
International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 56

Performance Analysis of an Agent Based
Architecture using Map-reduce: Using the SABSA

Simulator
Benard Ong’era Osero1, Dr. Elisha Abade2, Dr. Stephen Mburu3

1Department of Computer Science, Chuka University, Kenya
2School of Computing and Informatics, University of Nairobi, Kenya

3University of Nairobi, Kenya

Abstract: - Increasing performance and decreasing cost of
microprocessors are making it feasible to move more processing
power to the data source. This allows us to investigate new
methods of storage delivery and management of data that were
not plausible in the past. Our architecture, inspired by agent-
based techniques and active disk technology, promotes an open
source agent storage management platform called SPADE that is
adopted to implement an agent based simulation model called
SABSA. Mobile agent technology and Map-Reduce functionality
has been promoted as an emerging technology that makes it
much easier to design, implement, and maintain distributed
system. In order to Realize the storage technology’s full potential
requires careful consideration across a wide range of metadata
file handling systems and networking issues. This research
contrasts four network storage architectures: Store and forward
processes(SAF), Object Storage Devices(OSD), Mobile agent
Domain Controller (DMC) enhanced with map-reduce function
and Mobile agent based Domain Controller with child DMC
enhanced with Map-reduce (ABMR): both handling sorted and
unsorted metadata. To estimate the potential performance
benefits of these architectures, we developed an analytic
simulation model and then performed experiments based on the
identified storage architectures. Our results suggest that all the
agent based storage architectures minimize latencies up to 40 %
and OSD architectures and consequently increasing performance
in the same margin.

Keywords: Store and Forward, Object Storage Devices, Agent,
and Map-Reduce.

I. BACKGROUND

irtualization is a powerful feature that plays a role in the
current success of storage arrays. By design,

virtualization manages where data is located and controls
access to data for users and applications. The value of storage
has moved from disk drives to the array controller as more
features and data protection capabilities have been added over
time from the array to the point of virtualization(Randy,
Fellows and Kerns, 2012).

Applications that can follow mobile users when they change
to a different environment, especially with the change of
device and location, are in high demand by pervasive
computing. Implementation of application mobility also

depends on context-awareness and self-adaptation techniques
(Yu et al., 2006).

This paper therefore tires to seeks to unearth the deficiencies
that impede performance of distibuted Network
(Latencies,Scalabity, and throughput) in centralized array
based metadata blocks that are either employ physical file
storage or virtualized file storage including the store and
forward (SAF) file systems and OSD systems, and finally to
demonstrate through experimentation how this defiencies can
be improved by the use of mobile agents and map reduce
functionalities.

II. AGENT BASED DISTRIBUTED NETWORKS

Mobile agents are considered a very interesting technology to
develop applications for mobile, pervasive, and distributed
computing. Thus, they present a combination of unique
features, such as their autonomy and capability to move to
remote computers to process data there and save remote
communications. Many mobile agent platforms have been
developed since the late nineties. While some of them have
been outdated, others continue releasing new versions that fix
bugs detected or offer new interesting features. Moreover,
other new platforms have appeared in the last few years. So, a
common problem when one wants to benefit from mobile
agent technology to develop distributed applications is the
decision about which platform to use (Rajguru, 2011).

 A Mobile Agent is an emerging technology that is gaining
momentum in the field of distributed computing. The use of
mobile agents can bring some interesting advantages when
compared with traditional client/server solutions, it can reduce
the traffic in the network, it can provide more scalability, it
allows the use of disconnected computing and it provides
more flexibility in the development and maintenance of the
applications. In the latest years, several commercial
implementations of mobile agent systems have been presented
in the market (Rajguru, 2011).

2.1 Mobile agent-based Map Reduce system

Map Reduce is a computing platform with certain kinds of
distributable problems using a cluster consisting of a large
number of computers, the original map-reduce consists of

V

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 57

three phases: Map-phase, worker phase and Reduce phase;
new models using agents have been suggested where the
Mapper agent is a container agent corresponding to the master

node in the Map Reduce pattern. It supports multicast
coordination and contains at least one worker agent inside it.

Figure 1: Mobile agent-based Map-Reduce system(Satoh, 2011).

(Satoh, 2014) in Figure 1above, describe a platform for
dynamically organizing multiple mobile agents for
computing.(Satoh, 2014) has developed a comprehensive
model for map-reduce platform employing mobile agents,
advancing on the model previously proposed by (Satoh,
2011), also previously demonstrated that agent size has a
direct implication on cost.

III. THE VIRTUALIZED SECURE AGENT BASED
ARCHITECTURE (SABSA)

To address the gaps that exist between mobile agents and
network attached disks that have not yet been fully exploited;
a more intelligent, self-managed and secure storage
environment has been designed and subsequently used to test
the effects of client requests on Scalability, Latencies and
throughput as shown in the following model.

Figure 2: A Conceptual Architecture for intelligent objects using agents and Map-reduce.

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 58

Figure 2 above shows an architectural model of the agent
based design using map-reduce it is a three tiered model with
the client as the front end the virtual serve as the middle tier
and storage SAN as the backend, it also includes the following
functionalities:

i. Storage Area network (SAN)-It is responsible for the
storage of the physical files it is implemented as a
storage container that has a global IP address to
identify the container; included is also the port
number and individual internal IP address to identify
each internal individual container.

ii. Virtual Server(VS)-It contains the logical
implementation of the switching of networks to
enable the clients access the metadata. It is also
responsible for the authentication of the clients by
providing a tokenization mechanism whose
capabilities are stored in the database and later
mapped onto the storage to allow clients download
files.

iii. Client-It is an important aspect of this distributed
architecture; It is responsible for requesting for the
files and then allowing the clients to view the files
through the console or preferred browser interface.

iv. Map-reduce Functions-Responsible for sorting and
reducing metadata functions which can then be
transported to client side for further processing.

v. Mobile Agent-It is responsible for migrating sorted
metadata values from the virtual resource server to
the client side.

vi. Local Client-Functions hand in hand with the domain
controller, which manages the local switching of
clients and keeps a registry of the requested and
served metadata requests for each client, it also
caches the requests for future access.

This research employed search mechanism to the existing
metadata resource storage pool enhanced by the map reduce
algorithm that sorted the metadata blocks according to the
client IP address domains before mapping them to a mobile
agent and eventually migrated to a Domain Controller (DMC).

The mobile agent fetched the sorted metadata (using map-
reduce function) pool and migrated them to the one of the
selected local servers where they were executed henceforth,
this would be terminated if this particular local server
terminated normally or it is terminated by the parent server in
case the local server used the resource not allocated to it or
issues instructions beyond its allocated mandate or a critical
unrecoverable event happened.

The clients within a particular domain were then given the
resource path indicating where a certain physical resource is
located in the storage area network physical disks as long as
the requests were valid.

The local server had the potential of enforcing their local
security mechanisms to be able to protect the clients within a
particular domain. Various experiments were carried out in

various phases in order to test performance (Latencies,
throughput) and Scalability.

3.1 Simulation Environment Design

The research in this paper was carried out in five phases
which included varying of workloads using the SABSA
(Secure Agent Based System Architecture) Engine that was
designed from scratch using the Docker containers designed
within the Python development environment employing the
SPADE framework defined within the python Environment to
implement mobile agents. The experiments were first
categorized into Six Cases as indicated in table 4 and the jobs
were then classified as small, medium and large for ALL
Phases as shown in the table 1 below. But the object based
metadata schemes including; OSD, Mobile agent Domain
Controller (DMC) enhanced with map-reduce function,
Mobile agent based Domain Controller with child DMC
controllers enhanced with Map-reduce (ABMR) all their
workloads were also further, except store and forward
processes, classified into either sorted or unsorted metadata
groups.
For easy handling of the files and client requests; the client
requests were classified as indicated in, table 1 and 2 below
and file load sizes were classified as indicated in table 3:

Table 1: Workload Requests Classifications for OSD.

WORKLOAD TYPE
(NO.OF REQUESTS)

BASE NO OF
REQUEST(S)

MAX NO. OF
REQUESTS

SMALL 1 100

MEDIUM 500 1000

LARGE 5000 10000

Table 2: Workload Requests Classifications for Object based and agent based
metadata based models.

WORKLOAD
TYPE(NO.OF
REQUESTS)

BASE NO OF
REQUEST(S)

MAX NO.
OF

REQUESTS

METADATA
SCHEME

SMALL 1 100 Sorted

SMALL 1 100 Unsorted

MEDIUM 500 1000 Sorted

MEDIUM 500 1000 Unsorted

LARGE 5000 10000 Sorted

LARGE 5000 10000 Unsorted

Table 3: Workload classifications for all Phases.

File Size Type
Base File

Size(Bytes)
Max File Size (Bytes)

Small 1 100

Medium 101 10000

Large 10001 >=10001

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 59

3.2 SAN File Selection Options

Two cases were employed in the workload selection as
follows:

I. Using the individual SAN options

II. Using the file sizes from the individual SANs

Both Case I and II were used in our experiments as follows:

For case I one SAN could be selected and be run with any
file(s) to identify the performance and scalability.

For case II above A probability tree shown in figure 3below
was used to generate some possible file selection options from
the three SANs (SAN 1, SAN2 and SAN 3) supported by the
SABSA simulator and a few sample workloads were then
randomly selected for testing as indicated in table 4 below:

 S

 M

 L

 M

 L

 M

 L S

 S M

 L

 L M S

 M

 S L

 M

 L

KEY:S-SMALL, M-MEDIUM, L-LARGE.

Figure 3: File distribution tree

 Figure 3 above indicates a decision tree that has been applied to select Jobs from each of the three SANs that were used to
impliment the SABSA Engine. Each SAN contains three sets of files classified as S(Small), M(Medium) and L(Large).

M

 S
M

S S
M

L

M

S

S

S

M

L

L

 S

M
L

S

L

L

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 60

Table 4: File size and selection options

SAN 1 SAN 2 SAN 3
RANDOMLY SELECTED

FILE OPTIONS
CASE DISCUSSION

SMALL SMALL SMALL CASE 1

SMALL SMALL MEDIUM x

SMALL SMALL LARGE x

SMALL MEDIUM SMALL CASE 2

SMALL MEDIUM MEDIUM x

SMALL MEDIUM LARGE x

SMALL LARGE SMALL CASE 3

SMALL LARGE MEDIUM x

SMALL LARGE LARGE x

MEDIUM SMALL SMALL x

MEDIUM SMALL MEDIUM x

MEDIUM MEDIUM MEDIUM CASE 4

MEDIUM MEDIUM LARGE x

MEDIUM LARGE SMALL x

MEDIUM LARGE MEDIUM CASE 5

MEDIUM LARGE LARGE x

LARGE SMALL SMALL x

LARGE SMALL MEDIUM x

LARGE SMALL LARGE x

LARGE MEDIUM SMALL x

LARGE MEDIUM MEDIUM x

LARGE MEDIUM LARGE x

LARGE LARGE SMALL x

LARGE LARGE MEDIUM x

LARGE LARGE LARGE CASE 6

Key:

 x –indicates option not selected.

 -Option was selected.

Once the requests had been made the time taken for each of
the above file request variations was then generated as a CSV
file sliced and output on the Microsoft Excel Sheet and
corresponding charts were generated by the simulator, which
were then be used to automatically calculate latencies,
throughput and scalability (i.e. size of file in bytes against

time in ms).The importance of the metrics that were used as
basic performance measures in the SABSA Simulator is
shown in (Pedro Jos´e Marr ´on, Stamatis Karnouskos, 2011)
and (Andrei et al., 2014)who demonstrated the importance of
such metrics as shown in figure 4 below:

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 61

Figure 4:A matrix showing the order of importance of Non-functional system properties (Pedro Jos´e Marr ´on, Stamatis Karnouskos, 2011).

In our research Scalability and timeliness were our biggest
focus.

3.3 Setting timings for the simulator

There were three parameters were used to measure
(Throughput, Latency and Scalability) the performance
SABSA ENGINE:

3.3.1 Throughput

Although the theoretical peak bandwidth of a network
connectionis fixed according to the technology used, the
actual amount of data that flows over a connection (called
throughput) varies over time and is affected by higher and
lower latencies. Excessive latency creates bottlenecks that
prevent data from filling the network pipe, thus decreasing
throughput and limiting the maximum effective bandwidth of
a connection. The impact of latency on network throughput
can be temporary (lasting a few seconds) or persistent
(constant) depending on the source of the delays. Throughput
was calculated as a function of latency as shown in the code
below

3.3.2 Latency

Latency refers to any of several kinds of delays typically
incurred in processing of network data. A so-called low
latency network connection is one that experiences small
delay times, while a high latency connection suffers from
long delays. In our SABSA Engine; Latency was calculated as
Propagation delay+Serialisation time as shown in the code-
section below. Propagation delay is the length of time taken
for the quantity of interest to reach its destination and in the
context of data storage, serialization (or serialization) is the
process of translating data structures or object state into a

format that can be stored (for example, in a file or memory
buffer) or transmitted (for example, across a network
connection link) and reconstructed later. Latency and
throughput were implemented in the following code section:

def get_time ():

 return time. perf_counter ()

def calculate throughput (latency, file_size_in_bytes):

 totalFileSizeMb = (file_size_in_bytes / (1024 * 2)) * 8 //
convert bytes to bits

 throughput = totalFileSizeMb / latency

 return throughput

def calculate latency (start_time, time_taken, prev_end_time):

 propagation_delay = (start_time - prev_end_time) * 1000

 serialization_delay = time_taken

 latency = propagation_delay + serialization_delay

 return latency

def get_time_values (start_time, file_size = 0, prev_end_time
= 0):

 end_time = get_time ()

 time_taken_sec = end_time - start_time

 time_taken_ms = time_taken_sec * 1000

 latency = calculate_latency (start_time, time_taken_ms,
prev_end_time or start_time)

 return end_time, (start_time, end_time, time_taken_ms,
latency, calculate_throughput (latency, file_size))

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 62

3.3.3 Scalability

Scalability is the property of a system to handle a growing
amount of work by adding resources to the system. For
instance a routing protocol is considered scalable with respect
to network size, if the size of the necessary routing table on
each node grows as O(log N), where N is the number of nodes
in the network. Scalability was calculated as shown in the
Python code-section below:

const fileSizeTimeComparisonChartLine = Ranged Chart ({

 elId: 'chart-root-bytes-tt',

 data,

 sliderOptionsFn,

 dataFn (data, [min, max]) {

 return {

 datasets: data.map (({storage_type, intervals,
metadata, overall}) => {

 return ({

 label: `${storage_type} ${metadata. path}
(${metadata. size} bytes) `,

 fill: false,

 // backgroundColor: myColors.next().value,

 borderColor: myColors.next().value,

 data: chunk50AndMapChunks (intervals,
(chunk, i) => {

 if (chunk. length < 1) return

 const [{starting_time: _starting_time},
{ending_time}] = [chunk[0], chunk[chunk.length - 1]];

 // const timeTaken = ending_time - overall.
starting_time;

 const timeTaken = ending_time -
_starting_time;

 const totalFileSize = metadata. size * chunk.
length

 return {

 y: totalFileSize * i,

 x: timeTaken

 }

 }). filter(({x}) => min <= x && x <= max)

 })

 })

 }

 },

 chartOptions: {

 type: 'line',

 options: {

 scales: {

 xAxes: [{

 type: 'linear',

 scaleLabel: {

 display: true,

 labelString: 'Time Taken (ms)'

 }

 }],

 yAxes: [{

 scaleLabel: {

 display: true,

 labelString: 'Bytes downloaded'

 }

 }],

 }

 }

 }

 });

3.4 CSV data generator

This is the function that is tasked with capturing the start time,
ending time, latency and throughput outputs as shown in the
code-section below. Python has inbuilt tools to assist in the
graph generation as demonstrated in the Python code-section
below.

import itertools

import operator

from. constants import METRICS

def gen_csv_text_multi_column (headers, rows):

 return '\n’. join (itertools. chain (

 [',’. join(headers)],

 (',’. join (map (str, itertools. chain. from_iterable(row)))
for row in zip(*rows))

))

def gen_csvs_multi (all_intervals_with_headers, columns =
[]):

 if not columns:

 return ''

 headers = []

 csv_rows = []

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 63

 is_one_column = len(columns) == 1

 column_getter = operator. itemgetter (*map (METRICS.
Index, columns))

 for (type_, _error, metadata, _overall), intervals in
all_intervals_with_headers:

 headers. extend(f'{metric} {type_} {metadata["name"]}
({metadata["size"]} bytes)' for metric in columns)

 csv_cols = []

 csv_rows. append(csv_cols)

 for interval in intervals:

 column = column_getter(interval)

 csv_cols. append((column,) if is_one_column else
column)

 return gen_csv_text_multi_column (headers, csv_rows)

3.5 Graph Interface generator

This function allows the graphical outputs to be generated
from the above identified variables, it makes interpretation of
the data easy to understand shown in the Python code section
below the request methods and authentication procedures are
in bold:

from aiohttp_jinja2 import template

from aiohttp import web

import functools

import json

from concurrent import futures

from client import (

 actions, status, storage_types, addr_to_url, client_addr,

 storage_client, server_client, Server, local_hostname,

 storage_addr

)

from .shared import middlewares

from .shared. file_downloading import file_request_futures

from .shared. downloaders import file_request_futures

from .shared. utilities. parsers. metadata import
flatten_file_metadata, format_times_taken_as_json

from .shared. utilities. Formatting import
format_interval_data, format_interval_data_files_combined

from .shared. utilities. encoding import str_to_b64

from .shared. utilities. constants import METRICS

from .shared. validation import validate_file_index,
get_number_of_repetitions

def validate_login(form):

 return all (key in form for key in ('username', 'password'))

@template ('index. jinja')

async def index(request):

 """

 This is the view handler for the "/" url.

 : param request: the request object see
http://aiohttp.readthedocs.io/en/stable/web_reference.html#req
uest

 : return: context for the template.

 """

 # Note: we return a dict not a response because of the
@template decorator

 login_error = None

 form = await request.post ()

 if validate_login(form):

 print ("===========================")

 print(form)

 print ("===========================")

 client_req = await server_client.post (actions.
AUTH_REQUEST, {

 "username": form['username'],

 "password": form['password']

 })

 auth = client_req.get_header('Authorization')

 if auth:

 location = request.query.get ('referrer', '/reports')

 res = web. HTTPFound(location=location)

 res.set_cookie ('Auth', auth, max_age=60)

 raise res

 else:

 login_error = client_req. json_data ()

 return dict (title='Sign In', form=form,
login_error=login_error)

HANDLED_TYPES = [

 storage_types. STORE_AND_FORWARD,

 storage_types.OSD,

 storage_types. UNSORTED_AGENTS,

 storage_types. SORTED_AGENTS,

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 64

 storage_types. UNSORTED_AGENTS_WITH_DMC,

 storage_types. SORTED_AGENTS_WITH_DMC,

 storage_types.
UNSORTED_AGENTS_WITH_DMC_MAP_RED,

 storage_types.
SORTED_AGENTS_WITH_DMC_MAP_RED

]

@template ('reports. jinja')

@middlewares. check_token

async def reports_handler (request, auth_token):

 was_processed, csv_file, interval_data, files = await
reports_data_handler (request, True, auth_token)

 context = {

 "title": 'Reports',

 "files": files,

 "storage_types": HANDLED_TYPES,

 "metrics": METRICS,

 "metrics_json": json. dumps(METRICS),

 "query": request. query

 }

 if was_processed:

 context["csv_file"] = str_to_b64(csv_file)

 context["all_intervals"] = interval_data

 context["json_intervals"] = json. dumps(interval_data)

 return context

async def reports_data_handler (request, is_local=False,
auth_token=None):

 metadata = (await server_client.get (actions.GET_FILES,
'')). get_header ('Metadata', decode=True)

 files = list(flatten_file_metadata(metadata))

 file_indices_arg = request. query. getall ('files', [])

 file_indices = [file_index for is_index_valid, file_index in
(validate_file_index (index_, files) for index_ in
file_indices_arg) if is_index_valid]

 selected_storage_types = [type_ for type_ in request. query.
getall ('storage_type', []) if type_ in HANDLED_TYPES]

 if file_indices and selected_storage_types:

 num_times =
get_number_of_repetitions(request.query.get('n'))

 with futures.
ThreadPoolExecutor(max_workers=len(selected_storage_type
s) *len(file_indices)) as future_pool:

 all_intervals_iter = await file_request_futures (request,
num_times, auth_token, future_pool, files, file_indices,
selected_storage_types)

 csv_file, interval_data =
format_interval_data_files_combined(all_intervals_iter)

 return web. json_response(interval_data) if not
is_local else (True, csv_file, interval_data, files)

 return web. json_response ({}) if not is_local else (False, '',
[], files)

IV. RESULTS

Six cases were randomly selected from a set of probable
workloads from three different SANs:

Subdivided into two column sections a) and b): column a)
represents 100 client requests and column b) represents 1000
client requests.

Table 4: CASE 1 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(9Bytes) +SAN2(6Bytes) +SAN3(6 Bytes):
SMALL-SMALL-SMALL 100/1000 FILE REQUESTS.

Parameters SAF OSD
Un-

sorted
MA-MR

Sorted
MA-MR

Sorted
Centrali
zed MA-
MR+D

MC

Unsorted
Centralized

MA-
MR+DMC

Sorted De-
Centralized

MA-
MR+DMC+Ch

ild DMCs

Unsorted De-
Centralized

MA-
MR+DMC+Ch

ild DMCs

Total File
Size(SAN1+SA

N2+SAN3)
(Bytes)

AV.TT(ms) 1000 10.17 5.00 0.23 0.15 0.16 0.16 2.47 2.43 2.1x101

Av.TT(ms) 100 1.02 0.49 0.15 0.14 0.15 0.15 2.38 2.37 2.1x101

Throughput MB/s
1000

1.07x10-

5
2.21X10-

5
0.02 0.02 0.02 0.02 0.02 0.02 2.1x101

Throughput MB/s
100

1.06x10-

5
2.21X10-

5
0.02 0.02 0.02 0.12 0.02 0.02 2.1x101

AV.Latency(ms)
1000

15.17 7.48 0.23 0.15 0.81 4.21 7.81 4.84 2.1x101

AV.Latency(ms)10
0

15.21 7.37 8.12 7.88 7.76 7.77 46.71 46.39 2.1x101

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 65

Table 5 CASE 2 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(15 Bytes) +SAN2(684) +SAN3(15 Bytes):
SMALL-MEDIUM-SMALL 100/1000 FILE REQUESTS.

Parameters SAF OSD
Un-

sorted
MA-MR

Sorted
MA-MR

Sorted
Centralized

MA-
MR+DMC

Unsorted
Centralize

d MA-
MR+DMC

Sorted De-
Centralized

MA-
MR+DMC+Ch

ild DMCs

Unsorted De-
Centralized MA-
MR+DMC+Child

DMCs

Total File
Size

(Bytes)

AV.TT(ms) 1000 10.02 4.92 0.17 0.17 0.17 0.18 2.15 2.18 7.14X 102

Av.TT(ms) 100 1.04 0.49 0.16 0.15 0.15 2.49 2.57 2.49 7.14X 102

Throughput
MB/s 1000

0.00 0.00 0.65 0.66 0.66 0.67 0.66 0.67 7.14X 102

Throughput
MB/s 100

0.00 0.00 0.64 0.63 0.63 0.64 0.60 0.62 7.14X 102

AV.Latency(ms)
1000

15.12 7.37 0.89 0.88 0.92 0.88 4.08 4.12 7.14X 102

AV.Latency(ms)1
00

15.67 7.24 8.52 8.13 8.29 8.42 50.96 50.79 7.14X 102

Table 6 CASE 3 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(15Bytes) +SAN2(15360 Bytes)
+SAN3(12 Bytes): SMALL-LARGE-SMALL 100/1000 FILE REQUESTS.

Parameters SAF OSD
Un-

sorted
MA-MR

Sorted
MA-MR

Sorted
Centralized

MA-
MR+DMC

Unsorted
Centralize

d MA-
MR+DMC

Sorted De-
Centralized

MA-
MR+DMC+Ch

ild DMCs

Unsorted De-
Centralized MA-
MR+DMC+Child

DMCs

Total File
Size

(Bytes)

AV.TT(ms) 1000 10.45 4.96 0.10 0.10 0.07 0.10 2.63 2.61 1.54X 104

Av.TT(ms) 100 1.02 0.51 0.11 0.11 0.12 0.13 2.62 2.57 1.54X 104

Throughput MB/s
1000

0.01 0.02 14.28 14.13 14.31 14.13 14.32 14.42 1.54X 104

Throughput MB/s
100

0.01 0.02 13.73 13.73 13.81 13.92 13.70 14.24 1.54X 104

AV.Latency(ms)
1000

15.64 7.43 1.27 1.16 1.33 1.16 6.08 6.12 1.54X 104

AV.Latency(ms)100 15.22 7.48 11.12 11.20 10.88 10.74 54.83 54.93 1.54X 104

Table 7 CASE 4 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(331 Bytes) +SAN2(993) +SAN3(12288
Bytes): MEDIUM-MEDIUM-LARGE 100/1000 FILE REQUESTS.

Parameters SAF OSD
Un-

sorted
MA-MR

Sorted
MA-MR

Sorted
Centralized

MA-
MR+DMC

Unsorted
Centralize

d MA-
MR+DMC

Sorted De-
Centralized

MA-
MR+DMC+Ch

ild DMCs

Unsorted De-
Centralized MA-
MR+DMC+Child

DMCs

Total File
Size

(Bytes)

AV.TT(ms) 1000 10.37 5.16 0.02 0.02 0.03 0.02 2.74 2.76 1.36X 104

Av.TT(ms) 100 1.07 0.51 0.06 0.05 0.07 0.10 2.84 2.53 1.36X 104

Throughput MB/s
1000

0.01 0.02 14.50 14.51 14.64 14.34 14.65 14.41 1.36X 104

Throughput MB/s
100

0.01 0.01 12.26 12.21 12.41 12.28 12.13 12.20 1.36X 104

AV.Latency(ms)
1000

15.46 7.67 1.44 1.48 1.45 4.73 6.25 6.11 1.36X 104

AV.Latency(ms)100 15.98 7.58 13.11 13.12 12.62 12.04 60.88 60.08 1.36X 104

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 66

Table 8 CASE 5 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(234 Bytes) +SAN2(33312) +SAN3(662
Bytes): MEDIUM-LARGE-MEDIUM 100/1000 FILE REQUESTS.

Parameters SAF OSD
Un-

sorted
MA-MR

Sorted
MA-MR

Sorted
Centralized

MA-
MR+DMC

Unsorted
Centralize

d MA-
MR+DMC

Sorted De-
Centralized

MA-
MR+DMC+Ch

ild DMCs

Unsorted De-
Centralized MA-
MR+DMC+Child

DMCs

Total File
Size

(Bytes)

AV.TT(ms) 1000 10.57 5.20 0.01 0.01 0.01 0.01 2.86 2.86 3.42X 104

Av.TT(ms) 100 1.06 0.50 0.04 0.01 0.01 0.02 2.57 2.60 3.42X 104

Throughput MB/s
1000

0.01 0.01 13.41 13.63 13.37 13.53 13.39 13.69 3.42X 104

Throughput MB/s
100

0.01 0.01 12.77 12.93 12.96 12.95 12.48 12.84 3.42X 104

AV.Latency(ms)
1000

15.72 7.72 1.61 1.62 1.67 1.62 6.92 6.99 3.42X 104

AV.Latency(ms)100 15.68 7.39 14.81 15.14 15.48 15.04 64.26 64.63 3.42X 104

Table 9 CASE 6 CSV Summary: AV. Throughput, Latency and Performance (Single file per SAN Request)-SAN1(20480 Bytes) +SAN2(25600)
+SAN3(18432 Bytes): MEDIUM-MEDIUM-LARGE 100/1000 FILE REQUESTS.

Parameters SAF OSD
Un-

sorted
MA-MR

Sorted
MA-MR

Sorted
Centralized

MA-
MR+DMC

Unsorted
Centralize

d MA-
MR+DMC

Sorted De-
Centralized

MA-
MR+DMC+Ch

ild DMCs

Unsorted De-
Centralized MA-
MR+DMC+Child

DMCs

Total File
Size

(Bytes)

AV.TT(ms) 1000 10.53 5.19 0.01 0.01 0.01 0.01 2.91 2.93 6.45X 104

Av.TT(ms) 100 1.07 0.52 0.01 0.01 0.01 0.01 2.92 2.93 6.45X 104

Throughput MB/s
1000

0.03 0.07 60.85 60.98 61.19 6.72 61.60 61.34 6.45X 104

Throughput MB/s
100

0.03 0.07 58.32 58.20 56.91 57.38 57.29 57.47 6.45X 104

AV.Latency(ms)
1000

15.92 7.73 1.85 1.88 1.83 5.10 7.14 7.32 6.45X 104

AV.Latency(ms)100 16.01 7.72 17.67 26.85 16.88 17.56 68.37 67.69 6.45X 104

Table 4 to 9 above indicates a summary of the CSV outputs
that were analyzed under workload and then Average time in
Millisecond (ms), Throughput and latencies were captured
and the compared under this predefined conditions.

It important to note that the files were run as batch files
including multiple client requests for the required file in this
experiment we have considered small and medium range
workload requests.

4.1 Analysis of Results

A summary of the CSV averaged summary outputs was
captured for each client for Time Taken, Latencies and
throughputs as shown in table 10,11 and 12 below. CASE 1to
CASE 6 represents our sample test cases for the 100 and 1000

client requests. The Difference abbreviated as “DIFF”
represents the difference between the value obtained in the
1000 client requests for each case in (The Time Taken,
Latencies and throughputs)-Y. And the value obtained in the
100 client requests for each case in (The Time Taken,
Latencies and throughputs)-X. for demonstration purposes this
values have been assigned X and Y. The percentage change is
the Difference(DIFF)/original value (X) * 100.Which can also
be illustrated mathematically as: ((Y-X)/X) *100. This
formula applies for all the cases for time taken, latencies and
throughput.

4.1.1 Summary Time Taken Analysis

A summarized table for the output of the time variance for
downloading 1000 client requests from 100 client requests.

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 67

Table 10: COMPARISON OF ALL THE CASES FOR THE AVERAGE TIME TAKEN.

Figure 5: BAR CHARTS SHOWING AVERAGE INCREASE IN TIME FOR 100 AND 1000 CLIENT REQUESTS

-5.00
0.00
5.00

10.00
15.00
20.00
25.00

M
A

M
R

M
A

M
R

M
A-

M
R+

D
M

C

M
A-

M
R+

D
M

C

M
A-

M
R+

D
M

C+
Ch

ild
 D

M
Cs

M
A-

M
R+

D
M

C+
Ch

ild
 D

M
Cs

SAF OSD Un-sorted Sorted Sorted
Centralized

Unsorted
Centralized

Sorted De-
Centralized

UnSorted De-
Centralized

Overall av% increase in time for 100/1000 Client requests

overall av% increase in time

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 68

Figure 5 above shows a summary of the overall individual
percentage averages,for Case 1 to Case 6, of how the time is
affected when the client requests increased from 100 the
initial number of requests to 1000 requests for each identified
method in the SABSA engine. SAF has the largest time

difference at at 20.9% more time followed by OSD at 4.64 %
,but the agent based and map reduce based objects have
insgnificant change in time in servicing this request.

4.3.2 Summary Latencies Analysis

Table 11: COMPARISON OF ALL THE CASES FOR THE LATENCIES.

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue V

www.rsisinternational.org

Figure 6 PIE CHARTS SHOWING AVERAGE CHANGE IN TIME FOR 100 AND 1000 CLIENT REQUESTS.

In Figure 6 shows the Negative % shows overall decrease in
Latencies to execute while the Positive % indicate increase in
Latencies. In the above chart MA-MR and Chid DMcs,Sorted
MA-MR,Centralized Sorted MA-MR,Unsorted MA
uncentalized MA-MR ALL contain -17% , implying reduction

Figure 7 BAR CHARTS SHOWING AVERAGE INCREASE/DECREASE IN OVERALL LATENCIES FOR 100/1000 CLIENT REQUESTS.

Sorted Centralized MA-
MR+DMC

-44.67
-17%

Unsorted Centralized
MA-MR+DMC

-36.87
-14%

Sorted De-Centralized
MA-MR+DMC+Child

DMCs
-45.27
-17%

SAF
OSD
Un
Sorted MA MR

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

Overall av% increase/Decrease in Latencies

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI,

PIE CHARTS SHOWING AVERAGE CHANGE IN TIME FOR 100 AND 1000 CLIENT REQUESTS.

shows the Negative % shows overall decrease in
Latencies to execute while the Positive % indicate increase in

MR and Chid DMcs,Sorted
MR,Unsorted MA-MR and

17% , implying reduction

in latencies by 17% for each of them when the client requests
have increased to 1000 from 100. For OSD at 0% , n
in latencies and SAF at -1% decrease in Latencies by 1%
margin.

BAR CHARTS SHOWING AVERAGE INCREASE/DECREASE IN OVERALL LATENCIES FOR 100/1000 CLIENT REQUESTS.

SAF
-1.64
-1%

OSD
1.37
0%

Un-sorted MA MR
-44.78
-17%

Sorted MA MR
-45.09
-17%

Centralized
MR+DMC+Child

UnSorted De-
Centralized MA-

MR+DMC+Child DMCs
-45.21
-17%

Overall av% Change in Latencies for 100/1000 Client requests

SAF
OSD
Un-sorted MA MR
Sorted MA MR

Overall av% increase/Decrease in Latencies

, June 2019|ISSN 2454-6194

 Page 69

PIE CHARTS SHOWING AVERAGE CHANGE IN TIME FOR 100 AND 1000 CLIENT REQUESTS.

in latencies by 17% for each of them when the client requests
have increased to 1000 from 100. For OSD at 0% , no change

1% decrease in Latencies by 1%

BAR CHARTS SHOWING AVERAGE INCREASE/DECREASE IN OVERALL LATENCIES FOR 100/1000 CLIENT REQUESTS.

Overall av% Change in Latencies for 100/1000 Client requests

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 70

Figure 7 above show a bar chart for the latencies. The outputs
show both positive and negative outputs. The negative ouputs
indicate better utilization of the system by minimizing
latencies which are a penalty to system performance. The
positive values signify increase in latencies which impedes

system perfomance. The margins above are also represented
as percentage reduction of the overall considered methods in
Figure 6 above.

4.2 Summary Throughput Analysis

Table 12: COMPARISON OF ALL THE CASES FOR THE THROUHPUT.

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 71

Figure 8 A LINE GRAPH SHOWING AVERAGE OVERALL THROUPUT 100-1000 CLIENT REQUESTS.

Figure 8 above shows that store and forward (SAF) has the
lowest throughput at 0% and sorting of metadata sorting of
metadata and introducing an agent also has a positive impact
in increasing throughput of a system performing at maximum
throughput of 100% for OSD and all agent based methods
except the sorted decentralized whose throughput drastically
drops and then resume back to maximum throughput after
some time.

V. CONCLUSION

As observed from the previous analysis all cases indicate that
sorting of metadata and caching it will make this system faster
than their counter-parts with centralized metadata.

Mobile agents furtherplay a key role in contributing to the
performance improvement of the distributed system as
witnessed in our experimental analysis. Mobile agents can
autonomously move from one place to another with metadata
and security being guaranteed.

This paper has also demonstrated various scenarios of viewing
the data generated by the SABSA engine using the bar graphs
and pie charts and line graphs; various cases generated by the
decision tree were generated and captured into the decision
matrix where a few random cases were chosen, indicated as
Case 1-Case 6 to demonstrate the performance of the SABSA
Engine under various load capacities.

Finally, it is therefore evident that mobile agents can play a
major role in improvement of the overall performance of a
clustered distributed network, especially if the clusters are
sorted into cluster sets using Map reduce.

REFERENCES

[1]. Al-shishtawy, A. (2012) Self-Management for Large-Scale
Distributed Systems.

[2]. Alberola, J. M. et al. (2010) ‘A performance evaluation of three
Multiagent Platforms’, Artificial Intelligence Review, 34(2), pp.
145–176. doi: 10.1007/s10462-010-9167-9.

[3]. Amazon (2019) 10-Minute Tutorials. Available at:
https://aws.amazon.com/getting-started/tutorials/.

[4]. Andrei, P. S. et al. (2014) ‘Evolution towards Distributed Storage
in a Nutshell’, pp. 1267–1274.

[5]. Anon (2016) Concordia White paper. Available at:
https://www.cis.upenn.edu/bcpierce/629/papers/Concordia-
Whitepaper/ (Accessed: 17 March 2016).

[6]. Arias (2018) Introduction to Redis:Installation,CLI commands
and Data-Types.

[7]. Avilés-González, A., Piernas, J. and González-Férez, P. (2014)
‘Scalable metadata management through OSD+ devices’,
International Journal of Parallel Programming, 42(1), pp. 4–29.
doi: 10.1007/s10766-012-0207-8.

[8]. Caidi, M. et al. (2008) ‘The Google File System Sanjay’, Journal
de Chirurgie, 145(3), pp. 298–299. doi: 10.1016/S0021-
7697(08)73776-1.

[9]. Ceph (2016) Welcome to Ceph. Available at:
http://docs.ceph.com/docs/master/# (Accessed: 30 April 2019).

[10]. Chaturvedi, V. (no date) Deep Dive into Docker. Available at:
https://www.edureka.co/blog/what-is-docker-container (Accessed:
26 March 2019).

[11]. CORP (2016) Content addressed storage systems, EMC. Available
at:
http:www.emc.com/products/systems/centera.jsp?openfolder=platf
orm (Accessed: 26 June 2016).

[12]. Docker (2019) Docker Docs. Available at:
https://docs.docker.com/v17.09/compose/install/ (Accessed: 27
March 2019).

[13]. EMC2 (2008) Where information lives:current benefit and future
potential technology concepts and business considerations.

[14]. Escriv, M., C, J. P. and Bada, G. A. (2014) ‘A Jabber-based Multi-
Agent System Platform ∗’, (January 2006). doi:

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

% Overall Throughput Analysis

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 72

10.1145/1160633.1160866.
[15]. Escriva, R. and Wong, B. (no date)

‘Http://Hyperdex.Org/Papers/Hyperdex.Pdf’, Hyperdex.Org.
Available at:
http://hyperdex.org/papers/hyperdex.pdf%5Cnpapers2://publicatio
n/uuid/7E524955-B159-492D-B9E4-F52C5E1BAE79.

[16]. Factor, M. et al. (2006) ‘Object Storage: The Future Building
Block for Storage Systems A Position Paper’, pp. 119–123. doi:
10.1109/lgdi.2005.1612479.

[17]. Feng, D. et al. (2004) ‘Enlarge Bandwidth of Multimedia Server
with Network Attached Storage System 3 The Redirection of Data
Transfer’, pp. 489–492.

[18]. Finin, T. (1992) An Overview of KQML : A Knowledge Query and
Manipulation Language.

[19]. FIPA (2000) ‘Foundation for Intelligent Physical Agents’, Inform.
[20]. FIPA (2002) ‘FIPA Abstract Architecture Specification

(SC00001L)’, p. 75.
[21]. FullStack (no date) Full Stack Python,Redis. Available at:

https://www.fullstackpython.com/redis.html (Accessed: 28 March
2019).

[22]. Gibson, G. A. et al. (2001) ‘A cost-effective, high-bandwidth
storage architecture’, High Performance Mass Storage and
Parallel I/O: Technologies and Applications, (May 2014), pp.
431–444. doi: 10.1109/9780470544839.ch28.

[23]. Griffit (2018) how-build-hello-redis-with-python,
Opensource.com.

[24]. Hendricks, J. et al. (2006) ‘Improving small file performance in
object-based storage’, (May).

[25]. Hitachi (2016) Storage virtualisation:How to capitalize on its
economic benefits.

[26]. Iii, W. B. L. and Ross, R. B. (2000) ‘4th Annual Linux Showcase
& Conference , Atlanta PVFS : A Parallel File System for Linux
Clusters £’.

[27]. James (2006) ‘Improving small file performance in object based
storage.’, CMU-PDL-06-104.

[28]. James, J. (no date) ‘“Cassandra”’, Notes and Queries, s2-X(241),
p. 111. doi: 10.1093/nq/s2-X.241.111-a.

[29]. Karakoyunlu, C. et al. (2013) ‘Toward a Unified Object Storage
Foundation for Scalable Storage Systems’.

[30]. Kasireddy, P. (2016) A Beginner-Friendly Introduction to
Containers, VMs and Docker. Available at:
https://medium.freecodecamp.org/a-beginner-friendly-
introduction-to-containers-vms-and-docker-
79a9e3e119b?gi=a26c3acc92c1 (Accessed: 26 March 2018).

[31]. Lange, D. B. (1998) ‘Mobile objects and mobile agents: The
future of distributed computing?’, Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 1445, pp. 1–12.
doi: 10.1007/BFb0054084.

[32]. Lehner, W. (2013) Web-Scale Data Management for the Cloud.
[33]. Li, G. et al. (2006) ‘Researches on Performance Optimization of

Distributed Integrated System Based on Mobile Agent *’, pp.
4038–4041.

[34]. Liancheng, X. U. (2014) ‘Research on Distributed Data Stream
Mining in Internet of Things’, (Lemcs).

[35]. Luck, M., McBurney, P. and Preist, C. (2003) ‘Agent Technology:
Enabling Next Generation Computing (A Roadmap for Agent
Based Computing)’. Available at:
http://eprints.soton.ac.uk/257309/.

[36]. Maitrey, S. (2015) ‘Handling Big Data Efficiently by using Map
Reduce Technique’. doi: 10.1109/CICT.2015.140.

[37]. Mark et al. (2000) Storage Virtualisation, What is it all about?
[38]. McCanne, S., Vetterli, M. and Jacobson, V. (1997) ‘Low-

complexity video coding for receiver-driven layered multicast’,
IEEE Journal on Selected Areas in Communications, 15(6), pp.
983–1001. doi: 10.1109/49.611154.

[39]. Mesnier, M. et al. (2003) ‘01222722’, (August), pp. 84–90.
[40]. Microsystems, S. (2007) ‘LUSTRE TM FILE SYSTEM’,

(December).
[41]. Miller, E. L., Freeman, W. E. and Reed, B. C. (2002) ‘Proceedings

of the FAST 2002 Conference on File and Storage Technologies

Strong Security for Network-Attached Storage’, Access. Available
at: http://www.usenix.org.

[42]. Mishra, A. (2012) ‘Application of Mobile Agent in Distributed
Network Management’. doi: 10.1109/CSNT.2012.198.

[43]. Mohammed, E. A., Far, B. H. and Naugler, C. (2014)
‘Applications of the MapReduce programming framework to
clinical big data analysis : current landscape and future trends’,
7(1), pp. 1–23. doi: 10.1186/1756-0381-7-22.

[44]. ‘MSST-Cabrera’ (1991).
[45]. Mwathi, D. G. (2018) ‘A model based approach for implimenting

Authentication and access control in public WLANS:A CASE OF
UNIVERSITIES IN KENYA’, Director CSI, 15(2), pp. 2017–
2019. doi: 10.22201/fq.18708404e.2004.3.66178.

[46]. Oracle, S. (2011) ‘Lustre Software Release 2. x Operation
Manual’.

[47]. Osero, B. O. (2010) Storage virtualisation and management.
University of Nairobi.

[48]. Osero, B. O. (2013) ‘NETWORK STORAGE
VIRTUALISATION AND MANAGEMENT BENARD ONG ’
ERA OSERO LECTURER Network Attached Devices , Storage
virtualization , Security .’, International Journal of Education and
Research, 1(12), pp. 1–10.

[49]. Palanca, J. (2018) ‘SPADE Documentation’.
[50]. Panasas, I. (2016) ‘Panasas’, Wikipedia. Available at:

https://en.wikipedia.org/wiki/Panasas.
[51]. Patel, A. B., Birla, M. and Nair, U. (2012) ‘Addressing Big Data

Problem Using Hadoop and Map Reduce’, pp. 6–8.
[52]. Pedro Jos´e Marr ´on, Stamatis Karnouskos, D. M. A. O. and the

C. consortium (2011) No Title.
[53]. Permabit (2015) ‘Permabit’, Wikipedia. Available at:

https://en.wikipedia.org/wiki/Permabit.
[54]. Rajguru, P. (2011) ‘Available Online at www.jgrcs.info

ANALYSIS OF MOBILE AGENT’, Journal of Global Research
in Computer Science, 2(11), pp. 6–10. Available at:
www.jgrcs.info.

[55]. Randy, Fellows, A. R. and Kerns, R. (2012) ‘SAN Virtualization
Evaluation Guide’, p. 2.

[56]. Riedel, E. and Nagle, D. (1999) ‘Active Disks - Remote Execution
for Network-Attached Storage Thesis Committee ’:, Science,
(December). Available at:
https://pdfs.semanticscholar.org/74ac/0dd0a14ea27f016b170a1254
c14fe8c73b37.pdf.

[57]. Rodríguez-enríquez, L. R. C. et al. (2015) ‘A general perspective
of Big Data : applications , tools ’, The Journal of
Supercomputing. Springer US. doi: 10.1007/s11227-015-1501-1.

[58]. Rugg, G. and Petre, M. (2004) ‘The Unwritten Rules of PhD
research’, Open University Press, p. 241.

[59]. Sargent, R. G. (2011) ‘Advanced Tutorials: Verification and
Validation of Simulation Models’, Proceedings of the 2011 Winter
Simulation Conference, pp. 183–198.

[60]. Satoh, I. (2011) ‘Mobile Agent Middleware for Dependable
Distributed Systems’.

[61]. Satoh, I. (2014) ‘MapReduce-based Data Processing on IoT’,
(iThings). doi: 10.1109/iThings.2014.32.

[62]. Silva, L. M. (1999) ‘Optimizing the Migration of Mobile Agents’.
[63]. Singavarapu, S. and Hariri, S. (2001) ‘S ELF-MANAGING

STORAGE SYSTEM – D ESIGN AND EVALUATION 2 . Self
Managing Storage System (SMSS) Architecture – Overview’.

[64]. Sowmya, N., Aparna, M. and Tijare, P. (2015) ‘An Adaptive Load
Balancing Strategy in Cloud Computing based on Map Reduce’,
(September), pp. 4–5.

[65]. Tate, J. et al. (2017) ‘Introduction to Storage Area’.
[66]. Tekniska, K., Ögskolan, H. and Simsarian, K. T. (2000)

‘VETENSKAP OCH KONST Dissertation, March 2000
Computational Vision and Active Perception Laboratory
(CVAP)’, (March).

[67]. Tutorialpoint (no date) REDIS - QUICK GUIDE REDIS -
ENVIRONMENT REDIS - DATA TYPES.

[68]. Wang, J. et al. (2010) ‘A Novel Weighted-Graph-Based Grouping
Algorithm for Metadata Prefetching A Novel Weighted-Graph-
Based Grouping Algorithm for Metadata Prefetching’.

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VI, June 2019|ISSN 2454-6194

www.rsisinternational.org Page 73

[69]. Weber, R. O. (2004) ‘Information technology—SCSI object-based
storage device commands (OSD)’, Technical Council Proposal
Document, 10, pp. 2003–2031.

[70]. Weil, S. A., Brandt, S. A. and Miller, E. L. (2006) ‘CRUSH :
Controlled , Scalable , Decentralized Placement of Replicated
Data’, (November).

[71]. Welch, B. et al. (2008) ‘White Paper Scalable Performance of the
Panasas Parallel File System’, Fast 2008, (May), pp. 1–22.

[72]. Wu, S. A. I. (2014) ‘Distributed Data Management Using
MapReduce’, 46(3).

[73]. Xu, H. and Shatz, S. M. (2001) ‘A Design Model for Intelligent
Mobile Agent Software Systems’, pp. 1–23. Available at:
file:///C:/Users/ltturche/Downloads/32bfe51224d170bc42.pdf.

[74]. Yazdi, H. T., Fard, A. M. and Akbarzadeh-T, M. R. (2008)
‘Cooperative criminal face recognition in distributed web
environment’, AICCSA 08 - 6th IEEE/ACS International
Conference on Computer Systems and Applications, (March), pp.
524–529. doi: 10.1109/AICCSA.2008.4493582.

[75]. Yu, P. et al. (2006) ‘Mobile Agent Enabled Application Mobility
for’, pp. 648–657.

