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Abstract: In this paper, we discuss and study the second degree 
successive over relaxation (SDSOR) method for the solution of 
linear systems when the eigenvalues of SOR matrix are real. Few 
examples are considered to show the transcendency of this 
developed method. 
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I. INTRODUCTION 

et us consider the system of linear equations of the 
form   

                            AX b                                          … (1.1)   
where A is non-singular with non-vanishing diagonal elements 

and a positive definite matrix of order n n , X  and b are 
unknown and known n -dimensional vectors. We split the 

coefficient matrix A  without any loss of generality, as  

                           A I L U                                … (1.2) 

where I is the unit matrix, L  and U  are strictly lower and 

upper triangular parts of A . 

The linear stationary first degree Successive over relaxation 
(SOR) for the solution of (1.1) is given by  
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  ... (1.3) 

Here,   

   1
1L I L I U             

… (1.4) 

and L is the iteration matrix of SOR method. 

If  be the spectral radius of L , then 
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                                        … (1.5) 

where  is the spectral radius of Jacobi iteration matrix  

J L U  .  

 

II. SECOND DEGREE SOR (SDSOR) METHOD 

The linear stationary second degree method [2] is given by  

             1 1 1k k k k k kX X X X X X        … (2.1)  

Where   and  are computational parameters. 

Substitute (1.3) in (2.1) 

               11 1k k k k k kX X X X L X I L b X             

          11 11k k kX I L X IX I L b                
 

(or) 

     
     1 1k k kX PX QX R    … (2.2) 

where  

    
 1P I L     

    
       … (2.3) 

   
Q I                                                … (2.4) 

   
  1

R I L b                           … (2.5) 

By using the thoery given in young [2] and discussed in [6], we 
have 
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… (2.6) 

Necessary and sufficient condition for the convergence of 

method (2.2) for any 
 0X  and 

 1X  is that spectral radius of 

0 I

Q P

 
 
 

 must be less than unity in magnitude. 

Let      
0 I

T
Q P

 
  
                                        

… (2.7) 

Then, Spectral radius of iteration matrix T is less than one if 

and only if all roots of  of 

2 0I P Q                                           … (2.8) 

L 
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are less then unity in modulus. 

Substituting P  and Q  in (2.8) 

 2 1 0I I L I              

21
0L I I

   
 

    
     

   
… (2.9) 

The eigenvalues   of T  are related to the eigenvalues  of

L  by 

  21   
 

  
 

          

                      … (2.10) 

Let   iVe                                                                  … (2.11) 

Putting (2.11) in (2.10), we obtain 
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... (2.12) 

On comparison 
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and  
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… (2.14) 

Squaring and adding of (2.13) and (2.14), we get 
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...(2.15) 

is an ellipse with 

Centre
 1

,0
 


  

  
 

               … (2.16) 

 Foci=    
1

1 2
,0 ,0

  
 

  
    
    

… (2.17) 

 Foci=    
2

1 2
,0 ,0

  
 

  
    
    

… (2.18) 

Theorem 1: 

If the eigenvalues of  of L are real and lie in the interval 

1 2 1     , then the optimal choices of   and   

satisfy the following conditions. 

(i) 2V   

(ii) 1 2 1
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(iii) 2 1 2
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(iv)
 
   2 1 2

1 2

2 1
2

V V
 
 


 
 

 

Proof: 

(i) If   is real then Im 0   
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(ii) From (2.17) and (2.18) 
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(iii) 

   
2 1

1 12 2     
   

    
       

 
 

4 


  

4V


  

Therefore, 2 1 2

2

V 



  

(iv) 

1 2 1

2

   


  
   

1 2

1 2

1

2

1
1 1

2

   


   


  
  

  
   

 

 1 22 1

2

    


    
   

 1 22 1

2

  


  
   

Divide (iii) of Theorem 1 by the above inequality, we have 
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Theorem 2: If the eigenvalues   of L lie in the interval 

1 2 1      and  1 2      

then the optimum values of the parameters in (2.2) are  
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Proof: 

From (iv) of theorem 1, we have 
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If   be the spectral radius of L , then  
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 Since  2 ,V   
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From(iii) of Theorem 1, 
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Therefore, the spectral radius of  T  is 
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III. NUMERICAL EXAMPLES 

In this section, we consider two linear positive definite systems 
of the form AX b  and obtain their solutions by using first 
and second degree Jacobi, Gauss-Seidal and SOR methods up 

to an error not more than 
100.5 10  

taking null vector as a initial guess to get the exact solutions 
(1,1) and (1,1,1) of respective systems. We tabulate the 
obtained results here under. 

Example 1: 

Let
2 1

1 2
A

 
   

 and 
1

1
b

 
  
   

 

Example 2: 

Let 

20 1 0

6 10 1

0 1 18

A

 
   
  

 and 

21

15

17

b

 
   
    

 

IV. CONCLUSION 

As seen in the tabulated results that second degree SOR method  
has less spectral radius compared to the other methods and 
hence SDSOR method has greater rate of convergence. 
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