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Abstract:-Generalised Linear Models such as Poisson and 
Negative Binomial models have been routinely used to model 
count data. But, these models assumptions are violated when the 
data exhibits over-dispersion and zero-inflation. Over-dispersion 
is as a result of excess zeros in the data. For modelling data with 
such characteristics several extensions of Negative Binomial and 
Poisson models have been proposed, such as zero-inflated and 
Hurdles models. Our study focus is on identifying the most 
statistically fit model(s) which can be adopted in presence of 
over-dispersion and excess zeros in the count data.  We simulate 
data-sets at varying proportions of zeros and varying 
proportions of dispersion then fit the data to a Poisson, Negative 
Binomial, Zero-inflated Poisson, Zero-inflated Negative 
Binomial, Hurdles Poisson and Negative Binomial Hurdles. 
Model selection is based on AIC, log-likelihood, Vuong statistics 
and Box-plots. The results obtained, suggest that Negative 
Binomial Hurdles performed well in most scenarios compared to 
other models hence, the most statistically fit model for over-
dispersed count data with excess zeros. 

Keywords: Zero-inflated models, Hurdles models, Over-
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I. INTRODUCTION 

ver-dispersed count data with zero inflation is becoming 
so common in recent researches. Such data is 

encountered in a wide range of places.[1], gave areas in which 
a scientist can expect such kind of data; medicine, recreational 
facilities, econometric data....agricultural data, or 
econometrics data. Especially when the event of interest is 
rare. For instance, the number of car accidents per day, 
reported cases of infectious diseases, number of absentees in a 
school, or number of crime cases. This kind of data may have 
a variety of characteristics that a scientist needs to take 
account of in the modelling phase. Normal distribution, 
cannot be adopted in modelling this kind of data, since, the 
disciplines of OLS (Ordinary Least-square) regression models 
are not complied. That is, normality, linearity and 
homoscedastcity. 

Instead, Generalized Linear Models (GLM) may be adopted. 
[2], used the Poisson regression model to analyse count 
data.[3],[4], showed that negative binomial (NB) model can 
be used when data has over-dispersion caused by 
heterogeneity of data. Although, they cannot account for zero 
inflation in the data, since, for these models to be used the 
zero proportion must be necessarily linked to the distribution 
of positive counts. For instance, Poisson model assumes equi-
dispersion; mean and variance should be equal, otherwise the 

model will be violated, [5]. In real data, equi-dispersion is not 
commonly reflected. In most cases, variance is greater than 
the mean. This condition of Poisson variation is termed as 
over-dispersion. The negative binomial distribution is used for 
the data which is over-dispersed. The NB distribution has 
natural parameter which has an effect on relaxing the mean-
variance relationship, and itis assumed to follow a gamma 
distribution. In a case where variance is smaller compared to 
the mean, the data is under-dispersed. The variance of a 
Poisson model is, v(µ) = µ) which shows that the variance is a 
deterministic function of the mean. There are several 
instances that can lead to violation of the equi-dispersion 
assumption namely; 1) When the data is hierarchically 
structured, this can be encountered in longitudinal studies. 2) 
The occurrence of over-dispersion, that is, variance of the data 
is not equal to the mean, which is a necessary condition for a 
Poisson distribution. 3) When there is zero inflation relative to 
Poisson model assumption, the negative binomial regression 
model maybe adopted which may improve the fit of the data. 
Presence of excess zeros in the data. One explanation for this, 
it can be assumed the sample is from two different sub-
populations; one where the outcome of interest is always zero 
and the other behaves like a Poisson distribution. 
Several extensions of the existing models have been proposed 
to model zero inflation in count data. [6], proposed the zero-
inflated count models. Zero-inflation, shows that the count 
data set has excessive number of zeros. The word inflation, 
emphasizes that the probability mass has a higher peak at zero 
which exceeds the levels allowed under a standard parametric 
family in the discrete distribution. Zero-inflated models tend 
to assume count datacomes from two different populations. 
First, non-exposed group that "never" experiences the event, 
and the exposed group where the events are generated byuse 
of a standard model. There are two sources of zeros in such 
scenario, one is assumed to come from the exposed population 
and the other from the non-exposed population.  Zeros from 
the exposed population are modelled using a Poisson or 
Negative Binomial,[7][8]. It is important to note that, Zero-
inflated Poisson models can be adopted for the data with large 
number zeros counts but cannot adequately account for over-
dispersed data. Thus there was a need for a model that would 
cater for both zero inflation and over-dispersion. [9], proposed 
an extension of NB model, zero-inflated negative binomial 
(ZINB) regression model as an alternative to ZIP model. 

[10],proposed the hurdle models for analysis of count data 
with both excess zeros and over-dispersion. The model is 
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composed of two stages hence the name “two-part” model. 
The main assumption is all the zeros are sampling zeros. The 
hurdles model can be grouped into two, Poisson hurdle (PH) 
and negative binomial hurdle (NBH). The first part is the 
binary response which determine whether the response has 
zero or non-zero outcome. Binary response is modelled using 
a binary model for instance logit, probit or complementary 
log-log. The second part, analysis the positive counts 
truncated-at-zero, where Poisson, geometric and negative 
binomial are used, thus estimating two equations. 
Some simulation studies have been performed to compare the 
model performance for zero-inflated and over-dispersed 
counts. [11], compared parameter estimations between 
Poisson hurdle and zero inflated Poisson;  [12], compared 
Poisson, PH and ZIP varying degree of zero-inflation; [13], 
compared zero inflated negative binomial with negative 
binomial hurdle. However, the comparisons available in these 
studies are limited hence a comprehensive comparison of one 
part models (Poisson and NB), zero-inflated and hurdles 
models for over-dispersed and zero-inflated count data is 
desired. 
In this paper a comprehensive comparison of the following 
models; one part models (Poisson, Negative Binomial), mixed 
models (Zero inflated models) and two part models (Hurdles 
models). Through data simulation, different scenarios of zero 
inflation and over-dispersion were examined. 

II. METHODOLOGY 

Statistical Models 

In this study, a simulation technique in R to generate the 
simulated data set that was used to compare the models. 
Simulation mainly focused on: 

existence of structural zeros in the data.  In the structural and 
zero-component there are two binary covariate. The 
covariates 𝑋ଵand 𝑋ଵ are defined as indicators of the exposed 
and unexposed group respectively and the chance of an 
outcome originating from the exposed group is given as 0.5. 
Data has been simulated under the following models;  

2.1 One-part models 

2.1.1 Poisson model 

Poisson model assumes equi-dispersion(mean=variance) a 
property that is hard to attain in real life situations. If X 
follows a Poisson distribution, then the 
probability distribution function (pdf); 

 𝒇(𝑿𝒊) =
௘షഋఓೣ

௫!
 ,   𝑦 = 0,1, 2, …. 

 

(1) 

With mean and variance as; E{x} =Var{x}= µ   (implying 
equi-dispersion). 

The case model Poisson regression, assumes, 𝑥ଵ, … 𝑥௡ are a 
realization of independent random variables 
𝑋ଵ, … 𝑋௡following the distribution: 

 𝑌௧~𝑃𝑜𝑖𝑠(𝜆௜) 

 

(2) 

Define a link function g relating x to a linear predictor can be 
expressed as;  

g(𝜇௜)  = 𝑛௜ 

 =  𝛽଴ + 𝛽ଵ𝑋௜ + 𝛽ଶ𝑋ଶ௜ 

= 𝑥ᇱ𝛽 

With 𝛽 as the vector to be estimated, 𝑛௜ the linear predictor 
and 𝜇௜ as the mean of the distribution function. The link 
function of the Poisson model can be given as; 

𝑛௜ = log (𝜇௜) 

The Poisson model has only one parameter 𝜇௜ and can be 
estimated by use of the Newton-Raphson Algorithm.                                                             

2.1.2 Negative Binomial model 

NB is an extension of Poisson model and can be used when 
data is over-dispersed. It can handle over-dispersion due to the 
additional parameter that account for variability in the data. 
Let assume that a random variable 𝑤௜has a mean 𝜇௜ where I is 
a positive integer. The parameter 𝜇௜ also depends the 
heterogeneity component  𝜖 (error term). The NB of 𝑤௜  can be 
expressed as; 

 
𝑃(𝑤௜) =

୻ஐା୵

୻(ஐ)ା୵!
ቄ

ఉ

ଵାఉ
ቅ

௪೔
ቄ

ଵ

ାఉ
ቅ

ஐ

 , 

𝑤௜ = 1, 2, … , n 

 

(3) 

We can expressed mean as; 𝐸(𝑤௜) = Ωβ  and variance   

𝑉𝑎𝑟(𝑤௜) = Ωβ + Ω𝛽ଶ. The parameters 𝜇 = Ωβ  and k =
ଵ

ஐ
  

are taken as the expected value and the dispersion parameter 
when building a NB model. Whereby, 𝐸(𝑤௜) = 𝜇 and 
𝑉𝑎𝑟(𝑤௜) = μ + k𝜇ଶ can be expressed as the log link function 
of NB mode as; 

logit(𝜇) =  𝛽଴ + 𝛽ଵ𝑋ଵ + 𝛽ଶ𝑋ଶ + ⋯ + 𝛽௣𝑋௣ 

With p covariates and 𝛽଴, 𝛽ଵ, … , 𝛽௣ as the regression 
coefficient. The parameters of the model ϕ and β are 
estimated using the Fisher’s scoring Algorithm. 

2.2. Mixed models 

2.2.1 Zero-Inflated models 

For the case model for the ZIP and ZINB they assume that 
𝑦ଵ, … 𝑦௡are a realization of independent random variables 
𝑌ଵ, … 𝑌௡following the distribution: 

𝑌௧~𝑍𝐼𝑃(𝑝௜ , 𝜇௜),             𝑖 =  1, 2, . . . , 𝑛 

                   𝑌௧~𝑍𝐼𝑁𝐵(𝑝௜ , 𝜆௜ , Ωିଵ),               𝑖 
=  1, 2, . . . , 𝑛        

 The probability mass function of ZIP can expressed as; 



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue V, May 2019|ISSN 2454-6194 

www.rsisinternational.org Page 82 
 

𝑌௜ =  ቐ

𝑝௜ + (1 − 𝑝௜)𝑒ିఒ೔                      , 𝑤ℎ𝑒𝑛 𝑦௜ ୀ଴

(1 − 𝑝௜)
𝑒ିఒ೔𝜆௜

௫

𝑥!
, 𝑤ℎ𝑒𝑛 𝑦௜வ଴

  

Where 𝑝௜  can for ZIP can be modelled using a log model as; 

𝐿𝑜𝑔(𝑝𝑖)  =
𝑝௜

(1 − 𝑝௜)
=  𝛽଴ + 𝛽ଵ𝑋௜ + 𝛽ଶ𝑋ଶ௜ + ⋯ + 𝛽௣𝑋௣ 

log(𝜆଴) =  𝛾0 +  𝛾1𝑋1𝑖 +  𝛾2𝑋2𝑖 

2.2.2 Zero inflated Negative Binomial  

  Probability mass function of ZINB can be expressed as;  

𝑌௜

=  ቐ

𝑝௜ + (1 − 𝑝௜)(1 + Ω𝜆௜)ିஐషభ
                     ; 𝑤ℎ𝑒𝑛 𝑦௜ ୀ଴

(1 − 𝑝௜)
Γ(Ωିଵ + w)(Ω𝜆௜)௬೔ 

Γ(𝑦௜ + 1)Γ(Ωିଵ)(1 + Ω𝜆௜)௬೔ାஐషభ   ; 𝑤ℎ𝑒𝑛 𝑦௜வ଴

  

Where𝑝௜  can be modelled using a logit model according to[6]; 

𝐿𝑜𝑔𝑖𝑡(𝑝𝑖)  =
𝑝௜

(1 − 𝑝௜)
=  𝛽଴ + 𝛽ଵ𝑋௜ + 𝛽ଶ𝑋ଶ௜ + ⋯ + 𝛽௣𝑋௣ 

logit(𝜆଴) =  𝛾0 +  𝛾1𝑋1𝑖 +  𝛾2𝑋2𝑖 
Where, 
𝑝𝑖as the zero inflation factor or the probability of structural 
zeros in the data. 

𝜆௜ Expected value which can be expressed as; 𝜆௜ =
exp (𝛼ᇱ𝑋௜)where 𝛼, is a (𝑚 + 1) ∗ 1vector of unknown zero-
inflated coefficient to be estimated to be estimated associated 
with, 𝑋௜ (known covariates)  and number of covariates in the 
model. 
Ωିଵ, as the dispersion parameter. 

𝑋௝௜ , 𝛽௝௜ , as the binary covariates for the simulation conditions. 
Parameters 𝛾0, 𝛾1and 𝛾2are collectively referred to as 𝛾while 
𝛽଴and 𝛽ଵas; 𝛽n sample size. If 𝑝𝑖is 1, the outcome of 
interest 𝑌𝑖will be set to be zero, for 𝑝𝑖is 
zero, 𝑌𝑖 will be simulated from either a Poisson or NB 
distribution for ZIP and ZINB distribution respectively. 

2.3 Two part models 

For the NBH and PHmodel assumes that 𝑦ଵ , … 𝑦௡are a 
realization of independent random variables 
𝑌1, … 𝑌𝑛 following the distribution; 

𝑌𝑖 ~ PH(𝜋𝑖, 𝜆௜), 𝑖 =  1, . . . , 𝑛 

𝑌𝑖 ~NBH (𝜋𝑖, 𝜆௜ , Ω𝑖), 𝑖 =  1, . . . , 𝑛 

The probability mass function of the PH can be expressed as; 

𝑌௜ =  ቐ

𝜋𝑖                      , 𝑤ℎ𝑒𝑛 𝑦௜ ୀ଴

(1 − 𝜋𝑖)
𝑒ିఒ೔𝜆௜

ఒ೔

(1 − 𝑒ିఒ೔)𝑦!
, 𝑤ℎ𝑒𝑛 𝑦௜வ଴

  

Where 𝜋𝑖 can for ZIP can be modelled using a log model as; 

 

𝐿𝑜𝑔(𝜋𝑖) =
𝜋௜

(1 − 𝜋௜)
=  𝛽଴ + 𝛽ଵ𝑋௜ + 𝛽ଶ𝑋ଶ௜ + ⋯ + 𝛽௣𝑋௣ 

log(𝜆௜) =  𝛾0 +  𝛾1𝑋1𝑖 +  𝛾2𝑋2𝑖 

 Probability mass function of HNB can be expressed as; 

  
𝑌௜

=  ቐ

𝜋𝑖                                                                          ; 𝑤ℎ𝑒𝑛 𝑦௜ ୀ଴

(1 − 𝑝௜)
Γ(Ωିଵ + 𝑦௜)(1 + Ω𝜆௜)ିஐషభ

(Ω𝜆௜)௬೔ 

Γ(𝑦௜ + 1)Γ(Ωିଵ)           1 − (1 + Ω𝜆௜)ିஐషభ    ; 𝑤ℎ𝑒𝑛 𝑦௜வ଴

  

Where 𝜋𝑖 can be modelled using a logit model as; 

𝐿𝑜𝑔𝑖𝑡(𝜋𝑖) =
𝜋௜

(1 − 𝜋௜)
=  𝛽଴ + 𝛽ଵ𝑋௜ + 𝛽ଶ𝑋ଶ௜ + ⋯ + 𝛽௣𝑋௣ 

𝑙𝑜𝑔𝑖𝑡 =  𝛾0 +  𝛾1𝑋1𝑖 +  𝛾2𝑋2𝑖 

 
With 𝜋௜denotes the chance of zero count in the model and 
𝜇௜denotes the expected value of left-truncated at zero negative 
binomial model.  

Where, 
𝜋௜as the zero inflation factor or the probability of structural 
zeros in the data. 

𝜆௜  Expected value which can be expressed as; 𝜆௜ =
exp (ℊᇱ𝑋௜) where ℊ, is a (𝑚 + 1) ∗ 1vector of unknown 
parameters to be estimated associated with 𝑋௜ (known 
covariates) and mnumber of covariates. 

𝑋௝௜   𝑎𝑛𝑑 𝛽௝௜ , as the binary covariates for the simulation 
conditions. 

Parameters 𝛾0, 𝛾1and 𝛾2are collectively referred to as 𝛾 while 
𝛽଴and𝛽ଵas; 𝛽n sample size. If 𝑝𝑖is 1, the outcome of 
interest 𝑌𝑖will be set to be zero, for 𝑝𝑖 is 
zero, 𝑌𝑖will be simulated from either a Poisson or NB 
distribution for ZIP and ZINB distribution respectively 

2.4. Simulation design 

In my simulation the performance of both one-part models, 
zero-inflated models and hurdles has been compared given the 
simulation conditions. The zero proportion/structural zeros 
varies as shown (0.1, 0.2, 0.3, 0.5, 0.7 
and 0.9), for instance 0.2 denotes 20%. Dataset has been 
generated from: Zero-Inflated (Poisson and NB) and Hurdles 
(Poisson and NB).For the over-dispersion in the non-zero part, 
we set the dispersion parameter(Ω) with the following values 
1,5,10,15,20,30 and 50 are used. The larger the value of Ω the 
less dispersed the variable. We used NB distribution to 
simulate the response variable with varying zero proportion. 
Then for each data set simulated above using the four models, 
we run all the models including Poisson and NB model and 
compare the model fit. 
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2.5 Generating Simulated datasets 

In order to attain a realistic prediction model, the simulation 
has focused on a scenario where structural zeros are present in 
the data. Let Y be our response variable, and two types of 
covariates, 𝑋ଵand 𝑋ଶhave been simulated in theprediction 
model. Assume the covariate𝑋ଵ, is a binary variable taking the 
values0 and 1 whosePr (𝑥1 =  0)  =  𝑃 𝑟(𝑋1 =  1)  =  0.5 
(This implies that  𝑋ଵ can be denoted as the indicator of the 
susceptible group and the probability of an individual coming 
from the this group is 50%) and let set 𝑋ଶto follow a standard 
normaldistribution, with mean 0 and standard deviation of 
1.The regression coefficient 𝛽଴, 𝛽ଵand 𝛽ଶfor the two 
covariates are set to be 1, 0.3and 0.5 respectively so that our 
model can allow for a medium and large value 
. The above covariates 𝛽ଵand 𝛽ଶare seen as realistic choices 
for comparisonbetween different scenarios of prediction for 
the two covariates. For us to increase the accuracy of the 
results, a simulation size of2000 and each a sample size 
n=500, was generated. The decision to use those number of 
simulation and sample size is based on previous research 
according to[6],[11]. 

III. RESULTS 

Table 1, reflects on the AIC results from the simulation 
scenario varying the level of zero-proportions and levels of 
over-dispersion in the non-zero part. The AIC values from the 
table, show that an increase in over-dispersion from 1 to50 
keeping the zero proportion constant leads to improvement of 
the models efficiency since the values of the AIC are getting 
smaller. The Poisson model produced the largest values of 

AIC in all simulation conditions proving to be the worst fit for 
the data followed by the NB model. 

Table 2, gives similar results to those of table one, on the log-
likelihood ratiosof the 6 models at varying conditions of zero 
inflation and over-dispersion. The log-likelihood values 
reduced gradually as the level of over-dispersion increased 
keeping zero proportion constant as it evident in all scenarios. 
Table 3, 4 and 5 gives results on the Vuong test at varying 
levels of zero-inflation and at constant level of over-
dispersion 10, 20 and 50. When the v-statistic >1.64,then 
model 1 is preferred and vice-versa, the p-value is 
significance at 0.05 level. When the V-statistic is less than 
1.96 but the p-vale not the significant, the two models are 
assumed to be equal in preference. The tables gave varying 
preference of models as the levels of zero inflation and over-
dispersion changed. TheZINB and NBH models were more 
superior to the other models at various level of dispersion as it 
can be seen in the Vuong tests results. 
Figures 1, 2, 3, 4 and 5 shows the box plots at 0.5 zero-
proportion at various levels of over-dispersion. It is evident 
that Poisson model and NB models performed poorly 
compared to other four models. There are Box-plots at all 
levels of zero proportions and dispersion.  

Figure 3.1 shows some of the frequency plots of our variable 
on varying levels at 0.5 zero inflation and different levels of 
over-dispersion. It is evident that there is gradual change from 
one scenario to another. There is evidence of large mass at 
zero inall the frequency plots. There are frequency plots at all 
levels of zero proportion and dispersion. 

 Table 1: AIC results varying levels of zero proportions and over-dispersion. 

Zero-
proportion 

Dispersion 
levels 

Poisson NB ZIP ZINB PH NBH 

W=0.1 

1 1854.868 1603.067 1592.335 1505.749 1592.391 1505.422 

5 1644.402 1530.117 1422.833 1424.654 1423.094 1424.96 

10 1592.497 1486.751 1388.915 1390.182 1389.365 1390.684 

15 1541.379 1438.436 1334.51 1336.511 1333.628 1335.628 

20 1509.406 1378.059 1319.739 1313.513 1315.45 1314.54 

30 1404.546 1398.892 1299.981 1301.709 1300.573 1302.385 

50 1403.821 1370.149 1261.271 1263.272 1261.85 1263.851 

w=0.2 

1 1735.897 1558.389 1479.043 1462.716 1478.91 1461.172 

5 1509.747 1491.955 1443.811 1436.62 1436.692 1429.774 

10 1340.724 1351.705 1291.557 1291.848 1291.15 1291.441 

15 1285.964 1292.037 1270.764 1272.047 1270.66 1271.973 

20 1252.267 1219.02 1208.592 1210.538 1209.462 1211.363 

30 1288.748 1188.748 1158.722 1160.695 1160.32 1162.287 

50 1270.455 1189.921 1184.669 1186.67 1184.409 1186.411 

W=0.3 

1 1514.777 1314.146 1274.214 1215.931 1275.369 1216.718 

5 1304.229 1297.528 1232.601 1217.819 1233.004 1217.346 

10 1252.787 1196.064 1187.406 1186.217 1188.342 1189.11 
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15 1181.757 1147.27 1133.663 1134.886 1139.418 1141.221 

20 1136.62 1156.82 1137.703 1136.278 1138.788 1137.295 

30 1160.647 1213.7 1124.216 1126.101 1126.774 1128.682 

50 1140.671 1037.154 1011.507 1013.508 1011.246 1013.246 

W=0.5 

1 1217.553 1111.0255 1099.203 1095.1257 1098.913 1094.8461 

5 1197.883 1059.837 1044.712 1045.915 1045.57 1046.795 

10 1145.647 1028.498 1001.112 1001.738 1005.421 1005.857 

15 948.4479 883.2292 873.8491 875.8429 874.7466 876.7379 

20 916.8813 872.0255 765.4092 762.6073 766.0089 763.2086 

30 909.3163 817.3055 756.1152 758.1052 761.113 758.1214 

50 927.5441 814.9079 718.5312 719.5813 717.1642 717.1843 

w=0.7 

1 974.9643 759.8688 785.1444 789.5019 805.4872 789.8835 

5 947.4684 790.6423 785.8947 785.2784 786.6508 786.1283 

10 862.3864 738.968 712.8576 714.858 716.2471 718.2474 

15 723.5035 634.3374 630.8808 632.6487 631.8775 633.6412 

20 782.5832 608.7846 604.0946 602.4004 605.0406 603.3566 

30 756.7285 617.7997 596.1011 598.0993 596.7915 598.7893 

50 735.189 602.9745 588.9496 587.9499 588.7727 587.773 

w=0.9 

1 550.0461 343.6635 337.7279 318.2852 330.731 318.3424 

5 476.972 343.131 340.5723 294.377 311.7136 312.7379 

10 435.8858 313.5291 278.3307 278.8959 312.9879 311.988 

15 367.7192 277.9089 275.8271 277.8272 275.3203 277.3205 

20 371.5652 227.7987 218.6254 220.4399 220.7392 218.548 

30 385.1982 240.3517 223.7344 224.3247 221.5789 222.7416 

50 289.0465 238.0542 200.1299 202.1303 200.2184 200.2185 

Table 2: Log-likelihood results varying levels of zero proportions (zero-%) and over-dispersion(D). 

Zero % D Poisson NB ZIP ZINB PH NBH 

W=0.1 

1 -916.639 -785.584 -734.832 -710.253 -734.845 -710.075 

5 -838.712 -774.114 -721.373 -720.411 -721.09 -720.162 

10 -833.249 -769.376 -688.457 -678.091 -688.683 -678.342 

15 -797.69 -685.218 -661.255 -661.256 -660.814 -660.814 

20 -791.703 -685.03 -658.869 -655.256 -700.725 -655.27 

30 -789.273 -675.446 -653.991 -653.854 -694.287 -654.193 

50 -683.911 -671.075 -647.636 -644.636 -647.925 -644.926 

w=0.2 

1 -884.537 -831.987 -773.799 -730.426 -773.84 -730.618 

5 -751.874 -816.978 -711.31 -712.346 -707.887 -707.887 

10 -667.362 -746.853 -639.778 -638.924 -639.575 -638.72 

15 -679.982 -732.019 -629.382 -629.237 -629.33 -628.986 

20 -683.134 -655.511 -628.296 -628.269 -628.731 -628.682 

30 -681.374 -651.073 -633.361 -633.348 -634.16 -634.143 

50 -702.228 -645.961 -636.334 -636.335 -636.205 -636.205 

W=0.3 1 -754.389 -653.073 -631.107 -600.965 -631.685 -601.359 
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5 -649.115 -634.764 -610.301 -601.91 -610.502 -601.673 

10 -623.394 -594.032 -588.703 -588.109 -588.171 -587.555 

15 -587.878 -569.635 -560.832 -560.443 -563.709 -563.611 

20 -565.31 -524.41 -517.851 -516.139 -518.394 -516.647 

30 -527.323 -502.85 -491.108 -491.051 -492.387 -492.341 

50 -482.336 -464.577 -449.754 -449.754 -449.623 -449.623 

w=0.5 

1 -735.776 -651.513 -543.602 -540.563 -543.457 -540.423 

5 -595.942 -525.919 -516.356 -515.958 -516.785 -516.397 

10 -569.824 -510.249 -494.556 -493.869 -496.711 -495.928 

15 -521.224 -487.615 -480.925 -480.921 -481.373 -481.369 

20 -505.407 -432.028 -426.746 -424.336 -427.044 -424.643 

30 -511.657 -454.677 -437.076 -437.076 -439.557 -439.557 

50 -520.77 -473.49 -402.756 -402.757 -402.571 -402.571 

w=0.7 

1 -484.482 -475.934 -386.572 -387.751 -396.744 -387.942 

5 -470.734 -391.321 -386.947 -385.639 -387.325 -386.064 

10 -428.193 -365.484 -350.429 -350.429 -352.124 -352.124 

15 -358.752 -313.169 -309.44 -309.324 -309.939 -309.821 

20 -488.292 -400.392 -396.047 -394.2 -396.52 -394.678 

30 -475.364 -404.9 -392.051 -392.05 -392.396 -392.395 

50 414.3759 -342.487 -321.975 -321.975 -321.886 -321.887 

w=0.9 

1 -372.023 -267.832 -262.864 -252.143 -259.366 -252.171 

5 -335.486 -267.566 -264.286 -240.189 -249.857 -249.369 

10 -314.943 -252.765 -250.165 -232.448 -232.494 -232.494 

15 -280.86 -234.955 -231.914 -231.914 -231.66 -231.66 

20 -292.783 -209.899 -203.313 -203.22 -203.37 -203.274 

30 -239.599 -166.176 -160.867 -125.163 -124.79 -124.371 

50 -266.504 -190.027 -179.065 -179.065 -179.109 -179.109 

Table 3 (a): Vuong tests results varying levels of zero proportions at 10 level of over-dispersion 

Zero proportions models V-statistic P-value preference 

W=0.3 

ZIP vs. PH 0.1545689 0.43858 ZIP=PH 

PH vs. ZINB 0.5894296 0.027779 ZINB 

ZIP VS NBH 0.444017 0.025966 NBH 

ZINB VS NBH 0.2094353 0.041705 NBH 

ZIP VS ZINB -0.7098647 0.023889 ZINB 

W=0.5 

ZIP VS PH 1.37026 0.85303 ZIP=PH 

ZINB VS PH 1.96052 0.058551 ZINB 

ZIP VS NBH 0.6488366 0.025822 NBH 

ZINB VS NBH 1.343741 0.089516 NBH 

ZIP VS ZINB 
-0.588163 

 
0.027821 

 
ZINB 

 

W=0.7 

ZIP VS PH 1.613822 0.53283 ZIP=PH 

ZINB VS PH 1.961359 0.053307 ZINB 

ZIP VS NBH 1.613936 0.053271 NBH 
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ZINB VS NBH 1.613713 0.053295 NBH 

ZIP VS ZINB -0.05606 0.014547 ZINB 

W=0.9 

ZIP VS PH 0.120384 0.44123 ZIP=PH 

ZINB VS PH 1.9814695 0.004569 ZINB 

ZIP VS NBH 0.1216431 0.045156 NBH 

ZINB VS NBH 0.1206431 0.045151 NBH 

    

ZIP VS ZINB -0.10324 0.043168 ZINB 

Table 3: Vuong test results varying levels of zero proportions at 20 level of over-dispersion. 

Zero proportions models V-statistic P-value preference 

W=0.3 

ZIP VS PH 0.52544 0.29964 ZIP=PH 

ZINB VS PH 1.99195 0.015435 ZINB 

ZIP VS NBH -0.565 0.028604 NBH 

ZINB VS NBH 0.473359 0.031798 ZINB 

ZIP VS ZINB -0.90392 0.18302 ZINB 

W=0.5 

ZIP VS PH 0.354179 0.3616 ZIP=PH 

ZINB VS PH 1.964318 0.013644 ZINB 

ZIP VS NBH -0.87501 0.019078 NBH 

ZINB VS NBH 0.368767 0.035615 NBH 

ZIP VS ZINB -1.05176 0.14645 ZINB 

W=0.7 

ZIP VS PH 0.774216 0.2194 ZIP=PH 

ZINB VS PH 2.168115 0.015462 ZINB 

ZIP VS NBH -0.67349 0.025032 NBH 

ZINB VS NBH 0.759934 0.022365 NBH 

ZIP VS ZINB -0.89104 0.18672 ZINB 

W=0.9 

ZIP VS PH 0.193314 0.42336 ZIP=PH 

ZINB VS PH 2.241494 0.004046 ZINB 

ZIP VS NBH -0.07771 0.046903 NBH 

ZINB VS NBH 0.181721 0.04279 NBH 

ZIP VS ZINB -0.19557 0.042247 ZINB 

Table 4: Vuong tests results varying levels of zero proportions at 50 level of over-dispersion. 

Zero proportions models V-statistic P-value preference 

W=0.3 

ZIP VS PH -0.2909 0.38555 PH=ZIP 

PH VS ZINB -0.2915 0.038534 ZINB 

ZIP VS NBH -0.2908 0.03856 NBH 

ZINB VS NBH -0.2913 0.038539 NBH 

ZIP VS ZINB 0.72611 0.023389 ZINB 

W=0.5 

ZIP VS PH -0.2723 0.39268 PH=ZIP 

PH VS ZINB -0.2731 0.039238 ZINB 

ZIP VS NBH -0.2722 0.39275 NBH 

ZINB VS NBH -0.2729 0.039245 NBH 
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ZIP VS ZINB 0.18474 0.042672 ZINB 

W=0.7 

ZIP VS PH -0.1252 0.45017 PH=ZIP 

PH VS ZINB -0.1254 0.04501 ZINB 

ZIP VS NBH -0.125 0.045026 NBH 

ZINB VS NBH -0.1252 0.046502 NBH 

ZIP VS ZINB 0.91277 0.018068 ZINB 

W=0.9 

ZIP VS PH -0.1376 0.44528 PH=ZIP 

PH VS ZINB -0.137 0.044551 ZINB 

ZIP VS NBH -0.1379 0.044518 NBH 

ZINB VS NBH -0.1373 0.04454 NBH 

ZIP VS ZINB 0.51006 0.0305 ZINB 

 

Figure 1: Box plot for the AIC from the six models at (W=0.5 and Ω=10) 

 

Figure 2: Box plot for the AIC from the six models at (W=0.5 and Ω=15) 
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Figure 3: Box plot for the AIC from the six models at (W=0.5 and Ω=20) 

 

Figure 4: Box plot for the AIC from the six models at (W=0.5 and Ω=30) 
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Figure 5: Box plot for the AIC from t
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: Box plot for the AIC from the six models at (W=0.5 and Ω=50) 
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IV. DISCUSSION 

When a researcher, is modelling over-dispersed and zero-
inflated count data, the ZI (ZINB and ZIP) and Hurdles 
models (PH and NBH) are preferred to the GLM models 
(Poisson and NB). The choice between ZI and Hurdles model 
should be based on the structure of the data. It is important to 
note that both ZINB and NBH models are more statistically fit 
when the data is over-dispersed and zero-inflated compared to 
ZIP and PH. This is evident in our result as they both had 
better performance in our Vuong results. From our results, the 
NBH model performed well compared to ZINB at all 
scenarios of level of dispersion hence the preferred choice. 
The ZIP and PH gave similar results in most scenarios. As per 
the results of the AIC, Log-likelihood ratio, Vuong test and 
the Box plots the NBH is the preferred choice for the highly 
dispersed count data with excess zeros. 

V. CONCLUSION 

Zero-inflated models have gained popularity in recent past 
due to their ability to handle over-dispersed and zero inflated 
count data. In most scenarios over dispersion is as a result of 
excess zeros in the count data. For a researcher, it 
is paramount to use the most statistically fit model in their 
analysis to achieve highly accurate results. This can be 
achieved by getting to explore and understand all the 
characteristics exhibited by their data. This will enable them 
to choose the most statistically fit model to adopt in analysis. 
As per the results from this study, the NBH model is the best 
model which can over-come both over-dispersion and zero-
inflation in count data. The research is time consuming 
but on the brighter side, it provides the researcher with 
guidance and knowledge required when dealing with over-

dispersion and excess zeros. Recommendation for further 
research would be, to explore a case where there is under-
dispersion and presence of excess zeros in the data. 
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