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Abstract: In this paper, we discuss and study the second degree
successive over relaxation (SDSOR) method for the solution of
linear systems when the eigenvalues of SOR matrix are real. Few
examples are considered to show the transcendency of this
developed method.
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I. INTRODUCTION
I et us consider the system of linear equations of the

form
AX =b (LD
where A is non-singular with non-vanishing diagonal elements

and a positive definite matrix of ordernxn, X and b are
unknown and known 7 -dimensional vectors. We split the

coefficient matrix A without any loss of generality, as

A=1-L-U .. (1.2)
where [ is the unit matrix, L and U are strictly lower and
upper triangular parts of A.

The linear stationary first degree Successive over relaxation
(SOR) for the solution of (1.1) is given by

X =1 X9+ ef I-cd) b

.. (1.3)
(k=012..)
Here,
L,=(I-oL) [(1-0)[+aU]| .04
and Lw is the iteration matrix of SOR method.
If ,; be the spectral radius of L > then
—2
P = H ... (1.5)

7]

where (4 is the spectral radius of Jacobi iteration matrix

J=L+U.

I1. SECOND DEGREE SOR (SDSOR) METHOD

The linear stationary second degree method [2] is given by
XU — yt® +a()d") —)dk‘”) 4 ﬂ()d“‘) —)d")) @20

Where ¢¢ and ,B are computational parameters.
Substitute (1.3) in (2.1)
X = x O (X - x4+ p( L0 +o(1-0L) ' b-x")
=X =[(a-p+1)1+pL, | XY ~alx") +0f(I-wL)'b
(or)
k+1 k k-1
X = px® 4 ox 4 R o)

where

P=(a-p+1)I+pL, .(23)
O=-al .. (2.4
R::wﬂ(]—adJAb .(2.5)

By using the thoery given in young [2] and discussed in [6], we
have

xW o 1Y x*“") (o
= + ... (2.6)

) - 0 P)| x® R

Necessary and sufficient condition for the convergence of
0 1
method (2.2) for any X (©) and X 1) is that spectral radius of
0 I

0

must be less than unity in magnitude.

0 7
Let T=
O P

Then, Spectral radius of iteration matrix T is less than one if

. (2.7)

and only if all roots of Aof

‘/121—/1P—Q‘=0 .. (28)
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are less then unity in modulus.

Substituting P and Q in (2.8)
(221 =A[(a-p+1)1+BL, ]+al|=0
2
L _{a ,B+1j[_(/1 +a)l
B Ap
The eigenvalues A of T are related to the eigenvalues p of
L, by

= =0...(29)

p+(a—,3+1):/12+05
B Ap

Let A=Ve"
Putting (2.11) in (2.10), we obtain

... (2.10)

L (2.11)

olampr) (7] +a
B (ve”)p
(a=p+1) _Ve'+a
B ()p
(a—ﬂ+1) :Vii”_i_ae—io
B B VB

s (a—B+1) _ V(cos(6) +isin(6)) . a(cos(6)—isin(6))

B p Ve

pe (2B +(V +ajcos(6’) +{V _“jsm(e)-~- (2.12)
g B VB B Vp

On comparison

Rep = —(0{_—54_1)+(%+Vi’8}05(6’)

Rep+7(a_ﬂ+l)
2 .. (2.13)

= cos(0) =
(775)

=>p+

=p+

. Imp
O)=———...(2.14
:>sm() (V_a] (2.14)
B VB
Squaring and adding of (2.13) and (2.14), we get
1 2 2
Rep+w
p + Imp =1
(V+a] (V_aj
g VB g VB
2
{RC,O-I-((Z_'B-H)} I 2
= ﬁz [mp] >=1..(2.15)
(haj (V_aj
B Vp B Vp

is an ellipse with

Centre = [—w, 0]
B

... (2.16)

(@=f+1) NE,O] @17
B B

a=p+l) Ne OJ . (2.18)
B

Foci—(£,,0) = (-

S

+

Foci—(r:pm{—( .

Theorem 1:

If the eigenvalues of p of L are real and lie in the interval

¢, < p<{,<I, then the optimal choices of & and /3

satisfy the following conditions.

OV=a
+ a-p[+1

o etl_ap
2 B

§2_§1 :2_V

(gz_é/l) 1 Vz
2_(§1+§2)( ’ )
Proof:

() If p isreal then Imp =0
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=>Vi=a
(i1) From (2.17) and (2.18)

: _ (a=p+1) 2a
1 B s
_(a—ﬂ+1)+2\/g

B B
(a-p+1) 2Ja (a—ﬂ+1)+2JE

S =

Y R

2(a—ﬂ+l)
B

ate
2

(a-pB+1)
p

Therefore,

(iii)

&&=

_Ha
Z

(a—p+1) +2\/E _( (a—p+1) ZJEJ
B B B B

2_5122
s

Therefore,

(iv)
§1+é’2 __Ol—ﬁ+l

2 B
_;1"'42 _a_ﬂ+1
2 P
1_(1"'42 :1+a_/8+1
2 B

L2764 8) _ pra-pel
2 p

=

=

2_(§1+§2) :1"‘05

=
2 B
Divide (iii) of Theorem 1 by the above inequality, we have
52 — 51 %
2 __p
2-(¢,+¢,) 1+a
2 B
‘52 — é:l _ 2V

= =
2-(6+4,) l+a
oy | —S2Ta (1+77)
2_(51 +§2)
Theorem 2: If the eigenvalues o of L lie in the interval

é:lSpS§2<1and —512582:;

then the optimum values of the parameters in (2.2) are
—2

Yo, 2
a=——"——— and f=r—r—=
— —2
(1—#\/1—/)2) [H\/l—/? J
Proof:

From (iv) of theorem 1, we have

S =4 ) 2
2V =| ————— |1+V
[2_(§1+§2) ( )
If ; be the spectral radius of L, then
=2V =p(1+77)

= oV =2V +p=0

2p
1+41- 5
yo1ENI-p

2
Let 1+V7% = 2
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Since V? =a,

2
a=— =1
ltyl-p

1-\1-p’
—y1-p
qg=—"_"1_
l+yl-p
—2
P

A —
(1 +A1- pzj
From(iii) of Theorem 1,

52_51 _z

2 B

_2@r) (2 & -4 2
=/ ¢ =G ¢, —¢ 2_(§1+§2) 1+\/1—,;2

4
(-(&) 1417

Since  —¢&, =&,

2

)

Therefore, the spectral radius of T is a? =

p=

_r

—2
(l +4y1-p j
III. NUMERICAL EXAMPLES

In this section, we consider two linear positive definite systems
of the form AX = b and obtain their solutions by using first
and second degree Jacobi, Gauss-Seidal and SOR methods up

-10
to an error not more than 0.5x10
taking null vector as a initial guess to get the exact solutions

(1,1) and (1,1,1) of respective systems. We tabulate the
obtained results here under.

Example 1:

-1 1
and b =
-1 2 1

Let A=

S.NO Method Spectral radius Number of iterations taken
to achieve the solution
1 Jacobi 0.5 35
Second degree Jacobi 0.2679 22
2 Gauss-Seidal 0.25 19
Second degree Gauss-Seidal | 0.1270 15
3 SOR 0.0718 12
Second degree SOR. 0.0359 11
Example 2:
201 O 21
Let A=| 6 10 —1|and b=|15
0 -1 18 17
S.NO Method Spectral radius Number of iterations taken
to achieve the solution
1 Jacobi 0.1886 16
Second degree Jacobi 0.0.0951 13
2 Gauss-Seidal 0.0356 9
Second degree Gauss-Seidal | 0.0178 8
3 SOR 0.0091 8
Second degree SOR 0.0045 7

IV. CONCLUSION

As seen in the tabulated results that second degree SOR method
has less spectral radius compared to the other methods and
hence SDSOR method has greater rate of convergence.
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