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Abstract:-Rainfall is the meteorological phenomenon that is 
useful for human activities. Majority of population depend on 
rainfall water for agriculture and domestic use. Since Meru and 
Embu regions are agricultural zones relying heavily on rainfed 
agriculture, it is important for farmers to know rainfall patterns 
prevailing in their regions. The objective of this study was to 
model rainfall patterns in Meru and Embu regions. Stationarity 
and unit root for data were tested, time series model was 
developed and fitted to the historical data using Box-Jenkins (BJ) 
Methodology and rainfall in the regions were forecasted for five 
years. Monthly and yearly rainfall data obtained from Kenya 
meteorological department for the period 1976-2015 was used in 
the study. This information can be used in planning and 
management of water for domestic and agricultural use in the 
regions. Rainfall data was found to be seasonally and non-
stationary and hence differencing and seasonal differencing was 
applied to achieve stationarity. Rainfall in both regions is 
bimodal, it has short rains in the months of October to December 
(OND) and long rains in the months of March to May (MAM). 
The model that best fitted rainfall data was ARIMA 
(1,1,1)(0,1,1)12. This model was used to forecast monthly rainfall 
patterns for five years and found that future rainfall patterns 
will not change with time. It was recommended that, future 
researchers should consider zoning regions and apply developed 
ARIMA model and negative binomial to homogenous zones. 
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I. INTRODUCTION 

ainfall the natural source of water, has greater impact on 
agricultural activities and domestic consumptions. Water 

can be used; to aid transportations, as a source of power, for 
domestic consumptions and in agriculture for irrigation. Poor 
rainfall in Kenya as indicated by recent severe drought that 
has caused many deaths for both humans and animals due to 
reduced food security and reduction in water resources for 
domestic use, drinking and sanitation as reported by Kenya 
Meteorological Department (2017). Food security situation is 
wanting in arid and semi-arid counties in the country. There 
are indications that the situation is likely to worsen further by 
January 2017 as reported by (National Drought Management 
Authority (NDMA) and Kenya Meteorological Department 
(KMD)) (2017). In most areas sources of water has dried up 
forcing people to walk for long distances looking for water, in 
both arid and semi-arid areas. This is due to the results of 
pollution, deforestation, fast growing populations and 
changing climate, UNICEF (2017). 

 In agricultural sector, water problem is the most critical 
constraint to food productions. In Kenya for example, where 
farmers practice on small scale, rainfall variability has caused 
hunger in many regions. Scarcity of water is a severe 
environmental constraint to plant productivity. Drought 
induced loss in crop yield, probably exceeds losses from all 
other causes, since both the severity and duration of the stress 
are critical, Farooq (2008). Analysis of rainfall data for long 
periods provides information about rainfall variability and to 
better manage agricultural activities, Nyatuame (2014). In 
Kenya, a high percentage of population depend on agriculture 
directly or indirectly. 

Correct prediction or forecasting of future rainfall will 
contribute highly to the management of water resources and 
play a major role in boosting agricultural sector since farmers 
will be able to plant plenty of food crops during rainy seasons, 
Oyamakin (2010). 

Data quality control was undertaken on the historical rainfall 
data for the two regions. The study focuses on variability of 
rainfall as a major factor affecting agriculture and people who 
live in both regions. The data was obtained from Kenya 
Meteorological Department. Kenya Meteorological 
Department is a government research parastatal tasked with 
data management, climate change, research and development 
and economic policy.   

Both Meru and Embu regions are surrounded by dry areas, 
have high altitudes and are at the foot of Mt. Kenya. Also both 
regions depend much on rainfall water for agriculture in order 
to feed the growing population.  

For time series data, the larger the data set the better for: 
Trend observation, Seasonal comparison and Random effect 
identification. It takes into consideration the monthly and 
yearly amount of rainfall in both regions. Time series model 
was built and fit to the data. Analysis on the monthly rainfall 
datasets was carried out to determine the evidence of rainfall 
change in the two regions. 

Muthama and Manene (2008) used stepwise regression 
technique to analyze irregularly distributed rainfall events in 
time. Their study sought to improve existing rainfall 
monitoring and prediction in Nairobi. According to them, it 
can be deducted that the 4th degree polynomial function can 
be used to predict the peak and the general pattern of seasonal 
rainfall over Nairobi, with acceptable error values. The 
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information can be used in the planning and management of 
water resources over Nairobi. The same information can be 
extended to other areas. 

Matiur, Shohel, Sazzad and Naruzzuman (2015) carried out 
analysis of rainfall data, they further developed ARIMA 
model that was applied in forecasting monthly precipitation 
for the next three years to take proper decision on water 
development  management Authority.They applied AIC, 
MSE, MAPE and MAD to test accuracy and applicability of 
ARIMA model at different stages. 

Javari and Majida (2016) examined trend and homogeneity 
through the analysis of rainfall variability patterns in Iran. The 
study presents a review on application of homogeneity and 
seasonal time series analysis methods for forecasting rainfall 
variation.They studied homogeneity of monthly and annual 
rainfall at each station using ACF and Von Neumann(VN) test 
at significance level of 0.05. Their results indicate that the 
seasonal patterns of rainfall exhibited considerable diversity 
across Iran. The present study comparisons among variations 
of patterns with seasonal rainfall series and revealed that the 
variability of rainfall can be predicted by the non-trended and 
trended patterns. 

In this research, we developed a time series model used to 
forecasting rainfall patterns for five years, using monthly and 
yearly amount of rainfall for the period 1976-2015. 

II. MATERIALS AND METHODS 

Monthly and yearly rainfall that was used in this study was 
obtained from Kenya Meteorological Department (KMD. The 
data was for two regions Embu and Meru. The data covers a 
period of forty (40) years from (1976-2015).It is important to 
investigate the homogeneity of records of meteorological data 
before using it in any analysis. In this study single mass curve 
was used to determine whether the data being used is 
homogeneous. 

Stationarity of the data helped the researcher in building a 
time series model. Stationarity of the data was tested using 
ACF and PACF. Unit root test was performed using 
Augmented Dickey –Fuller (ADF) test. Autocorrelation 
Function drops to zero quickly for stationary time series, 
while for non-stationary data it decreases slowly. Unit root 
test is the statistical hypothesis test for stationarity that is 
designed for determining whether differencing is required.  

In the augmented Dickey-Fuller test, the following regression 
model was estimated; 

ktktttt yyyyy   '...''' 22111             (2.1) 

Where ty'  denotes the first differenced series, 

1'  ttt yyy  and k is the number of lags to include in the 

regression. If original series yt   needs differencing, the 

coefficient ̂  should be approximately zero. If yt is already 

stationary then ̂ < 0. 

0H =datasets are not stationary, versus 

1H =datasets are stationary 

Large p-values are indicative of non-stationarity while small 
p-values suggest stationarity. Using 5 percent (%) threshold, 
differencing is required if p-value is greater than 0.05.  

To study the patterns of the rainfall data, time series models 
were fitted after determining the nature of the data using both 
ACF and PACF these statistical measures reflect how the 
observations in a time series are related to each other. For 
modelling purpose it is often useful to plot the ACF and 
PACF against consecutive time lags. These plots help in 
determining the order of AR and MA models. In this study the 
Box-Jenkins (BJ) Methodology was used to build a time 
series model. This methodology applies autoregressive 
moving average ARMA or ARIMA models to find the best fit 
of a time series to past values of this time series. This 
approach possesses many appealing features. To identify a 
perfect ARIMA model for a particular time series data, the 
following four phases are used viz. 

i) Model identification. 
ii)  Estimation of model parameters. 
iii)  Diagnostic checking for the identified model 

appropriateness for modelling. 
iv) Application of the model.  

The first step in developing a Box–Jenkins model is to 
determine if the time series is stationary and if there is any 
significant seasonality that needs to be modelled. The data 
was examined to check for the most appropriate class of 
ARIMA processes through selecting the order of the 
consecutive and seasonal differencing required making series 
stationary, as well as specifying the order of the regular and 
seasonal autoregressive and moving average polynomials 
necessary to adequately represent the time series model. The 
Autocorrelation Function (ACF) and the Partial 
Autocorrelation Function (PACF) are the most important 
elements of time series analysis. The ACF measures the 
amount of linear dependence between observations in a time 
series that are separated by a lag k. The PACF plot helps to 
determine how many autoregressive terms are necessary to 
reveal one or more of the following characteristics: time lags 
where high correlations appear, seasonality of the series, 
trend either in the mean level or in the variance of the series, 
Box and Jenkins (1970). 

The ARIMA model is the generalization of ARMA model that 
can only be used for stationary time series data. An ARMA (p, 
q) model is a combination of AR (p) which is given by: 
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and MA (q) model which uses past errors as the explanatory 
variables. The MA (q) model is given by  
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(2.3) 

Models and is suitable for univariate time series modelling. 
Autoregressive (AR) and moving average (MA) models can 
be effectively combined together to form a general and useful 
class of time series models, known as the ARMA models. 
Mathematically an ARMA (p, q) model is represented as: 

 
 

 
p

i

q

j
jtjtiit ycy

1 1

                             (2.4) 

Here the model orders p, q refer to p autoregressive and q 
moving average terms.  

Usually ARMA models are manipulated using the lag 
operator notation. The lag or backshift operator is defined as 

 Lyt = yt-1.                                                                            (2.5) 

Time series, which contain trend and seasonal patterns, are 
also non-stationary in nature. Thus from application view 
point ARMA models are inadequate to properly describe non-
stationary time series, which are frequently encountered in 
practice. For this reason the ARIMA model is proposed, 
which is a generalization of an ARMA model to include the 
case of non-stationarity as well. In ARIMA models a non-
stationary time series is made stationary by applying finite 
differencing of the data points. The mathematical formulation 
of the ARIMA (p, d, and q) model using lag polynomials is 
given below: 

tt
d LyLL   )1)((

                                                 
(2.6) 
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Where, p, d and q are integers greater than or equal to zero 
and refer to the order of the autoregressive, integrated, and 
moving average parts of the model respectively. The integer d 
controls the level of differencing. Generally d=1 is enough in 
most cases. When d=0, then it reduces to an ARMA (p, q) 
model.  An ARIMA (p, 0, 0) is nothing but the AR (p) model 
and ARIMA (0, 0, q) is the MA (q) model.  ARIMA (0, 1, 0), 

 i.e.  

 1tt yy                                                                   (2.8) 

is a special one and known as the Random Walk model. 

In this study the data was tested for stationarity and the model 
was chosen depending on whether the data is stationary or 
non-stationary. If the data is non-stationary differencing 
would be done. If stationarity is not achieved after first 
differencing then the second differencing is carried out and 
Plots are expected to be within the confidence bounds which 
is an indication of stationarity. If after second differencing 
there are some spikes outside the confidence bounds, it 
confirms the presence of strong seasonality components in the 
transformed data. . AIC and BIC was considered when 
choosing the best model. 

III. RESULTS AND DISCUSSION 

The results for homogeneity test, stationarity and unit root test 
and time series model fitted to monthly and yearly rainfall 
data is as depicted below. 

3.1Homogeneity 

Homogeneity test was tested using single mass curve to 
ascertain good quality of rainfall records. The plots showed 
that rainfall data for both regions was homogenous and can be 
used for further analysis. The single mass curves are shown 
figure 1 and 2 below. 

 

Figure 1: Testing homogeneity of Embu rainfall data 
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Figure 

3.2 Test for Stationarity and Unit Root Test 

Stationarity in variance and mean is a requirement for a time 
series before a model is fit on data. On studying monthly 
rainfall data for both regions, we observe that the peaks of 
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Figure 2: Testing homogeneity of Meru rainfall data 

Stationarity in variance and mean is a requirement for a time 
series before a model is fit on data. On studying monthly 
rainfall data for both regions, we observe that the peaks of 

time plots are not repeated with the same intensity indicating a 
non –constant variance and hence the series lack stationarity 
in variance. To verify stationarity in mean, we check by 
correlograms as shown in the figure 7 and figure 8 below.

Figure 3: ACF for Meru rainfall data 

Figure 4: ACF for Embu rainfall data 
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ACF’s are sinusoidal at the multiples of seasonal lags 
indicating the presence of strong seasonality behaviour. 
However as the lags increase the autocorrelations at multiples 
of seasonal lags seems not to decay implying non-stationarity 
in seasonal component of monthly rainfall data. 

The unit root test that was performed was augmented Dickey-
Fuller test. The results were obtained using R-software as 
presented below. 

Augmented Dickey-Fuller Test 

The following results was obtained 

data:  Meru rainfall data 

Value of test-statistic is: -10.7941  

Table 1: Critical values for test statistics 

 1% 5% 10% 

Tau -2.58 -1.95 -1.62 

 

Augmented Dickey-Fuller Test 

data:  Embu rainfall data 

Value of test-statistic is: -11.1496  

Table 2 : Critical values for test statistics 

 1% 5% 10% 

Tau -2.58 -1.95 -1.62 

 

Using the results from table 1 and 2, the statistics exceeds the 
critical values hence the series is not stationary. We conclude 
that there is a unit root. 

3.3 Time series model 

Time series model developed using Box-Jenkins methodology 
was fitted to the rainfall data of Embu and Meru regions. The 
specific aim was to obtain appropriate order of ARIMA 
model. To select an appropriate order of seasonal ARIMA, 
ACF and PACF graphs were used 

 

 

Figure 5: ACF and PACF Plots of differenced and Seasonally Differenced Square root Seriesfor Meru rainfall data 

Meru rainfall data had a significant spikes at lag 1, suggesting 
a non seasonal MA(1) component, and significant spikes at 
lag 11, 12 and 13 suggesting seasonal MA(1) in the ACF. The 
ARIMA model was, ARIMA(0,1,1)(0,1,3)12. The model had 
non seasonal and seasonal moving average. 

Using Akaike information criterion, ARIMA models of 
different orders were tested. This enabled the best model with 
lowest Akaike information criterion to be chosen. A summary 
of the result was presented in table 3 below. 

Table 3: Identified ARIMA models for Meru 

Model AIC 

ARIMA(0,1,1)(0,1,3)12 2505.16 

ARIMA(0,1,2)(0,1,2)12 2485.53 

ARIMA(1,1,1)(0,1,1)12 2480.91 

ARIMA(0,1,1)(0,1,1)12 2502 

ARIMA(1,1,2)(1,1,0)12 2624.16 

ARIMA(1,1,0)(0,1,3)12 2607.72 
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Based on AICs’ of the models, ARIMA(1,1,1) (0,1,1)12 was 
chosen as the best model. 

Call: 

Arima(x = data13, order = c (1, 1, 1), seasonal = list (order = c 
(0, 1, 1), period = 12)) 

Coefficients: 

         ar1      ma1     sma1 

      0.2256  -1.0000  -0.9998 

s.e.  0.0458   0.0136   0.0332 
Sigma^2 estimated as 11.91:  log likelihood = -1236.45, AIC 
= 2480.91 

 
Figure 63: ACF and PACF Plots of differenced and Seasonally Differenced Square root SeriesEmbu rainfall data 

Call: 

Arima(x = data23, order = c (1, 1, 1), seasonal = list (order = c 
(0, 1, 1), period = 12)) 

Coefficients: 

         ar1      ma1     sma1 

      0.1977  -1.0000  -1.0000 

s.e.  0.0454   0.0115   0.0275 

Sigma^2 estimated as 11.43:  log likelihood = -1258.89, aic = 
2525.79 

Embu rainfall data had spikes at lag 1, 11, 12 and 13 in the 
ACF .The ARIMA model was, ARIMA(0,1,1)(0,1,3)12. The 
model had non seasonal and seasonal moving average. 

Having ARIMA(0,1,1)(0,1,3)12 as the initial model, 
ARIMA(0,1,2)(0,1,2)12, ARIMA(1,1,1)(0,1,1)12, 
ARIMA(0,1,1)(0,1,1)12, ARIMA(1,1,2)(1,1,0)12 and 
ARIMA(1,1,0)(0,1,3)12 were fitted. The best model with 
lowest Akaike information criterion was chosen. A summary 
of the result was presented in table 4 below. 

Table 4: Identified ARIMA models for Embu 

Model  AIC 

ARIMA(0,1,1)(0,1,3)12  2543.12 

ARIMA(0,1,2)(0,1,2)12  2526.75 

ARIMA(1,1,1)(0,1,1)12  2525.79 

ARIMA(0,1,1)(0,1,1)12  2805.94 

ARIMA(1,1,2)(1,1,0)12  2679.19 

ARIMA(1,1,0)(0,1,3)12  2678.57 

 

Based on AICs’ of the models, ARIMA(1,1,1) (0,1,1)12 was 
chosen as the best model. 

The model parameter were significant from table 3 and 4, hence 
our proposed model was justified. After considering very many 
models, the model ARIMA(1,1,1)(0,1,1)12 had significant 
parameters and lowest AIC values. 

3.3.1 Model Diagnostic Checking  

The models having been identified and the parameters 
estimated, diagnostic checks were applied to fitted models for 
monthly rainfall data in Embu and Meru region.
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Figure7:ARIMA(1, 1, 1) (0, 1, 1)12model residuals for Embu rainfall data 

 

Figure 8:ARIMA (1, 1, 1) (0, 1, 1)12 model residuals for Meru rainfall data 
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All the spikes were within the significant limits and so the 
residuals appeared to be white noise. 

3.4 Forecasting 

After identifying the model, rainfall distribution patterns in 
both regions were forecasted using the model. Since our data 
was not stationary, this property was an advantage since the 
data had predictable patterns in the long term. 

EMBU 

 
Figure 9: Forecast plot for total monthly rainfall of Embu 

From the figure above, the series were followed by the 
forecast as the red line and the upper and lower predictions 
limit as grey were shown. Forecasts from the ARIMA (1, 1, 1) 
(0,1,1)12 model for the next five years were shown in figure 
17, forecast followed the trend due to double differencing. 

Prediction intervals showed that the rainfall could start 
decreasing or increasing in time.  

High rainfall had a cycle of four years in Embu, it occurred in 
2008, 2012 and 2016 and was expected to occur in 2020. 

MERU 

 
Figure 40: Forecast plot for total monthly rainfall of Meru 
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The figure above showed the series followed by the forecast 
as the red line and the upper and lower predictions limit as 
grey. Forecasts from the ARIMA(1, 1, 1)(0,1,1)12 model for 
the next five years were shown in figure 18. The increasing 
and decreasing prediction intervals showed that the rainfall 
could start decreasing or increasing any time. 

High rainfall was recorded after every two years from 2009, 
2011, 2013 and 2015. Also from the analysis, rainfall was 
expected to be high in 2017. 

IV. CONCLUSION 

Rainfall pattern in Meru and Embu regions significantly 
changed over time. There were periods of low variability and 
others of extreme variability separated by periods of 
transition. Rainfall in both regions had long rains in March, 
April and May (MAM) and and short rainsin October, 
November and December (OND). It appeared that short rains 
had high amount of rainfall as compared to long rains.  

From the stationarity test, rainfall data for both regions was 
found to be non stationary due to presence of rainfall trends and 
seasonality. 

From the fitted ARIMA(1,1,1)(0,1,1)12 model, there was high 
rainfall in Meru after a period of 2 years while Embu had a 
period of 4 years. Forecasted rainfall shows that, the increasing 
and decreasing prediction intervals showed that the rainfall 
could start decreasing or increasing any time.  

From this study, it can be concluded that, rainfall patterns for 
Embu and Meru regions would be change over time.  
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