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