A Comparative Study of the Influence of Varying Composition of Soil Samples on the Rate of Water Flow

Dr Ogobiri Godwin¹, Dr (Mrs). Consul Juliana.I², Dr Anyalebechi Onyebuchi³

¹Department of Physics, Niger Delta University, Bayelsa State, Nigeria ²Department of Mathematics/Computer Science, Niger Delta University, Bayelsa State, Nigeria ³Department of Physics, University of Port Harcourt, Rivers State, Nigeria

Abstract-This research investigates and compares the rate of flow of water through varying composition of soil samples collected from a sand dredging site at Amassoma community in Bayelsa State of Nigeria. The soil sample comprises of a mixture of two samples (sharp and medium) in different proportions. The different mixtures of soil samples were weighed and mixed by percentage and grouped into seven (Group A: 100% sharp sand and 0% medium sandy soil, Group A: 100% sharp sand and 0% medium sandy soil, Group A: 100% sharp sand and 0% medium sandy soil, Group B: 80% sharp sand and 20% medium sandy soil, Group C: 60% sharp sand and 40% medium sandy soil, Group D: 50% sharp sand and 50% medium sandy soil, Group E: 30% sharp sand and 70% medium sandy soil, Group F: 10% sharp sand and 90% medium sandy soil and Group G: 100% sharp sand and 0% medium sandy soil). Equal measured quantity of water was poured into a transparent PVC pipe containing the soil samples of each group and the time for the first drop and volume of water collected at an interval of 100mls were recorded. Results showed that the time of first drop differed with the different groups of soil samples and the values of the times of the volume of water collected were highly correlated. The results also showed no difference in the time for the volume of water collected for the dependent samples (dry and wet) for all groups and in most cases of the independent samples (both (dry and dry) and (wet and wet) cases) except for sample B (dry) and F (dry), sample C (dry) and D (dry) and sample E (dry) and G (dry).

Keywords: Samples, Soil Samples, Flow of Water, Time of First Drop

I. INTRODUCTION

A griculture is the predominant economic activity in most part of Nigeria. Soil is a very important medium for the growth of plant and production of food (Fasina et al., 2007). It is the top layer of the earth's crust and is referred to as a general term for particles formed by the gradual wearing away of the parent rock material. The parent rock material largely defines the composition of the soil. Soil is composed of a mixture of minerals, organic matters, gases and liquids which work together to support life on earth. It serves as a means of water supply, storage and purification. The importance of the soil for the production of crop is dependent on the quality of the soil. The properties of soil can be physical, chemical and biological. The characteristics of the soil give enough information on the understanding of the physical, chemical mineralogical and microbiological property of the soil (Ogunkunle, 2005). Some of the physical characteristics of soil particles include colour, size, shape etc. The chemical properties such as soil reactions and buffering action determine the quality of the soil (Adesunloye, 1989). It is usually said that most scientist assume that the soil samples are chemically unaffected by the environment.

The size of soil particles increases as one digs further into the earth, soil is usually not totally dry; the Soil has a proportion of water and air that fill gaps between the particles of the soil. This gives the soil a porous characteristic. It is natural that soil will swell and contract when the water content changes. In general, it is important that the moisture of the soil is measured since it's used to determine the properties of the soil. The measurement of the moisture can be done through weighing and drying in an oven. Soil can be considered porous if it has a matrix of voids throughout it. The porosity of soil varies depending on the size of the particles of the soil sample. It is required that the apparent and specific bulk density of a soil sample is known to calculate the porosity of the soil sample. It is also required that the soil permeability is measured; the permeability of the soil is a measure of how fast a fluid moves through it. The permeability of soil depends on the porosity of the soil since the air pores allow fluid or water to pass through the soil, for instance, a sandy soil will have more pores and a low resistance to the flow of water while a clay soil will have little or no pores and hence resist the flow of water. The characteristic of the pores affects almost everything that occurs in the soil including the movement of water, air e.t.c through the soil (Nimmo, 2004) and hence, the flow of water in the soil is interconnected through the void and the velocity of the flow which depends on the size of the pores. Therefore, this research work is aimed at determining and comparing the rate of flow of water through the mixture of two different soil samples. It will also discuss the retention capacity of the various mixtures of the soil samples.

It is required that researchers perform more careful analysis on soil samples to ensure accurate results. There are various characteristics and methods for measuring accurate properties of soil samples. Some of the methods and basic theories for measuring the properties of the soil are Darcy's law, Porosity or void ratio, apparent bulk density and dry bulk density.

Darcy's law: The Darcy's empirical law defines the permeability of soil which is limited to one dimensional flow of water through the soil (Craig, 1997). It states that the rate of fluid flow through a porous medium is proportional to the potential energy gradient within that fluid. The constant of proportionality is the Darcy's permeability of soil. The Darcy's law is given as

$$V = Ki = \frac{K\Delta h}{L}$$
[1]

where;

V = Discharge velocity of superficial velocity

K = Coefficient of Permeability or Hydraulic conductivity

i = Hydraulic gradient

 $\Delta h = Fall$ in total head

L = Length of soil specimens.

Porosity or Void Ration: The porosity is the fraction of the total soil volume that is taken up by the pore space. The porosity or void ratio is unity minus the ratio of the volume of soil alone to the volume of the sample.

It is defined as

$$P = I - \frac{V_{soil}}{V_{sample}}$$
[2]

where

 V_{soil} = volume of soil.

 V_{sample} = volume of sample.

We will note that the porosity is generally expressed as percentage.

Apparent Bulk density

This is a measurement of the overall density of the soil sample including air or moisture present with the sample.

$$BD_{A} = \frac{M_{sample}}{V_{sample}} (measured in kg/m^{3})$$
[3]
$$M_{sample} = mass of sample$$
$$V_{sample} = volume of sample$$

Dry bulk Density: This can be measured using

$$BD_D = \frac{M_s}{V_t}$$
[4]

Where BD is the Bulk density (gcm^{-3}) .

 $M_{\rm s}$ is the mass of soil (g).

 V_t is the volume of Cylinder (cm³).

II. MATERIALS AND METHODS

The materials used in this research include digital weigh balance, water, oven, thermometer, stop watch, beakers, transparent PVC pipe, sieve (1mm and 2mm), retort stand and measuring cylinder.

III. SOIL SAMPLES AND MEASUREMENT

This research is aimed at investigating the rate at which water flows through the mixture of two soil samples (sharp and medium) in different proportions. These soil samples were collected from a sand dredging site at Amassoma Community in Bayelsa State of Nigeria. The soil samples were heated in the oven for 30 minutes to a temperature of about $120^{\circ}C$ since it is required that soil needs to be dry for soil particles to be deflocculated to ensure accurate results. The heated samples were allowed to cool to a temperature of $30^{\circ}C$. The cooled samples were sieved using different sizes of sieves (2mm for sharp sand and 1mm for medium sandy soil). The soil samples were then weighed and mixed by percentage and grouped into seven as shown in Table 1.

	*** * * *				
Table I	: Weighed	and mixed	SOIL S	amples	in groups

Group	Sample mixture by percentage of sharp sand	Sample mixture by percentage of medium sandy soil
А	100%	0%
В	80%	20%
С	60%	40%
D	50%	50%
Е	30%	70%
F	10%	90%
G	0%	100%

The soil samples of each group were poured into a transparent PVC pipe with one end close with a sieve. The initial height of the soil samples from each group was taken and 800mls of water was measured with a beaker. The 800mls of water was poured into each group of soil samples and the time for the first drop of water were recorded for each group against volume (ml) = 0. The time for the volume of water collected at an interval of 100mls were noted and recorded until the water stops to flow. The values were recorded as dry as given in Table 2 to Table 8. The height of each saturated sample of each group were recorded and another 800mls was allowed to flow through the saturated sample of each group and the time for the volume of water collected at an interval of 100mls was also noted and recorded until the water stops to drop. The values were recorded as wet as given in Table 2 to Table 8.

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume IV, Issue VIII, August 2019 | ISSN 2454-6194

DR	Y	WET		
Volume (ml)	Time (secs)	Volume (ml)	Time (secs)	
0	4	100	6	
100	8	200	10	
200	11	300	14	
300	14	400	18	
400	18	500	23	
500	22	600	28	
600	27	700	35	
700	50	800	81	
730	121	810	135	

Table 2: Sample A

Table 3: Sample B

DR	Y	WET		
Volume (ml)	Time (secs)	Volume (ml)	Time (secs)	
0	5	100	8	
100	17	200	12	
200	24	300	16	
300	32	400	22	
400	42	500	28	
500	53	600	35	
600	68	700	43	
700	331	800	60	
720		840	122	

Table 4: Sample C

DRY		WE	Т
0	6	100	11
100	13	200	19
200	18	300	27
300	24	400	37
400	31	500	47
500	40	600	59
600	50	700	73
700	224	800	164
		810	368

Table 5: Sample D

DRY	r	WET		
Volume (ml)	Time (secs)	Volume (ml)	Time (secs)	
0	7	100	13	
100	15	200	22	
200	21	300	32	
300	28	400	44	

400	37	500	56
500	46	600	71
600	58	700	86
700	189	800	141
		820	

Table 6: Sample E

DR	Y	WE	Τ	
Volume (ml)	Time (secs)	Volume (ml)	Time (secs)	
0	9	100	15	
100	16	200	25	
200	23	300	35	
300	31	400	49	
400	40	500	62	
500	50	600	80	
600	64	700	120	
700	300	800	180	
		820	336	

Table 7: Sample F

DR	Y	WET		
Volume (ml)	Time (secs)	Volume (ml)	Time (secs)	
0	9	100	14	
100	17	200	25	
200	24	300	36	
300	32 400		50	
400	42	500	64	
500	53	600	81	
600	68	700	102	
690	690 335		155	
		820	279	

Table 8: Sample G

DR	Y	WET		
Volume (ml)	Time (secs)	Volume (ml)	Time (secs)	
0	10	100	13	
100	18	200	24	
200	25	300	37	
300	34	400	50	
400	44	500	61	
500	55	600	79	
600	70	700	100	
690	277	800	150	
		820	270	

IV. METHOD OF DATA ANALSIS

We want to analysis the data collected in Table 2 to Table 8. First of all, we will want to check to find out if the time for the first drop (T_f) of water in each group is the same. Secondly, we will compare the time for the volume of water collected at intervals of 100mls for the samples in each group using the hypothesis testing about differences in both dependent and independent samples.

V. HYPOTHESIS TESTING ABOUT DIFFERENCES IN SAMPLES

We might want to find out if there are significant differences between two samples. We will consider two cases. In one case, the two samples will be dependent in the sense that each observation in one sample might be correlated with some particular observation in the other sample. For instance, in this research, we consider the rate of flow of water through a dry mixture of soil sample and wet mixture of the same soil composition. We will use hypothesis testing using t test for dependent samples (Tokunaga, 2016). We suppose that the null hypothesis H_0 is given as

 H_0 : There is no significant difference between the rate of flow of water between the dry and wet composition of the soil sample.

The alternative hypothesis H_1 is given as

 H_1 : There is significant difference between the rate of flow of water between the dry and wet composition of the soil sample.

The test statistics is given as

$$t = \frac{\bar{d}\sqrt{n}}{s_d}$$
[5]

It has a t distribution with n-1 degree of freedom. We have that the difference between the values of the time of first drop (in seconds) of the dry soil sample, S_{d_i} and the corresponding values of the time of first drop (in seconds) of the wet sample S_{w_i} is

$$d_i = S_{d_i} - S_{w_i}$$
 for $i = 1, 2, ..., n$ [6]

We also have that \overline{d} is the sample mean difference and S_d is the sample standard deviation of the difference. The null hypothesis H_0 is rejected if the test statistics is greater than the t distribution with n - 1 degree of freedom.

In the second case, we will be faced with problems such as finding out if there are any significant differences between the times of first drop of two different samples. Here, the samples are independent. The test statistics is given as

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
[7]

and has a t distribution with $n_1 + n_2 - 2$ degree of freedom. We have that S is the pooled variance. The null hypothesis H_0 is rejected if the test statistics is greater than the t distribution with $n_1 + n_2 - 2$ degree of freedom. The p value can also be used.

VI. STATISTICAL ANALYSIS

The time for the first drop of water were recorded for each group against volume (ml) = 0. We present a plot of time for the first drop for the different groups of soil samples in Figure 1. We might want to compare the time for the volume of water collected at intervals of 100mls for the dry sample and that of the saturated sample (wet) of each group. We find the correlation or closeness in the relationship between the times of the volume of water collected at intervals of 100mls for all groups using R software (R Core Team, 2014). Table 9 gives the correlation matrix of the times of the volume of water collected at intervals of 100mls for some of water collected at intervals of 100mls for some of the groups.

Figure 1: Plot of time of first drop against the different groups of soil samples

Table 9: The correlation matrix of the times of the volume of water collected at intervals of 100mls for some of the groups.

G (wet)	G (dry)	F (wet)	F (dry)	E (wet)	E (dry)	D (wet)	D (dry)	C (wet)	C (dry)	B (wet)	B (dry)	A (wet)	A (dry)	A (dry)
0.94	0.96	0.94	0.95	0.98	0.95	0.93	0.97	0.94	0.95	0.94	0.95	0.94	1.00	A(
0.99	0.81	0.99	0.79	0.99	0.79	0.99	0.84	0.99	0.80	0.99	0.79	1.00		wet) B
0.79	0.99	0.79	0.99	0.88	0.99	0.77	0.99	0.78	0.99	0.79	1.00	0.79	0.94	(dry) B
0.99	0.81	0.99	0.79	0.99	0.79	0.99	0.84	0.99	0.80	1.00	0.79	0.99	0.95	(wet) C
0.80	0.99	0.80	0.99	0.88	0.99	0.78	0.99	0.79	1.00	0.80	0.99	0.80	0.94	(dry) C
0.99	0.81	0.99	0.78	0.99	0.79	0.99	0.83	1.00	0.79	0.99	0.78	0.99	0.95	(wet) I
0.84	0.99	0.84	0.99	0.92	0.99	0.83	1.00	0.83	0.99	0.84	0.99	0.84	0.94) (dry)]
0.99	0.80	0.99	0.77	0.98	0.77	1.00	0.83	0.99	0.78	0.99	0.77	0.99	0.99	O (wet)
0.79	0.99	0.79	0.99	0.88	1.00	0.77	0.99	0.79	0.99	0.79	0.99	0.79	0.93	E (dry)
0.99	0.90	0.99	0.88	1.00	0.88	0.98	0.92	0.99	0.88	0.99	0.88	0.99	0.95	E (wet)
0.79	0.99	0.79	1.00	0.88	0.99	0.77	0.99	0.78	0.99	0.79	0.99	0.79	86.0	F (dry)]
0.99	0.81	1.00	0.79	0.99	0.79	0.99	0.84	0.99	0.80	0.99	0.79	0.99	0.95	F (wet)
0.82	1.00	0.81	0.99	0.90	0.99	0.80	0.99	0.80	0.99	0.81	0.99	0.81	0.94	G (dry)
1.00	0.82	0.99	0.79	0.99	0.80	0.99	0.84	0.99	0.80	0.99	0.99	0.99	0.96	G (wet
													0.94	<u> </u>

Sample	P value	T value	Decision
Sample A (dry) and A (wet)	0.165	1.0596	Accept H ₀
Sample B (dry) and B (wet)	0.09	1.4944	Accept H ₀
Sample C (dry) and C (wet)	0.2224	0.8177	Accept H ₀
Sample D (dry) and D (wet)	0.2729	0.6402	Accept H ₀
Sample E (dry) and E (wet)	0.2449	0.7354	Accept H ₀
Sample F (dry) and F (wet)	0.2186	0.8322	Accept H ₀
Sample G (dry) and G (wet)	0.2061	0.8812	Accept H ₀

Table 10: Hypothesis testing about differences in times of dependent sample

Table 11: Hypothesis testing about differences in times of independent samples

Sample A (dry) and B (dry) 0.9067 -1.4011 Accept H_0 Sample A (dry) and C (dry) 0.9187 -1.438 Accept H_0 Sample A (dry) and D (dry) 0.9033 -1.3915 Accept H_0 Sample A (dry) and G (dry) 0.9043 -1.5318 Accept H_0 Sample A (wry) and G (dry) 0.9243 -1.5318 Accept H_0 Sample A (wet) and G (wet) 0.97502 -0.6960 Accept H_0 Sample A (wet) and C (wet) 0.9737 -2.1505 Accept H_0 Sample A (wet) and D (wet) 0.9869 -2.536 Accept H_0 Sample A (wet) and G (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_0 Sample B (dry) and G (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and G (dry) 0.10155 0.455 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and C (wet) -2.0636 0.9693 Accept H_0 Sample B (wet) and C (wet)	Sample	P value	T value	Decision
Sample A (dry) and C (dry) 0.8813 -1.2434 Accept H_0 Sample A (dry) and D (dry) 0.9187 -1.488 Accept H_0 Sample A (dry) and D (dry) 0.9063 -1.3915 Accept H_0 Sample A (dry) and G (dry) 0.9243 -1.5318 Accept H_0 Sample A (wet) and G (dry) 0.9243 -1.5318 Accept H_0 Sample A (wet) and B (wet) 0.9737 -2.1505 Accept H_0 Sample A (wet) and D (wet) 0.9869 -2.5342 Accept H_0 Sample A (wet) and F (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_0 Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and G (dry) 0.1082 0.4578 Accept H_0 Sample B (wet) and C (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and G (wet) -2.2172 0.9791 Accept H_0 Sample B (wet) and G (wet)	Sample A (dry) and B (dry)	0.9067	-1.4011	Accept H ₀
Sample A (drv) and D (drv) 0.9187 -1.488 Accept H_{a} Sample A (drv) and E (drv) 0.9063 -1.3915 Accept H_{a} Sample A (drv) and F (drv) 0.906 -1.3962 Accept H_{a} Sample A (drv) and F (drv) 0.9243 -1.5318 Accept H_{a} Sample A (wet) and B (wet) 0.97502 -0.6960 Accept H_{a} Sample A (wet) and D (wet) 0.9869 -2.5342 Accept H_{a} Sample A (wet) and F (wet) 0.9908 -2.7252 Accept H_{a} Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_{a} Sample B (drv) and C (revt) 0.9901 -2.6877 Accept H_{a} Sample B (drv) and D (drv) 0.5154 0.3078 Accept H_{a} Sample B (drv) and D (drv) 0.5154 0.3078 Accept H_{a} Sample B (drv) and F (drv) -0.0095 0.5037 Reject H_{a} Sample B (wet) and C (wet) -2.0635 0.9693 Accept H_{a} Sample B (wet) and C (wet) -2.1912 0.9755 Accept H_{a} Sample B	Sample A (dry) and C (dry)	0.8813	-1.2434	Accept H ₀
Sample A (dry) and E (dry) 0.9053 -1.3915 Accept H_0 Sample A (dry) and G (dry) 0.9243 -1.3318 Accept H_0 Sample A (wet) and B (wet) 0.7502 -0.6960 Accept H_0 Sample A (wet) and B (wet) 0.9737 -2.1505 Accept H_0 Sample A (wet) and D (wet) 0.9869 -2.336 Accept H_0 Sample A (wet) and E (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_0 Sample B (dry) and G (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and B (dry) 0.1155 0.4557 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and D (wet) -2.0035 0.9693 Accept H_0 Sample B (wet) and C (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and G (wet) -2.2172 0.9791 Accept H_0 Sample C (dry) and G (dry) <	Sample A (dry) and D (dry)	0.9187	-1.488	Accept H ₀
Sample A (dry) and F (dry) 0.906 -1.3962 Accept H_0 Sample A (dry) and G (dry) 0.9243 -1.5318 Accept H_0 Sample A (wet) and B (wet) 0.7502 -0.6960 Accept H_0 Sample A (wet) and D (wet) 0.9869 -2.5342 Accept H_0 Sample A (wet) and D (wet) 0.9869 -2.336 Accept H_0 Sample A (wet) and F (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and G (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_0 Sample B (dry) and C (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and G (dry) 0.1082 0.4578 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and C (wet) -1.6127 0.9366 Accept H_0 Sample B (wet) and D (wet) -2.035 0.9693 Accept H_0 Sample B (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample B (wet) and G (wet) <	Sample A (dry) and E (dry)	0.9053	-1.3915	Accept H _o
Sample A (dry) and G (dry) 0.9243 -1.5318 Accept H_0 Sample A (wet) and B (wet) 0.7502 -0.6960 Accept H_0 Sample A (wet) and C (wet) 0.9737 -2.1505 Accept H_0 Sample A (wet) and D (wet) 0.9869 -2.3342 Accept H_0 Sample A (wet) and F (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_0 Sample B (dry) and C (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and B (dry) 0.1155 0.4555 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and C (wet) -1.6127 0.9336 Accept H_0 Sample B (wet) and C (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and G (wet) -2.2172 0.9791 Accept H_0 Sample B (wet) and G (wet) -0.2329 0.4502 Accept H_0 Sample C (dry) and B (dry)	Sample A (dry) and F (dry)	0.906	-1.3962	Accept H ₀
Sample A (wet) and B (wet) 0.7502 -0.6960 Accept H_0 Sample A (wet) and C (wet) 0.9737 -2.1505 Accept H_0 Sample A (wet) and D (wet) 0.9869 -2.5342 Accept H_0 Sample A (wet) and E (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and F (wet) 0.9901 -2.7252 Accept H_0 Sample B (dry) and C (dry) 0.4701 0.3234 Accept H_0 Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and B (dry) 0.1082 0.4578 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.4575 Accept H_0 Sample B (wet) and C (wet) -1.6127 0.9336 Accept H_0 Sample B (wet) and C (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and G (wet) -2.23229 0.9807 Accept H_0 Sample C (dry) and B (dry) 0.2741 0.6426 Accept H_0 Sample C (dry) and B (dry)	Sample A (dry) and G (dry)	0.9243	-1.5318	Accept H _o
Sample A (wet) and C (wet) 0.9737 -2.1505 Accept H_0 Sample A (wet) and D (wet) 0.9869 -2.5342 Accept H_0 Sample A (wet) and F (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and F (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_0 Sample B (dry) and C (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and E (dry) 0.1082 0.4578 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and C (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and F (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and G (dry) -0.2772 0.9791 Accept H_0 Sample C (dry) and G (dry) <	Sample A (wet) and B (wet)	0.7502	-0.6960	Accept H _o
Sample A (wet) and D (wet) 0.9869 -2.5342 Accept H ₀ Sample A (wet) and E (wet) 0.9869 -2.536 Accept H ₀ Sample A (wet) and F (wet) 0.9908 -2.7252 Accept H ₀ Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H ₀ Sample B (dry) and C (dry) 0.4101 0.3234 Accept H ₀ Sample B (dry) and D (dry) 0.5154 0.3078 Accept H ₀ Sample B (dry) and E (dry) 0.1082 0.4578 Accept H ₀ Sample B (dry) and G (dry) 0.1155 0.455 Accept H ₀ Sample B (wet) and D (wet) -2.0635 0.9693 Accept H ₀ Sample B (wet) and D (wet) -2.012 0.9755 Accept H ₀ Sample B (wet) and D (wet) -2.2772 0.9791 Accept H ₀ Sample B (wet) and D (dry) 0.0236 0.4908 Reject H ₀ Sample C (dry) and E (dry) 0.2741 0.6426 Accept H ₀ Sample C (dry) and B (dry) -0.2772 0.9791 Accept H ₀ Sample C (wet) and D (wet) -0.5587	Sample A (wet) and C (wet)	0.9737	-2.1505	Accept H ₀
Sample A (wet) and E (wet) 0.9869 -2.536 Accept H_0 Sample A (wet) and F (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_0 Sample B (dry) and C (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and E (dry) 0.1082 0.4578 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and D (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and E (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and B (dry) 0.2741 0.6426 Accept H_0 Sample C (dry) and B (dry) -0.4769 0.679 Accept H_0 Sample C (wet) and D (wet) -	Sample A (wet) and D (wet)	0.9869	-2.5342	Accept H _a
Sample A (wet) and F (wet) 0.9908 -2.7252 Accept H_0 Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_0 Sample B (dry) and C (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and E (dry) 0.1082 0.4578 Accept H_0 Sample B (dry) and F (dry) -0.0095 0.5037 Reject H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and C (wet) -1.6127 0.9336 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and F (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and F (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and G (dry) 0.2741 0.6426 Accept H_0 Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and G (wet) <	Sample A (wet) and E (wet)	0.9869	-2.536	Accept H ₀
Sample A (wet) and G (wet) 0.9901 -2.6877 Accept H_0 Sample B (dry) and C (dry) 0.4701 0.3234 Accept H_0 Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and E (dry) 0.1082 0.4578 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and C (wet) -1.6127 0.9336 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and E (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and F (wet) -2.3229 0.9807 Accept H_0 Sample C (dry) and D (dry) 0.02741 0.6426 Accept H_0 Sample C (dry) and E (dry) -0.2772 0.9791 Accept H_0 Sample C (dry) and G (dry) -0.4769 0.679 Accept H_0 Sample C (dry) and G (dry) -0.5587 0.7067 Accept H_0 Sample C (wet) and G (wet) <t< td=""><td>Sample A (wet) and F (wet)</td><td>0.9908</td><td>-2.7252</td><td>Accept H_o</td></t<>	Sample A (wet) and F (wet)	0.9908	-2.7252	Accept H _o
Sample B (dry) and C (dry) 0.4701 0.3234 Accept H_0 Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and E (dry) 0.1082 0.4578 Accept H_0 Sample B (dry) and F (dry) -0.0095 0.5037 Reject H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and C (wet) -1.6127 0.9336 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and E (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and F (wet) -2.2279 0.9807 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and D (dry) 0.02741 0.6426 Accept H_0 Sample C (dry) and F (dry) -0.3557 0.7067 Accept H_0 Sample C (wet) and F (wet) -1.0073 0.8332 Accept H_0 Sample C (wet) and F (wet) -0.9587 0.7067 Accept H_0 Sample C (wet) and F (dry)	Sample A (wet) and G (wet)	0.9901	-2.6877	Accept H ₀
Sample B (dry) and D (dry) 0.5154 0.3078 Accept H_0 Sample B (dry) and E (dry) 0.1082 0.4578 Accept H_0 Sample B (dry) and F (dry) -0.0095 0.5037 Reject H_0 Sample B (dry) and G (dry) 0.1155 0.4555 Accept H_0 Sample B (wet) and C (wet) -1.6127 0.9336 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and D (wet) -2.0355 $Accept H_0$ Sample B (wet) and E (wet) -2.172 0.9755 $Accept H_0$ Sample B (wet) and G (wet) -2.2772 0.9791 $Accept H_0$ Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and G (dry) 0.2741 0.6426 $Accept H_0$ Sample C (dry) and G (dry) -0.4769 0.679 $Accept H_0$ Sample C (dry) and G (dry) -0.5587 0.7067 $Accept H_0$ Sample C (wet) and D (wet) -0.9737 0.8253 $Accept H_0$ Sample C (wet) and G (wet) -0.9737 0.8253	Sample B (drv) and C (drv)	0.4701	0.3234	Accept H _a
Sample B (dry) and E (dry) 0.1082 0.4578 Accept H_0 Sample B (dry) and F (dry) -0.0095 0.5037 Reject H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and G (dry) -1.6127 0.9336 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and E (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and F (wet) -2.3229 0.9807 Accept H_0 Sample B (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and G (wet) -0.2741 0.6426 Accept H_0 Sample C (dry) and E (dry) -0.2741 0.6426 Accept H_0 Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and B (wet) -0.9737 0.8253 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (dry) and G (dry)	Sample B (dry) and D (dry)	0.5154	0.3078	Accept H ₀
Sample B (ary) and F (ary) -0.0095 0.5037 Reject H_0 Sample B (dry) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and C (wet) -1.6127 0.9336 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and F (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and F (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and G (dry) -0.4769 0.679 Accept H_0 Sample C (dry) and G (dry) -0.4587 0.7067 Accept H_0 Sample C (wet) and G (wet) -0.9737 0.8253 Accept H_0 Sample C (wet) and G (wet) -0.9737 0.8253 Accept H_0 Sample D (ary) and G (dry) -0.4189 0.6586 Accept H_0 Sample D (ary) and G (dry)	Sample B (dry) and E (dry)	0.1082	0.4578	Accept H ₀
Sample B (ary) and G (dry) 0.1155 0.455 Accept H_0 Sample B (wet) and C (wet) -1.6127 0.9336 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and E (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and F (wet) -2.2229 0.9807 Accept H_0 Sample B (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and G (dry) -0.2771 0.6426 Accept H_0 Sample C (dry) and G (dry) -0.4769 0.679 Accept H_0 Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and D (wet) -0.5387 0.7067 Accept H_0 Sample C (wet) and F (wet) -0.9085 0.8092 Accept H_0 Sample D (ary) and F (dry) -0.5129 0.6944 Accept H_0 Sample D (ary) and G (dry)	Sample B (drv) and F (drv)	-0.0095	0.5037	Reject Ha
Sample B (wet) and C (wet) -1.6127 0.9336 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and E (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and F (wet) -2.2229 0.9807 Accept H_0 Sample B (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and G (dry) -0.4769 0.679 Accept H_0 Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and G (wet) -0.9357 0.7067 Accept H_0 Sample C (wet) and F (wet) -0.9737 0.8233 Accept H_0 Sample D (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (dry) and F (dry) -0.5219 0.6944 Accept H_0 Sample D (dry) and F (dry)	Sample B (dry) and G (dry)	0.1155	0.455	Accept H _o
Sample B (wet) and D (wet) -2.0635 0.9693 Accept H_0 Sample B (wet) and E (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and F (wet) -2.2229 0.9807 Accept H_0 Sample B (wet) and F (wet) -2.2772 0.9791 Accept H_0 Sample B (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and E (dry) 0.2741 0.6426 Accept H_0 Sample C (dry) and F (dry) -0.4769 0.679 Accept H_0 Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and G (wet) -0.5587 0.7067 Accept H_0 Sample C (wet) and F (wet) -0.9035 0.8092 Accept H_0 Sample D (wet) and F (wet) -0.9085 0.8092 Accept H_0 Sample D (dry) and F (dry) -0.5219 0.6944 Accept H_0 Sample D (dry) and F (dry) -0.5235 0.6949 Accept H_0 Sample D (wet) and G (wet)	Sample B (wet) and C (wet)	-1.6127	0.9336	Accept H _a
Sample B (wet) and E (wet) -2.1912 0.9755 Accept H_0 Sample B (wet) and F (wet) -2.3229 0.9807 Accept H_0 Sample B (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample B (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and E (dry) 0.2741 0.6426 Accept H_0 Sample C (dry) and F (dry) -0.4769 0.679 Accept H_0 Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and G (wet) -0.5587 0.7067 Accept H_0 Sample C (wet) and F (wet) -0.9737 0.8233 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (dry) and F (dry) -0.5219 0.6944 Accept H_0 Sample D (dry) and G (dry) -0.4189 0.6685 Accept H_0 Sample D (wet) and F (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (wet)	Sample B (wet) and D (wet)	-2.0635	0.9693	Accept H ₀
Sample E (wet) and F (wet) -2.3229 0.9807 Accept H_0 Sample E (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample E (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and E (dry) 0.2741 0.6426 Accept H_0 Sample C (dry) and F (dry) -0.4769 0.679 Accept H_0 Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and G (wet) -0.5587 0.7067 Accept H_0 Sample C (wet) and F (wet) -0.9737 0.8253 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (dry) and E (dry) -0.5219 0.6944 Accept H_0 Sample D (dry) and F (dry) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (wet) -0.4468 0.6685 Accept H_0 Sample D (wet) and F (wet) -0.4324 Accept H_0 Sample D (wet) and G (wet) Sample D (wet) an	Sample B (wet) and E (wet)	-2.1912	0.9755	Accept Ha
Sample B (wet) and G (wet) -2.2772 0.9791 Accept H_0 Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_0 Sample C (dry) and E (dry) 0.2741 0.6426 Accept H_0 Sample C (dry) and F (dry) -0.4769 0.679 Accept H_0 Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and G (wet) -0.5587 0.7067 Accept H_0 Sample C (wet) and F (wet) -0.9737 0.8253 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (dry) and E (dry) -0.5219 0.6944 Accept H_0 Sample D (dry) and G (dry) -0.4468 0.6685 Accept H_0 Sample D (wet) and F (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (wet) -0.4422 0.6669 Accept H_0 Sample D (wet) and F (wet) -0.3734 0.6423 Accept H_0	Sample B (wet) and F (wet)	-2.3229	0.9807	Accept Ha
Sample C (dry) and D (dry) 0.0236 0.4908 Reject H_{a} Sample C (dry) and E (dry) 0.2741 0.6426 Accept H_{a} Sample C (dry) and F (dry) -0.4769 0.679 Accept H_{a} Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_{a} Sample C (wet) and G (dry) -0.3951 0.6502 Accept H_{a} Sample C (wet) and D (wet) -0.5587 0.7067 Accept H_{a} Sample C (wet) and F (wet) -0.9737 0.8253 Accept H_{a} Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_{a} Sample D (dry) and E (dry) -0.4189 0.6586 Accept H_{a} Sample D (dry) and F (dry) -0.5219 0.6944 Accept H_{a} Sample D (dry) and F (dry) -0.4468 0.6685 Accept H_{a} Sample D (wet) and F (wet) -0.5235 0.6949 Accept H_{a} Sample D (wet) and F (wet) -0.4422 0.6669 Accept H_{a} Sample D (wet) and G (wet) -0.3734 0.6423 Accept H_{a} Sample L	Sample B (wet) and G (wet)	-2.2772	0.9791	Accept H ₀
Sample C (dry) and E (dry) 0.2741 0.6426 Accept H_0 Sample C (dry) and F (dry) -0.4769 0.679 Accept H_0 Sample C (dry) and G (dry) -0.3951 0.6502 Accept H_0 Sample C (wet) and D (wet) -0.5587 0.7067 Accept H_0 Sample C (wet) and D (wet) -0.5587 0.7067 Accept H_0 Sample C (wet) and E (wet) -1.0073 0.8332 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (dry) and E (dry) -0.5119 0.6586 Accept H_0 Sample D (dry) and F (dry) -0.5219 0.6944 Accept H_0 Sample D (dry) and G (dry) -0.4468 0.6685 Accept H_0 Sample D (wet) and F (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (wet) -0.4422 0.6669 Accept H_0 Sample D (wet) and F (dry) -0.1174 0.5423 Accept H_0 Sample E (dry) and G (dry) 0.0028 0.4989 Reject H_0 Sample E (wet) and G (wet)	Sample C (dry) and D (dry)	0.0236	0.4908	Reject Ho
Sample C (ary) and F (ary) -0.4769 0.679 Accept H_0 Sample C (ary) and G (ary) -0.3951 0.6502 Accept H_0 Sample C (vet) and D (vet) -0.5587 0.7067 Accept H_0 Sample C (vet) and D (vet) -0.5587 0.7067 Accept H_0 Sample C (vet) and E (vet) -1.0073 0.8332 Accept H_0 Sample C (vet) and F (vet) -0.9737 0.8253 Accept H_0 Sample D (wet) and G (vet) -0.9085 0.8092 Accept H_0 Sample D (ary) and E (ary) -0.4189 0.6586 Accept H_0 Sample D (ary) and F (dry) -0.5219 0.6944 Accept H_0 Sample D (ary) and G (ary) -0.4468 0.6685 Accept H_0 Sample D (wet) and F (vet) -0.4422 0.6669 Accept H_0 Sample D (wet) and F (dry) -0.1174 0.5457 Accept H_0 Sample E (ary) and G (dry) -0.01028 0.4989 Reject H_0 Sample E (wet) and G (wet) 0.1106 0.4569 Accept H_0 Sample E (wet) and G (wet)	Sample C (dry) and E (dry)	0.2741	0.6426	Accept H _a
Sample C (ary) and G (ary) -0.3951 0.6502 Accept H_0 Sample C (wet) and D (wet) -0.5587 0.7067 Accept H_0 Sample C (wet) and E (wet) -1.0073 0.8332 Accept H_0 Sample C (wet) and F (wet) -0.9737 0.8253 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (drv) and E (drv) -0.4189 0.6586 Accept H_0 Sample D (drv) and E (drv) -0.4189 0.6685 Accept H_0 Sample D (drv) and G (drv) -0.4468 0.6685 Accept H_0 Sample D (wet) and G (drv) -0.4422 0.6694 Accept H_0 Sample D (wet) and F (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and G (wet) -0.3734 0.6423 Accept H_0 Sample E (dry) and G (dry) -0.1174 0.5457 Accept H_0 Sample E (wet) and G (dry) 0.0028 0.4989 Reject H_0 Sample E (wet) and G (wet) 0.4754 0.4318 Accept H_0 Sample E (wet) and G (wet)	Sample C (dry) and F (dry)	-0.4769	0.679	Accept H ₀
Sample C (wet) and D (wet) -0.5587 0.7067 Accept H_0 Sample C (wet) and E (wet) -1.0073 0.8332 Accept H_0 Sample C (wet) and F (wet) -0.9737 0.8253 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (drv) and E (drv) -0.4189 0.6586 Accept H_0 Sample D (drv) and E (drv) -0.4189 0.6586 Accept H_0 Sample D (drv) and G (drv) -0.4468 0.6685 Accept H_0 Sample D (drv) and G (drv) -0.4468 0.6699 Accept H_0 Sample D (wet) and F (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (drv) -0.4422 0.6669 Accept H_0 Sample D (wet) and G (wet) -0.3734 0.6423 Accept H_0 Sample E (dry) and G (dry) 0.0028 0.4989 Reject H_0 Sample E (wet) and G (dry) 0.0028 0.4989 Reject H_0 Sample E (wet) and G (wet) 0.4754 0.4318 Accept H_0	Sample C (drv) and G (drv)	-0.3951	0.6502	Accept H ₀
Sample C (wet) and E (wet) -1.0073 0.8332 Accept H_0 Sample C (wet) and F (wet) -0.9737 0.8253 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (dry) and G (dry) -0.4189 0.6586 Accept H_0 Sample D (dry) and G (dry) -0.4468 0.6685 Accept H_0 Sample D (dry) and G (dry) -0.4468 0.6685 Accept H_0 Sample D (wet) and E (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (wet) -0.4422 0.6669 Accept H_0 Sample D (wet) and G (wet) -0.3734 0.6423 Accept H_0 Sample E (dry) and G (dry) -0.1174 0.5457 Accept H_0 Sample E (wet) and G (dry) 0.0028 0.4989 Reject H_0 Sample E (wet) and G (dry) 0.1106 0.4569 Accept H_0 Sample F (dry) and G (dry) 0.0689 0.4731 Accept H_0 Sample F (dry) and G (dry)	Sample C (wet) and D (wet)	-0.5587	0.7067	Accept H _a
Sample C (wet) and F (wet) -0.9737 0.8253 Accept H_0 Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (dry) and E (dry) -0.4189 0.6586 Accept H_0 Sample D (dry) and F (dry) -0.5219 0.6944 Accept H_0 Sample D (dry) and G (dry) -0.4468 0.6685 Accept H_0 Sample D (wet) and E (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (wet) -0.4462 0.6669 Accept H_0 Sample D (wet) and G (wet) -0.3734 0.6423 Accept H_0 Sample E (dry) and G (dry) -0.1174 0.5457 Accept H_0 Sample E (wet) and G (dry) 0.0028 0.4989 Reject H_0 Sample E (wet) and G (dry) 0.1106 0.4569 Accept H_0 Sample F (dry) and G (dry) 0.0689 0.4731 Accept H_0 Sample F (dry) and G (dry) 0.0689 0.4731 Accept H_0	Sample C (wet) and E (wet)	-1.0073	0.8332	Accept H ₀
Sample C (wet) and G (wet) -0.9085 0.8092 Accept H_0 Sample D (åry) and E (åry) -0.4189 0.6586 Accept H_0 Sample D (åry) and F (åry) -0.5219 0.6944 Accept H_0 Sample D (åry) and G (åry) -0.4468 0.6685 Accept H_0 Sample D (åry) and G (åry) -0.4468 0.6685 Accept H_0 Sample D (wet) and G (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (wet) -0.4422 0.6669 Accept H_0 Sample D (wet) and F (wet) -0.4422 0.6669 Accept H_0 Sample D (wet) and G (wet) -0.3734 0.6423 Accept H_0 Sample E (åry) and G (åry) -0.1174 0.5457 Accept H_0 Sample E (åry) and G (åry) 0.0028 0.4989 Reject H_0 Sample E (wet) and G (wet) 0.4754 0.4318 Accept H_0 Sample E (wet) and G (wet) 0.4731 Accept H_0 Sample F (åry) and G (åry) 0.0689 0.4731	Sample C (wet) and F (wet)	-0.9737	0.8253	Accept Ha
Sample D (drv) and E (drv) -0.4189 0.6586 Accept H_0 Sample D (drv) and F (drv) -0.5219 0.6944 Accept H_0 Sample D (drv) and G (drv) -0.4468 0.6685 Accept H_0 Sample D (drv) and G (drv) -0.4468 0.6685 Accept H_0 Sample D (wet) and E (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (wet) -0.4422 0.6669 Accept H_0 Sample D (wet) and F (wet) -0.3734 0.6423 Accept H_0 Sample E (drv) and G (wet) -0.3734 0.6423 Accept H_0 Sample E (drv) and G (drv) -0.0174 0.5457 Accept H_0 Sample E (drv) and G (drv) 0.0028 0.4989 Reject H_0 Sample E (wet) and G (wet) 0.4754 0.4318 Accept H_0 Sample E (wet) and G (wet) 0.0689 0.4731 Accept H_0 Sample F (wet) and G (drv) 0.0689 0.4731 Accept H_0	Sample C (wet) and G (wet)	-0.9085	0.8092	Accept Ha
Sample D (ary) and F (ary) -0.5219 0.6944 Accept H_0 Sample D (ary) and G (ary) -0.4468 0.6685 Accept H_0 Sample D (wet) and G (ary) -0.4468 0.6685 Accept H_0 Sample D (wet) and E (wet) -0.5235 0.6949 Accept H_0 Sample D (wet) and F (wet) -0.4422 0.6669 Accept H_0 Sample D (wet) and F (wet) -0.3734 0.6423 Accept H_0 Sample E (ary) and F (wet) -0.1174 0.5457 Accept H_0 Sample E (ary) and G (ary) 0.0028 0.4989 Reject H_0 Sample E (wet) and G (wet) 0.4754 0.4318 Accept H_0 Sample E (wet) and G (ary) 0.0689 0.4731 Accept H_0 Sample F (wet) and G (ary) 0.0689 0.4731 Accept H_0	Sample D (drv) and E (drv)	-0.4189	0.6586	Accept H ₀
Sample D (dry) and G (dry) -0.4468 0.6685 Accept H_{a} Sample D (wet) and E (wet) -0.5235 0.6949 Accept H_{a} Sample D (wet) and F (wet) -0.4422 0.6669 Accept H_{a} Sample D (wet) and F (wet) -0.3734 0.6423 Accept H_{a} Sample D (wet) and G (wet) -0.3734 0.6423 Accept H_{a} Sample E (dry) and F (wet) -0.1174 0.5457 Accept H_{a} Sample E (dry) and G (dry) 0.0028 0.4989 Reject H_{a} Sample E (wet) and G (wet) 0.4754 0.4318 Accept H_{a} Sample E (wet) and G (wet) 0.4754 0.4318 Accept H_{a} Sample F (wet) and G (dry) 0.0689 0.4731 Accept H_{a} Sample F (wet) and G (dry) 0.0689 0.4731 Accept H_{a}	Sample D (dry) and F (dry)	-0.5219	0.6944	Accept H ₀
Sample D (wet) and E (wet) -0.5235 0.6949 Accept H ₀ Sample D (wet) and F (wet) -0.4422 0.6669 Accept H ₀ Sample D (wet) and G (wet) -0.3734 0.6423 Accept H ₀ Sample D (wet) and G (wet) -0.3734 0.6423 Accept H ₀ Sample E (dry) and G (dry) -0.1174 0.5457 Accept H ₀ Sample E (dry) and G (dry) 0.0028 0.4989 Reject H ₀ Sample E (wet) and G (wet) 0.1106 0.4569 Accept H ₀ Sample E (wet) and G (wet) 0.4754 0.4318 Accept H ₀ Sample F (wet) and G (dry) 0.0689 0.4731 Accept H ₀ Sample F (wet) and G (dry) 0.0689 0.4731 Accept H ₀	Sample D (drv) and G (drv)	-0.4468	0.6685	Accept H ₀
Sample D (wet) and F (wet) -0.4422 0.6669 Accept H ₀ Sample D (wet) and G (wet) -0.3734 0.6423 Accept H ₀ Sample D (wet) and G (wet) -0.1174 0.5457 Accept H ₀ Sample E (dry) and G (dry) -0.1174 0.5457 Accept H ₀ Sample E (dry) and G (dry) 0.0028 0.4989 Reject H ₀ Sample E (wet) and F (wet) 0.1106 0.4569 Accept H ₀ Sample E (wet) and G (wet) 0.4754 0.4318 Accept H ₀ Sample F (dry) and G (dry) 0.0689 0.4731 Accept H ₀ Sample F (wet) and G (dry) 0.0689 0.4731 Accept H ₀	Sample D (wet) and E (wet)	-0.5235	0.6949	Accept H ₀
Sample D (wet) and G (wet) -0.3734 0.6423 Accept H ₀ Sample E (dry) and F (dry) -0.1174 0.5457 Accept H ₀ Sample E (dry) and G (dry) 0.0028 0.4989 Reject H ₀ Sample E (wet) and G (wet) 0.1106 0.4569 Accept H ₀ Sample E (wet) and G (wet) 0.4754 0.4318 Accept H ₀ Sample E (wet) and G (wet) 0.4754 0.4318 Accept H ₀ Sample F (dry) and G (dry) 0.0689 0.4731 Accept H ₀ Sample F (wet) and G (dry) 0.0689 0.4731 Accept H ₀	Sample D (wet) and F (wet)	-0.4422	0.6669	Accept H ₀
Sample E (dry) and F (dry) -0.1174 0.5457 Accept H ₀ Sample E (dry) and G (dry) 0.0028 0.4989 Reject H ₀ Sample E (wet) and G (dry) 0.1106 0.4569 Accept H ₀ Sample E (wet) and G (wet) 0.1106 0.4569 Accept H ₀ Sample E (wet) and G (wet) 0.4754 0.4318 Accept H ₀ Sample F (dry) and G (dry) 0.0689 0.4731 Accept H ₀ Sample F (wet) and G (dry) 0.0689 0.4731 Accept H ₀	Sample D (wet) and G (wet)	-0.3734	0.6423	Accept H ₀
Sample E (dry) and G (dry) 0.0028 0.4989 Reject H ₀ Sample E (wet) and F (wet) 0.1106 0.4569 Accept H ₀ Sample E (wet) and G (wet) 0.4754 0.4318 Accept H ₀ Sample F (wet) and G (wet) 0.4754 0.4318 Accept H ₀ Sample F (dry) and G (dry) 0.0689 0.4731 Accept H ₀ Sample F (wet) and G (wet) 0.0689 0.4731 Accept H ₀	Sample E (dry) and F (dry)	-0.1174	0.5457	Accept H ₀
Sample E (wet) and F (wet) 0.1106 0.4569 Accept H _a Sample E (wet) and G (wet) 0.4754 0.4318 Accept H _a Sample F (drv) and G (wet) 0.0689 0.4731 Accept H _a Sample F (drv) and G (drv) 0.0689 0.4731 Accept H _a Sample F (drv) and G (wet) 0.0689 0.4731 Accept H _a	Sample E (dry) and G (dry)	0.0028	0.4989	Reject Ho
Sample E (wet) and G (wet) 0.4754 0.4318 Accept H ₀ Sample F (dry) and G (dry) 0.0689 0.4731 Accept H ₀ Sample F (dry) and G (dry) 0.0689 0.4731 Accept H ₀ Sample F (dry) and G (dry) 0.0689 0.4731 Accept H ₀	Sample E (wet) and F (wet)	0.1106	0.4569	Accept Ha
Sample F (dry) and G (dry) 0.0689 0.4731 Accept H ₀ Sample F (wet) and G (wet) 0.0689 0.4731 Accept H ₀	Sample E (wet) and G (wet)	0.4754	0.4318	Accept H ₀
Sample F (wet) and G (wet) 0.0689 0.4731 Accent Ha	Sample F (drv) and G (drv)	0.0689	0.4731	Accept Ha
	Sample F (wet) and G (wet)	0.0689	0.4731	Accept H ₀

It is very obvious from Table 9 that the values of the times for the volume of water collected or recorded at intervals of 100mls are very much correlated.

We will use the test of hypothesis about differences for dependent samples since the samples are dependent on each other (dry and wet samples). Again, the R software was used to conduct the hypothesis testing about the differences in the values of the dry and wet. The values of the t distribution and p values are recorded in Table 10. We conduct the hypothesis testing about the differences in the times of the independent samples of all groups (for instance, dry of Group A and dry of Group B, etc). The values of the t distribution and p values are recorded in Table 11.

VII. RESULTS AND DISCUSSION

The values of the time recorded in Table 9 shows that the times of the volume of water collected at an interval of 100mls are highly correlated. Figure 1 shows that the time of first drop differs with the different groups of soil samples. It increases across the groups and is steady for group E and F. Table 10 shows that the null hypothesis H_0 in all cases was accepted in the dependent samples. For instance, a comparison of the times of the volume of water collected at an interval of 100mls for sample A (dry) and the saturated sample A (wet) gives a p value of 0.165. This value is greater than 0.05 and so we accept the null hypothesis that the time for the volume of water collected at an interval of 100mls for sample A is greater than 0.105 and so we accept the null hypothesis that the time for the volume of water collected at an interval of 100mls for sample A. The same is the case for all samples in each group.

Table 11 also shows that the null hypothesis H_0 was accepted in most cases in the independent samples. The null hypothesis was rejected in the comparison of sample B (dry) and F (dry), sample C (dry) and D (dry) and sample E (dry) and G (dry). For instance, a comparison of the times of the volume of water collected at an interval of 100mls for sample A (dry) and sample B (dry) gives a p value of 0.9067. This value is greater than 0.05 and so we accept the null hypothesis that the time for the volume of water collected at an interval of 100mls for sample A (dry sample) is the same for that collected for the sample B (dry). The comparison of the times of the volume of water collected at an interval of 100mls for sample C (dry) and sample D (dry) gives a p value of 0.0236. This value is less than 0.05 and so we reject the null hypothesis that the time for the volume of water collected at an interval of 100mls for sample C (dry sample) is not the same for that collected for the sample D (dry).

VIII. CONCLUSION

The results obtained in this research indicate that water percolation or the time for the first drop differs with the different groups of soil samples. The value of the time for the first drop decreases gradually from sample A to sample G with the percentage increase in medium sand. Consequently, our data analysis shows that there is no difference in the time for the volume of water collected at intervals of 100mls for the dependent samples (dry and wet). It is obvious that the rate of flow of water through the soil samples is the same after the time of the first drop has been recorded. The time for the volume of water collected at intervals for the different samples are the same for both dependent (dry and wet) and for most cases of the independent (both (dry and dry) and (wet and wet)) cases) except for sample B (dry) and F (dry), sample C (dry) and D (dry) and sample E (dry) and G (dry).

We notice that that the time till the first drop varies for both dry and wet samples. This is due to the difference in grain size and particle arrangement. It might also be that for the dry sample, the soil is well disturbed than that of the wet sample. The rate of flow is the same after some water has passed through the samples. The packing arrangement reduces the voids because medium sand with relatively small size tends to occupy the void spaces between the sharp and medium sand mixture, thereby reducing the number of voids and as well as affecting the possible connectively between voids.

REFERENCES

- [1]. Alabo E.A (1985) Hydrological studies of a Typical Reservoir Site. Journal of Earth Science 3; 409-415
- [2]. Agbu P.A and Ojanuga A.G (1989) Properties and classification of soil of Dange area of Sokoto State, Nigeria. Samaru Journal of Agricultural Research 6; 37-47
- [3]. Ande O.T and A.O Ogunkunle (2006). Analysis of high-resolution satellite digital data for land use studies in the derived savanna ecosystem of Nigeria. Ghana Journal of Agric. Science
- [4]. Aruleba J.O and Ogunkunle A.O (2005). Land Degradation Assessment of South-Western Nigeria soils. Nigerian Journal of Soil Science. 15: 57-62
- [5]. Ayodele.O. Oluwole E. A and Joshua V.F (2012). Implication of soil Physical Properties for Agriculture and Environmental Sustainability: A case study an arable land in the Guinea savanna Area of Nigeria. Journal of Educational and Social Research 2 (8) 155-161
- [6]. Craig R. F (1997). Soil Mechanics, E & FN Spon (UWL QC 137.7 C7).
- [7]. Duttmann R, Brunnotte J and Bach M (2013). Spatial analyses of field traffic intensity and modelling of changes in wheel load and ground contact pressure in individual fields during a silage maize harvest. Soil Tillage Research 126: 100-111.
- [8]. Ewulo B.S (2012) Soil characterization and classification at Ikaram-ibrahim cluster village of Ondo state, Nigerian Journal of science
- [9]. Fasmai A.S, and Adeyanju (2006). Suitability classification of some granite soil of humid forest of western Nigeria for rain fed

maize, cassava and swamp rice production. Nigerian Journal of soil science 16: 1-9

- [10]. Fasmai A.S, Omolayo E.O, falodin A.A and Ajayi O.S (2007). Granite derived soil in humid forest of South-western Nigeria, Genesis classification and sustainable management. American-Eurasain Journal of agric and environmental science. 2(2) (189-195)
- [11]. Fasmai A.S (2005). Influence of landslide on the variability of topsoil properties of Alfisol in Southern Nigeria. J. Agric Res. Dev 4, 12-16.
- [12]. Holthusen D, Brandt A.A, Reichert J.M and Rainer H (2018). Soil porosity, permeability and static and dynamic strength parameters under native forest and grassland compared to no – tillage cropping. Soil & Tillage Research 177, 113-124.
- [13]. Houben.H and Guillaud.H (1989). Earth Construction: A Comprehensive Guide, Intermediate Technology Publications.
- [14]. Montgomery D.E (1998). Physical characteristics of soils that encourage SSB breakdown during moisture break; Stabilised soil Research Progress Report SSRPR03, Development Technology unit, School of Engineering, University of Warwick, United Kingdom.
- [15]. Nimmo J.R (2004). Porosity and pore size distribution, Encyclopaedia of soils in the Environment: London, Elsevier Vol 3, 295-303.
- [16]. Nnaji G.U, Asadu C.I.A and Mbagwu J.S.C (2002). Evaluation of the Physic-chemical properties of soils under selected agricultural land utilization types. Agro science Journal of tropical Agriculture, food Environment and Extension 3:27-33
- [17]. Obiefuna G.I, Oreagbume I.M and David C. (2010). Geotechnical Evaluation of soil in Numan and its Environ. Northeast Nigeria. Continental J. Earth science 5 (1) 20-31
- [18]. Ogunkunle A.O and Onasanya O.S (1993). Prospects of numerical correlation of soils. A comparism of cluster and principal component analysis. Journal of Agricsci and Tech 2: 101-110
- [19]. R Core Team (2014), R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.
- [20]. Singh B.R and Babojo G.A (1989) Characteristics of the soil in Dundaye District, the Fadama soils of the University Dry land farm. Nigerian Journal of basic applied science 3 (1) 7-16
- [21]. Solarin L.O and Ayolagba G.A (2006). Characterization and classification of dust polluted soils in Sagamu area, South-western Nigeria. Nigerian Journal of soil science. 16:24-34
- [22]. Tokunaga, H. T. (2016). Fundamental statistics for the social and behavioural sciences. Thousand Oaks, CA, US: Sage Publications, Inc.