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Abstract: - A continuous one-step hybrid block method with two-

off grid points using Bernstein polynomial as basis function for 

solving directly the general second order initial value problems 

of ordinary differential equations is derived. The scheme is based 

on collocation and interpolation techniques at desired off grid 

points and implemented as block mode so as to obtain 

approximate solution at both step and off step points. The 

method was applied on linear and non-linear ODE and found to 

be consistent, zero stable and convergent. Numerical results of 

the proposed scheme show efficiency over some existing schemes. 
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I. INTRODUCTION 

he desire of many scholars to obtain more accurate 

approximate solution to mathematical models, arising 

from engineering, medicine, science and science social, in the 

form of ordinary differential equations (ODEs) which cannot 

be solve analytically have led them to proposed several 

different numerical methods. 

Researchers over the years have considered different 

approaches of generating numerical solution to second order 

initial value problem of ODE the form  

 

10 )(,)0()),(),(,(   ayyxyxyxfy    (1.1) 

The development of numerical methods for IVP of the form 

(1.1) has given rise to two major discrete variable methods; 

One step (or single step) method and multistep method 

especially the linear multistep method [2] 

These methods employ polynomials as a trial or basis 

function. Polynomials which have played a central role in 

approximation theory as well as in numerical analysis for 

decades, have a great variety of functions, differentiable and 

integrable [12].In solving IVP of (1.1), many scholars have 

worked by using single step and multistep methods with 

different polynomials. 

For example, [11], [17], [18] and [19] used power 

series polynomial as the basis function to proposed linear 

multistep methods for initial value problems of the form (1.1) 

in the predictor corrector mode and Taylor series algorithm to 

supply starting values. 

[7] employed Chebyshev polynomial as basis 

function to proposed three- step implicit numerical method 

capable of solving (1.1). [4] used the Newton’s polynomials to 

generate predictors-corrector method and Taylor series 

algorithm to supply starting values. 

Also [3] and [17] developed predictor-corrector methods for 

the solution of (1.1) using Chebyshev polynomials as basis. A 

single step method for solving (1.1) based on power series as 

basis function was proposed by [8], [10], [21] and [2]. While 

[16] employed shifted Legendre polynomial as basis function 

to proposed a continuous block linear multistep methods for 

initial value problems of the form (1.1). 

Resently, [1] presented a method for solving (1.1 & 

1.2) using Lucas Polynomial as basis function.Several 

numerical methods based on the use of polynomial functions 

(Power series, Legendre, Chebyshev, Lucas e.t.c) have been 

used as basis function to develop numerical methods for direct 

solution of higher order IVP using interpolation and 

collocation procedure. 

In this paper, we propose one step hybrid block 

method using Bernstein polynomial as basis function in 

collocation interpolation approach. 

The Bernstein polynomials of degree m are defined on the 

interval [0, 1], as [12]  

   

𝐵𝑖 ,𝑚  𝑥 =  
𝑚
𝑖
 𝑥𝑖(1 − 𝑥)𝑚−𝑖 , 𝑖

= 0, 1, … , 𝑚                                   (1.2) 

In general, we approximate any function y(x) over [0, 1] as 

Bernstein basis function 

𝑦 𝑥 =  𝑐𝑖𝐵𝑖 ,𝑚  𝑥 = 𝐶𝑇∅(𝑥)

𝑚

𝑖=0

                                       (1.3) 

where 𝐶𝑇 = [𝑐0, 𝑐1 … , 𝑐𝑚 ],  

are the coefficients to be determined and  

∅ 𝑥 = [𝐵0,𝑚  𝑥 , 𝐵1,𝑚  𝑥 , … , 𝐵𝑚,𝑚  𝑥 ]𝑇 , 

 is the Bernstein polynomial of degree m. 

T 
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 This paper is organization as follows: Section 2 is 

methodology. Section 3, analysis of the basic properties of the 

method is presented. Numerical implementation of the scheme 

is in Section 4. Section 5 is discussion of result, and in Section 

6 the conclusion 

II. METHODOLOGY 

We define a basis function in the form of Bernstein 

polynomialas,  

𝑦 𝑡 =    𝑎𝑘𝐵𝑘,𝑛 𝑡 

𝑐+𝑖−1

𝑘=0

       (2.1) 

where c and i are number of distinct collocation and 

interpolation points respectively, 𝑎𝑘 is the coefficients to be 

determined and 𝐵𝑘,𝑛 𝑡  is the Bernstein Polynomial derived 

from the recursiverelation 

𝐵𝑘,𝑚  𝑡 =  1 − 𝑡 𝐵𝑘,𝑚−1 𝑡 +  𝑡𝐵𝑖−1,𝑘−1 𝑡    (2.2) 

    

Differentiating (2.1) twice and substituting into (1.1) gives: 

𝑓 𝑥, 𝑦 𝑥 , 𝑦′ 𝑥  =  𝑎𝑘

𝑐+𝑖−1

𝑘=0

𝐵′′
𝑘,𝑛 𝑡  (2.3) 

We consider a grid point of step length one and off step point 

at  𝑥 = 𝑥
𝑛+

2

7

,  𝑥
𝑛+

5

7

. Collocating (2.3) at points𝑥 = 𝑥𝑛 ,

𝑥
𝑛+

2

7

,  𝑥
𝑛+

5

7

 and 𝑥𝑛+1, and interpolating (2.1) at 𝑥 = 𝑥
𝑛+

2

7

 and 

 𝑥
𝑛+

5

7

, give a system of five equations which are solved using 

Gaussian elimination method to obtained the 

parameters𝑎′
𝑗 𝑠, 𝑗 = 0,1, … ,5.The parameters 𝑎′

𝑗 𝑠 obtained are 

then substituted back into (2.1) to give the continuous hybrid 

one step method of the form; 

𝑦 𝑥 = 𝛼0𝑦𝑛 + 𝛼2

7

𝑦
𝑛+

2

7

+ 𝛼5

7

𝑦
𝑛+

5

7

+ ℎ2  𝛽0𝑓𝑛 + 𝛽2

7

𝑓2

7

+ 𝛽5

7

𝑓5

7

+ 𝛽1𝑓𝑛+1                  (2.4) 

where 𝛼0 and 𝛽0 are continuous coefficients. The continuous 

method (2.4) is used to generate the main method. That is, we 

evaluate at  𝑥 = 𝑥𝑛  and 𝑥𝑛+1 we obtain the methods as 

follows 

𝑦𝑛+1 = 

−
2

3
𝑦

𝑛+
2

7

+
5

3
𝑦

𝑛+
5

7

+ 
1

8820
ℎ2  

−24𝑓𝑛 + 116𝑓
𝑛+

2

7

+   719𝑓
𝑛+

5

7

  + 39𝑓𝑛+1
                     

(2.5) 

 𝑦𝑛 =
5

3
𝑦

𝑛+
2

7

−
2

3
𝑦

𝑛+
5

7

+
1

8820
ℎ2  39𝑓𝑛 + 719𝑓

𝑛+
2

7

−24𝑓𝑛+1        (2.6)                  

In order to incorporate the second initial condition at (1.2) in 

the derived schemes, we differentiate (2.4) and evaluate at 

points 𝑥 = 𝑥𝑛 , 𝑥
𝑛+

2

7

,  𝑥
𝑛+

5

7

 and 𝑥𝑛+1,  we obtained the 

following discrete derivative schemes: 

ℎ𝑦 ′ +
7

3
𝑦

𝑛+
2

7

−
7

3
𝑦

𝑛+
5

7

= 

1

4200
ℎ2  

−401𝑓𝑛 − 1521𝑓
𝑛+

2

7

− 194𝑓
𝑛+

5

7

+16𝑓𝑛+1

                     (2.7)             

ℎ𝑦′
𝑛+

2

7

+
7

3
𝑦

𝑛+
2

7

−
7

3
𝑦

𝑛+
5

7

= 

1

29400
ℎ2  513𝑓𝑛 − 4767𝑓

𝑛+
2

7

− 2478𝑓
𝑛+

5

7

+ 432𝑓𝑛+1                

(2.8) 

ℎ𝑦′
𝑛+

5

7

+
7

3
𝑦

𝑛+
2

7

−
7

3
𝑦

𝑛+
5

7

= 

1

29400
ℎ2  −432 + 2478𝑓

𝑛+
2

7

+ 4767𝑓
𝑛+

5

7

− 513𝑓𝑛+1                

(2.9)       

ℎ𝑦′
𝑛+1

+
7

3
𝑦

𝑛+
2

7
−

7

3
𝑦

𝑛+
5

7

=

1

4200
ℎ2  

−16𝑓𝑛 + 194𝑓
𝑛+

2

7

+1521𝑓
𝑛+

5

7

+ 401𝑓𝑛+1
                                                (3.0)            

The block methods are derived by combining equation (2.5) to 

(3.0) and solved simultaneously to obtain the following 

explicit result: 

𝑦
𝑛+

2

7

= 𝑦𝑛 +
2

7
ℎ𝑦′

𝑛

+
1

11025
ℎ2  252𝑓𝑛 + 242𝑓

𝑛+
2

7

− 62𝑓
𝑛+

5

7

+ 18𝑓𝑛+1  

𝑦
𝑛+

5

7

= 𝑦𝑛 +
5

7
ℎ𝑦′

𝑛

+
1

3528
ℎ2  225𝑓𝑛 + 625𝑓

𝑛+
2

7

+ 50𝑓
𝑛+

5

7

  

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑦′
𝑛

+
1

1800
ℎ2  159𝑓𝑛 + 539𝑓

𝑛+
2

7

+ 196𝑓
𝑛+

5

7

+

6𝑓𝑛+1          (3.1) 

𝑦′
𝑛+

2

7

= 𝑦′
𝑛

+
1

735
ℎ  83𝑓𝑛 + 147𝑓

𝑛+
2

7

− 28𝑓
𝑛+

5

7

+ 8𝑓𝑛+1  

𝑦′
𝑛+

5

7

= 𝑦′
𝑛

+
1

1176
ℎ  95𝑓𝑛 + 525𝑓

𝑛+
2

7

− 245𝑓
𝑛+

5

7

− 25𝑓𝑛+1  

𝑦′
𝑛+1

= 𝑦′
𝑛

+
1

120
ℎ  11𝑓𝑛 + 49𝑓

𝑛+
2

7

+ 49𝑓
𝑛+

5

7

+ 11𝑓𝑛+1  
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III. ANALYSIS OF THE BASIC PROPERTIES OF THE 

METHOD 

In this section, we analyze the derived scheme by 

determining the order and error constant, consistency, zero 

stability and region of absolute stability of the scheme. 

3.1 Order and Error constant 

Definition 3.1 The one-step implicit hybrid block linear 

method and the associated linear difference operator are said 

to have order p if 𝐶0 = 𝐶1 = 𝐶2 = 𝐶3 = ⋯𝐶𝑝 = 𝐶𝑝+1 and 

𝐶𝑝+2 ≠ 0see [20] for details.  According to Fatunla [15] and 

[20],, we expand  (3.1) using Taylor’s series and combining 

the coefficient of the like terms in ℎ𝑛 , the following result are 

obtained. 

Hence The block method has order p=(4, 4, 4, 4, 4, 4)
T
 with 

error constant 

(−1.2372e−5,−1.8446e−5,−1.4172e−5,−7.9993e−5, 

0.5.1648e−5,−2.8345e−5). The region of absolute stability of 

the method is between (-9.9328, 0.00) 

3.2 Consistency of the Scheme 

Definition 3.2 A numerical method is said to be consistent, if 

it has order greater than one (p≥ 1) see [14]and [20] for 

details. 

Hence our methods are consistent since the order is greater 

than one 

3.3 Zero Stability 

Definition 3.3A block method is said to be zero stable if the 

roots𝑍𝑟 ; 𝑟1, . . , 𝑛 of the first characteristic polynomial ρ(z), 

defined by  𝑝 𝑧 = det|𝑍𝑄 − 𝑇|satisfies |z| ≤ 1and every 

root with 𝑍𝑟  = 1has multiplicity not exceeding two in the 

limit as h → 0 ( see Fatunla [14] for details) 

𝑄 =

 
 
 
 
 
 
1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1 
 
 
 
 
 

    and  𝑇 =

 
 
 
 
 
 
0
0
0
0
0
0

0
0
0
0
0
0

1
1
1
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0 
 
 
 
 
 

 

Substituting, we have 

𝜌 𝑧 = 𝑧5 𝑧 − 1 = 0 

gives z = 0 or z = 1. Hence the block is zero stable since |z|=1 

3.4 Convergence of the method 

Definition 3.4 The necessary and sufficient condition for a 

linear multistep method to be convergent is for it to be 

consistent and zero stable. [13] 

Hence our methods are convergent since is consistent and zero 

stable 

IV. NUMERICAL EXAMPLES 

 We solve the following example to illustrate our 

method (2.9). 

Problem I: 𝑦′′ = 𝑦′ ,   𝑦 0 = 0 ,   𝑦′ 0 = −1,   ℎ = 0.1 

 Exact solution   𝑦 𝑥 = 1 − exp(𝑥) 

Source: Kayode et al ([18]) 

Problem II:   

𝑦′′ = 2𝑦 − 𝑦′ ,   𝑦 0 = 0, 𝑦′ 0 = 1 

Exact solution: 𝑦 𝑥 =
𝑒𝑥−𝑒−2𝑥

3
,   0 ≤ 𝑥 ≤ 1 

Source: Adeyefa et al ([7]) 

Problem II  : 

𝑦′′ − 𝑥 𝑦′ 2 = 0, 𝑦 0 = 1, 𝑦′ 0 = −
1

2
, ℎ = 0.01 

Exact solution 𝑦 𝑥 = 1 +
1

2
ln  

2+𝑥

2−𝑥
  

Source: Anake et al ([9]) 

Table 4.1: Comparison of the error for problem 1 

x 
Error in [17] 

 

Error in [2] 

 

Error in[18] 

 

Error in our 

method 

0.1 

0.2 
o.3 

0.4 

0.5 
0.6 

0.7 

0.8 
0.9 

1.0 

0.82 × 10−06  

0.31 ×10−05  

0.65 ×10−05  

0.66 ×10−05  

0.11 ×10−05  

1.80 ×10−04  

0.26 ×10−04  

0.37 ×10−04  

0.51 ×10−04  

0.67 ×10−04  

2.220 ×10−08  

1.250 ×10−07  

3.250 ×10−07  

6.424 ×10−07  

1.099 ×10−06  

1.721 ×10−06  

2.538 ×10−06  

3.583 ×10−06  

4.896 ×10−06  

6.522 ×10−06  

3.460 ×10−09 

5.676 ×10−09 

7.641 ×10−09 

1.050 ×10−08  

1.450 ×10−08  

1.878 ×10−08  

2.280 ×10−08  

2.826 ×10−08  

3.555 ×10−08  

1.6454 ×10−11  

6.772 ×10−11  

1.609 ×10−10  

3.044 ×10−10  

5.075 ×10−10  

7.814 ×10−10  

1.139 ×10−09 

1.594 ×10−09 

2.163 ×10−09 

2.866×10−09 
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Table 4.2: Comparison of the error for problem 1I. 

x 
Exact 

Solution 

Computed 

Solution 

Error in the 

Proposed Method 
Error in [7] 

0.1 

0.2 

0.3 

0.4 

0.0954800549992223 

0.183694237374844 

0.267015723827325 

0.347498577841350 

0.0954800547459173 

0.183694236418694 

0.267015721836013 

0.347498574566664 

2.533054× 10−10 

9.56150 ×10−10  

1.991312 ×10−09 

3.274686 ×10−09 

9.766814 ×10−06  

1.831503 ×10−05  

6.510125 ×10−05  

1.024784 ×10−04  

 

Table 4.3:Comparison of the error for problem III 

x 
Error in [9] 

 
Error in [5] 

Error in [6] 

 
Error in our scheme 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

6.2172 ×10−15  

2.4425 ×10−14  

5.6843 ×10−14  

1.0347 ×10−13  

1.6742 ×10−13  

2.5091 ×10−13  

3.6016 ×10−13  

5.0493 ×10−13  

6.9522 × 10−13 

9.4836 ×10−13  

7.5028 ×10−13  

9.7410 ×10−12  

3.7638 ×10−11  

9.7765 ×10−11  

2.0825 ×10−10  

3.9604 ×10−10  

7.0460 ×10−10  

1.2095 ×10−09 

2.0511 ×10−09 

3.5066 ×10−09 

4.8627 ×10−14  

2.1604 ×10−13  

5.2557 ×10−13  

1.0254 ×10−12  

1.8032 ×10−12  

3.0078 ×10125  

4.8991 ×10−12  

7.9460 ×10−12  

1.3702 ×10−11  

2.1885 ×10−11  

1.5102 ×10−15  

1.8121 ×10−15  

2.2673 ×10−15  

2.7847 ×10−14  

4.5220 ×10−14  

1.0259 ×10−14  

1.9090 ×10−14  

1.1456 ×10−13  

2.0926 ×10−13  

2.6478×10−13  

 

V. DISCUSSION OF RESULT 

A new one-step hybrid block Bernstein method with two off-

step points of order 4 is proposed for the direct solution of 

general second order ordinary differential equations. The main 

method and the additional methods were obtained from the 

same continuous method derived via interpolation and 

collocation procedures and then applied in block form as 

simultaneous numerical integrators over non-overlapping 

interval .The properties of the method are also discussed. 

 In Tables 4.1, 4.2 and 4.3, we compared the accuracy of 

proposed method with some existing methods, the proposed 

method display better accuracy. 

VI. CONCLUSION 

A block scheme with bernstein single step method 

generated in this paper is accurate, efficient and can compete 

favorably with existing schemes. 
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