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 Abstract - Road traffic crashes are count (discrete) in nature, 

when modelling discrete data for characteristics and prediction 

of an event when dependent variable are non-negative and 

have integer values, it is appropriate to use Poisson regression. 

However the condition that the mean and variance of Poisson 

are equal poses a great constraints. Data on road traffic 

crashes from Federal Road Safety Commission (FRSC) Ekiti 

state Nigeria were analyzed using R software package. The 

result from the three existing model were compared using AIC, 

BIC and Deviance, with Generalized negative binomial 

showing an AIC value of 414.79 and BIC value of 490.8873 and 

negative binomial showing AIC value of 476.8 and BIC value 

of 495.59 and Poisson regression showing AIC value of 587.312 

and BIC value of 589.321.Having shown a smaller value of AIC 

and BIC, Generalized negative binomial regression was 

consider a better model when analyzing road traffic crashes in 

Ekiti State Nigeria. 

Keywords-Poisson regression model, Negative binomial 

regression, Generalized negative binomial regression. 

I. INTRODUCTION 

he demand for transportation is rapidly increasing in the 

age of globalization, mobility is the key driver of 

economic growth, and hence expansion within 

transportation is a necessity. The increasing important of 

transportation does not only demand new standard for 

efficiency but also for safety precaution[11].When 

modelling count data for characteristics and prediction of an 

event where the dependent variable are non-negative and 

integer value, it is appropriate to use Poisson regression 

model but according to[6] Poisson regression is not 

appropriate when data exhibit over dispersion, and negative 

binomial addresses the issue of over-dispersion by including 

a dispersion parameter to accommodate the unobserved 

heterogeneity in the data [4]. Various factors such as data 

clustering and misspecifications of model lead to over 

dispersion in the data. Another importance of negative 

binomial is that, it is the mixture of family of Poisson 

distribution with gamma mixing weight[7] .Generalized 

negative binomial reduces to binomial or negative binomial 

distribution because the mean and the variance are 

approximately equal which is an advantage over the Poisson 

regression[8] 

II. METHODS 

A. Poisson Regression Model 

  The Poisson regression models are generalized linear 

models (GLM) with logarithm as the link function. In 

statistics the generalized linear model (GLM) is a flexible 

generalization of ordinary linear regression that allows for 

response variables that have error distribution models other 

than a normal distribution. A generalized linear model is 

made up of a linear predictor 

0 1 1 ...
ii i p p iy x x                                          (1) 

And two functions, A Link function that describes the mean,  

( )i iE y  Depends on the linear predictor ( )i ig y                                                                    

(2) 

 A variance function that describes the variance, 

( )iV y Depends on the mean ( ) ( )iV y V                                                                                    

(3) 

Suppose iy ~ Poisson Then, ( )i iE y  and ( )i iV y                                                                    

(4) 

The GLM generalizes linear regression by allowing the 

linear model to be related to the response variable via a link 

function. Link function here is the function that links the 

linear model in a design matrix and the Poisson distribution 

function.  

Consider a linear regression model given as

0 1 1 1,...,i iy x k                                             (5) 

If 0 1 1 1,...,i iy x k      ,  

nx  is a vector of independent variable then 

𝑌=𝑋𝛽+𝜀                                                                                    (6)  

Where 𝑋is an ( 1)n k  vector of independent variables 

or predictor, and a column of 1’s 𝛽 𝑖𝑠 𝑎 ( 1)k  by 1 vector 

of unknown parameters and 𝜀 is an 𝑛×1 

𝑣𝑒𝑐𝑡𝑜𝑟𝑜𝑓random error terms 𝑤𝑖𝑡ℎ zero mean .Hence 

( / )E Y X x                                                                (7) 

Recall that, for Generalized Linear Models, we use the link 

function to transform Y: 

That is, 

T 
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(Y) log ( )eG Y                                                            (8) 

Therefore, this can be written more compactly as 

log (Y/ )e E X x                                                       (9) 

Thus, given a Poisson regression model with parameter 𝛽 

and an input vector 𝑥, the predicted mean of the associated 

Poisson distribution is given by 

( / ) xE Y X e 
                                                             

(10)
 

If iy , are independent observations with corresponding 

values ix  of the predicted variables, then β can be 

estimated by maximum likelihood. The maximum-

likelihood estimates lack a closed-form expression and must 

be found by numerical methods. The probability surface for 

maximum-likelihood Poisson regression is always convex, 

making Newton-Raphson or other gradient-based methods 

appropriate estimation techniques.  

Therefore, let iy  be the random variable, that takes non-

negative values, 𝑖=1,2,…,𝑛, Where n is thenumber of 

observations. Since iy  follows a Poisson distribution, the 

probability mass function is (pmf) 

( )
( )

!

iy

i i
i i

i

e
P Y y

y

 
  , 0,1,2,3...iy                 (11) 

P(Y ) (y)
y!

ye
y f



    , 0,1,2,3...iy            (12) 

With mean and variance as 

(y) (y)E V                                                           (13) 

Where the conditional mean or predicted mean of the 

Poisson distribution is giving in (10) above specified by 

( ) x

i iE Y e    (Same as the mean of the Poisson) 

X  is the value of the explanatory variable and

1 2( , ,..., )q     are the unknown k-dimensional 

vector of regression parameter. 

The mean of the predicted Poisson distribution is given by 

( / )E Y X  and variance of iy  as ( / )V Y X . 

The parameter   can be estimated by maximum likelihood 

estimation method as follows; 

1

( )
( )

!

iyn
i i

i i

e

y

 





                                                  (14) 

The log-likelihood function is given by 

 
1

( ) ln ln !
n

i i i i

i

ln y y  


                            (15) 

Substituting
x

i e    in the equation above, we have 

1

( ) ( ) ln !
n

x

i i

i

ln y x e y 


                            (16) 

Differentiating equation (17) with respect to   and equating 

to zero, we have 

1

ln ( )
0

n
x

i

i

y e x

 


    




 i=1,2,…,k                (17) 

 
'

2
'

'
1

i

n
x

i i

i

L
e x x



  


 

 
                                               (18) 

 
'

2

'
1

; , 1,2...i

n
x

ij ii

i

L
e x x j i p



  


  

 
                     (19) 

 
'

2

'
1

; , 1,2...i

n
x

ij ii

ij i

L
E e x x j i p



  

 
      
          (20) 

And the information matrix is; 

 
'

'

1

i

n
x

i i

i

k e x x




                                                           (21) 

 
'

2

'
1

i

n
x

ij ii

ij i

L
e x x



  


 

 
                                          (22) 

 
'

2

1'
ixn

ji i ij ii

j i

L
k E e x x



 


 
      

                    (23) 

 
'

3

1
ixn

jir i ij ii

j i r

L
k e x x



  


 
       

                 (24) 

 
'

( )

1

; , , 1,2,3...i

n
ji xr

ij ij ii ir

ir

k
k e x x x j l r p



 


   


 (25) 

B. Negative Binomial Regression (NBR) 

The negative binomial distribution can be viewed 

as a generalization of the Poisson distribution. The negative 

binomial can be viewed as a Poisson distribution where the 

Poisson parameter is itself a random variable, distributed 

according to a Gamma distribution. Thus the negative 

binomial distribution is known as Poisson-Gamma mixture.  

As the most common alternative to Poisson regression, the 

negative binomial regression addresses the issue of over-
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dispersion by including a dispersion parameter to 

accommodate the unobserved heterogeneity in the count 

data. The negative binomial regression (Poisson-Gamma) 

can also be considered as generalization of Poisson 

regression. As its name implied, the negative binomial 

(Poisson-gamma) is a mixture of two distributions 

The probability mass function for negative binomial 

regression is 

( )
( ; , )

( ) ( 1)

iy

i i
i i

i i i

y
f y

y



 
 

    

    
    
       

                                                                      

(26) 

The mean and variance are : 

( ; , )i i iE y                                                               

(27) 

2

var( ; , ) i
i i iy


  


                                              (28) 

The next steps consist of defining the log-likelihood 

function and it can be shown that,[3], page 81) 

 
 

 
1 1

1

1
0

ln
iy

i

j

y
In j






 





  
   
 
 

                         (29) 

C. Generalized Negative Binomial 

The generalized negative binomial distribution was 

developed by compounding the negative binomial 

distribution with another parameter which takes into 

account the variations in the mean and the variance. The 

parameter is such that both the mean and the variance are 

positively correlated with the value of the parameter, though 

the variance increases or decreases faster than the mean. 

The generalized negative binomial distribution reduces to 

the binomial or the negative binomial distribution as 

particular cases and converges to a Poisson-type distribution 

in which the variance may be more than, equal to or less 

than the mean, depending upon the value of the 

parameter[8]. The model is defined as follows; 

1

! ( 1)

n x n x

x x n x x

 



    
  

    
                              (32) 

Taking
(1 )

z 





 the expression given a general 

identity as,

0

1 ( , , )
x

b x n 




 then 

( , , ) (1 ) , 0, 1,2,3,...
! ( 1)

x n x xn n x
B x n n x

x n x x






  



  
   

   

                                            (33) 

( , , ) 0,b x n x n      Such that 0mn    

Where ( ) ( 1) ( 1)n n a b n     , the function 

( ) ( ; 1, ), 0,1,2...ax

n NBg x f n b e n    can be thought 

as the solution of chapman Kolmogorov differential 

equation with transition rate as ( ) 0n n   that linking 

increasing from the previous comment results proved by  

[5] then the solution of the system of the differential 

equation is given by 

, ( ) 1g (x)l n x nP  ( 1; 1), )ax

NBf n b e    

   
1 11

1 , 1
1

b n
ax ax

b n
e e n

n

 
 

  
   

 
                (34) 

0

1

( ) 1

0

1
( )

0

1
{Y(t) n}

1

1

a t b

n
a t

b n
P e

n

e e dt



 

  

  

  
       

  


                (35) 

0
1

( )( 1) ( )

0

0

1
1

1

t
nta t t b a t

b n
e e e dt

n

 
    

  
      

                                                                        

(36) 

And substituting x = t in the last integral it follows that; 

 

0 0( ( 1))x

0

0

1

1
{Y(t) n}

1

1

t

t a b

n
ax

b n
P e e

n

e dx

    




  
   

 




       (37) 

 0 0
1

1 /

0

0

1
( ) 1

1

t
n

t b aax ax
b n

e e e dx
n

 


   
  

  
 

 (38) 

Finally consider
axy e  in the integral of n≥1 that 

0
1

0

1

/ [1 ]0
1

{Y(t) n}
1

n

at

t
b a y

e

b n e
P y

n a


 




 

  
   

 
  (39) 

Hence the probability distribution function of the 

generalized negative binomial model is determined by  

0{Y(t) 0}
t

P e


   And 

0
1

0

1

/ [1 ]0
1

{Y(t) n}
1

n

at

t
b a y

e

b n e
P y

n a


 




 

  
   

 
 (40) 

Mean    
 

2
1 ...

1

n
n


  


     
  

  (41) 
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 

 
2 3

1

1

n 








                                                           (42) 

Consider Y1,Y2,…,Yn a random sample of Y(1) whose 

distribution is given by; 

0

1

( , , ) ( )
n

i i

i

L a b P Y y


                                         (43) 

: 0 : 0

( ) ( )
i i

i i i i

i y i y

P Y y P Y y
 

                                       (44) 

0
1

0 0

1

/ [1 ]0

: 0 1

1

1

yi

at
i

tn
i b a x

i y i i e

b y e
e x dx

y a


  




  

 

  
 

 
   (45) 

0 0 0 0 0

0

0
1

0

( ) ( )

0

: 0

1

/ [1 ]0

1

1
i

yi

at

n n n n n n
i

n n
i y i

t
b a x

e

b ye e

ya

e
x dx

a

 






 



   





 

  
  

 




                  (46) 

0 0 0

0

0
1

0

( )

0

: 0

1

/ [1 ]0

1

1
i

yi

at

n n n n
i

n n
i y i

t
b a x

e

b ye

ya

e
x dx

a








 



 





 

  
  

 




                                 (47)   

WhereY1,Y2,…,Yn  are observed value of 

0 1( ), l(0) yn

j iY i n  is the number of zero in the 

sample 

0 0, 0a    And 1b    thus the likelihood function is 

obtained by 

1
0

0 0 0 0

1

/ [1 ]

( , , ) ( )(log( log( ))

1
log

1

yi

at

i b a x

i e

l a b n n n a

b y
x dx

y



  





 

    

  
 

 
 

      (48) 

To improve the performance of the maximization and 

logarithm used to obtain the maximum likelihood estimation 

the following parameterization will be considered

0 0log , log( ), log( 1)a bl l a l b     hence the 

likelihood function for the parameterization is expressed as 

follows  

0

10

, 0 0

: 0

1

1

exp( )

2
( , ) ( )( ) log

1

(1 )

b

i

l l lb a
i

la

l

l i

o a b a

i y i

ye e

e

e y
l l l l ne n n l l

y

x x dx
 







  
      

 







      (49) 

By substituting equation (29) into (26), the log-likelihood 

can be computed using the equation 

1 1

1

{ln[ ( )] ln[ ( 1) ln(1 )

ln(1 ) ln( ) ln( )]

n

i i i

i

i i i i i

L y y

y y y

  

  

 



       

   

  (50) 

Therefore, the log-likelihood function become [3], page 81) 

1
1 1

0

1

ln( ln( ( 1) ( )

ln(1 ) ln( ) ln( )

iy

n
i i

j

i

i i i i

j y y
L

y y

 

  


 





  
       

   
 

   




                    (51) 

D. A Multicollinearity Test 

In statistics muticollinearity is a phenomenon in which one 

predictor variable in multiple regression model can be 

linearly predicted from the other with a substantial degree of 

accuracy. Multicollinearity occur when there are high 

correlation between two or more predictor variable, which 

skewing the result in regression model. One of the formal 

ways of detecting muticollinearity is by the use of the 

variance inflation factor (VIF).VIF is the quotient of the 

variance in a model with multiple term.it qualifies the 

severity of muticollinearity in the least square regression 

analysis. A VIF value of 10 and above indicates a 

multicollinearity problem.  

2

j

I
VIF

R
  

Where 
2

jR is the coefficient of determination of a regression 

of explanatory variable j on all the other explanatory. 

Tolerance is a useful tool for diagnosing muticollinearity 

which happen when variable are too closely related, and 

tolerance is associated with each independence variable and 

range from 0 to 1.Allison (1990) noted that there is not a 

strict cutoff for tolerance, but suggests a tolerance below 

0.40 is cause for concern.[10] stated that any value under 

0.20 suggest serious muticollinearity in the model. 

High tolerance (e.g. 0.84) =low multicollinearity 

Low tolerance (e.g. 0.19) =high muticollinearity 

E. Akaike Information criterion (AIC) 

The Alkaike information criterion (AIC) is a measure of the 

relative quality of a statistical model for a given set of data. 

That is given a collection of model for the data, AIC 

estimates the quality of each model, relative to each of the 

model. Hence AIC provides a mean for model selection, 

given a set of candidate models for the data, the preferred 

model is the one with the minimum AIC value(i.e the 

smaller the AIC value, the better the model).it was also 

mention that Akaike Information criterion is one of the most 

commonly used fit statistics. It has a formula 

 AIC (l) = -2(L-K) 
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 AIC (n) =2/n (L-K) 

Note that K  is the number of predictors including the 

intercept, AIC is usually outputted by statistical software 

application 

F. Bayesian Information criterion (BIC) 

It was also mentions that Bayesian information criterion as 

another common fit statistic. It has three formula 

BIC(R) =D-(df) In (n) 

BIC (L) =2L+Kin (n) 

BIC (Q) =2/n(L-Kin(k) 

III. RESULT AND DISCUSSION 

A secondary data was collected from Federal Road 

Safety Commission (FRSC),Ekiti Sector Command Ado-

Ekiti, Nigeria. Monthly data of the number of traffic fatality 

was collected from January 2010 – December 2018 and the 

data was analysis by R software package 

The data was analysis using R software package. 

Before performing the analysis on the three models used, 

testing the data for multicollinearity was conducted. The test 

result are shown in table A below: 

TABLE 1: COLLINEARITY STATISTICS 

Model Tolerance VIF 

Season(Month of the Year) 1.0125 0.9876 

Number of causes 4.8826 0.2048 

Vehicles Involve 4.0477 0.2471 

Number Injured 1.8804 0.5318 

Number killed 1.233 0.8108 

Table 1 shows that all the variables have VIF values < 10, 

using rule of thumb since they are all less than 10, there is 

no multicollinearity. Thus all the variable can be Included in 

the subsequent analyses and modelling with the Poisson 

regression, Negative Binomial regression and Generalized 

Negative Binomial. 

TABLE 2: POISSON REGRESSION 

Parameters Estimate Standard Error Z value Pr(>|z|) 

Intercept 1.016912 0.165990 6.126 8.99e-10 

Season(Month of 
the Year) 

-0.008622 0.010712 -0.805 0.42085 

Number of causes 0.017069 0.011436 1.493 0.00312 

Vehicles Involve 0.045618 0.005069 8.999 < 2e-16 

Number Injured 0.011159 0.003550 3.143 0.00167 

Number killed -0.003965 0.014258 -0.278 0.78096 

Table 2 above shows the result of the Poisson regression 

using the p value in the last column season, number of 

causes, number of vehicle involved , number injured and  

have significant effect on road traffic crashes while others 

has no significant effect. 

TABLE 3: NEGATIVE BINOMIAL REGRESSION 

Parameters Estimate Standard Error Z value Pr(>|z|) 

Intercept 1.016903 0.165995 6.126 9.01e-10 

Season(Month 

of the Year) 
-0.008622 0.010712 -0.805 0.42087 

Number of 
causes 

0.017069 0.011437 1.492 < 2e-16 

Vehicles 

Involve 
0.045618 0.005069 8.999 < 2e-16 

No Injured 0.011160 0.003551 3.143 0.00167 

No killed -0.003964 0.014258 -0.278 0.78100 

 

Table 3 shows the result of the negative binomial regression 

using the p value in the last column  ; number of causes, 

number of vehicle involved , number injured have 

significant effect on road traffic crashes while others have 

no significant effect. 

TABLE 4: GENERALIZED NEGATIVE BINOMIAL 

Parameters Estimate 
Standard 

Error 
Z 

value 
Pr(>|z|) 

Intercept 0.4937806 0.0132060 37.391 < 2e-16 

Season(Month 

of the Year) 
0.0044566 0.0013295 3.352 0.00113 

Number of 
causes 

0.0188368 0.0011600 16.238 < 2e-16 

Vehicles 

Involve 
0.0332233 0.0005804 57.237 < 2e-16 

No Injured 0.0029701 0.0004539 6.543 
2.45e-

09 

No killed 
-

0.0185590 
0.0011766 

-

15.773 
< 2e-16 

     

Table 4  shows the result of the generalized negative 

binomial regression using the p value in the last column 

season of the year, number of causes, number of vehicle 

involved , number injured and no killed have significant 

effect on road traffic crashes. 

TABLE 5: AIC, BIC AND DEVIANCE VALUES FOR THE THREE 

MODELS 

Model AIC BIC Deviance 

Generalized 

negative 

binomial 

regression 

414.79 460.8873 61.93 

Negative 

binomial 
476.8 495.57 66.927 

Poisson 

regression 
587.3196 589.3208 69.927 

Comparison using AIC and BIC values in table 2,3 and 4 , 

the estimated AIC and BIC for the Poisson regression is 

587.3196 and 589.3208 respectively, whereas it is 476.8 and 

495.57  for Negative binomial and for Generalize Negative 

binomial is 414.79 and 460.8873 respectively. The smallest 
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value of AIC and BIC is the generalized negative binomial 

regression and therefore it is the optimal model. 

IV. DISCUSSION 

Road traffic crashes are count(discrete) in nature, when 

modelling discrete data for characteristics and prediction of 

an event when dependent variable are non-negative and 

integer value it is appropriate using Poisson regression, 

however the condition that mean and variance of Poisson 

regression are equal to each other  poses a great constraints. 

Hence necessitating the use of the Generalized negative 

binomial(GNB) and negative binomial(NBR) models, which 

does not require these constraints that the mean is equal to 

the variance as proxies Data on road traffic crashes from 

Ekiti state command of federal road safety commission 

Nigeria were analysed and the result from the three model 

were compared using Akaike information criterion(AIC) 

and Bayesian information criterion(BIC) and the deviance 

with Generalized negative binomial showing an  AIC value 

of 414.79 , BIC value of 490.8873 and deviance value of 

61.93.The generalized negative binomial regression using 

the p value suggested that  season of the year, number of 

causes, number of vehicle involved , number injured and 

number killed have significant effect on road traffic crashes. 

Negative binomial regression gives an AIC value of 476.8, 

BIC value of 495.57 and deviance value of 66.93. Negative 

binomial regression indicates that value number of causes, 

number of vehicle involved , number injured have 

significant effect on road traffic crashes while others have 

no significant effect.Poison regression showing AIC value 

of 587.3196, BIC value of 589.3208 and deviance value of 

69.93. Poisson regression using the p value season of the 

year, number of causes, ,number of vehicle involved , 

number injured   have significant effect on road traffic 

crashes while others has no significant effect. Since the 

generalized negative binomial regression produced the 

smallest AIC and BIC value, then it can be consider as the 

best model when analysing road traffic crashes in Ekiti 

State, Nigeria. 

V.  CONCLUSION 

Having compared the three models on road traffic crashes in 

Ekiti state Nigeria and the result from the three model were 

compared using AIC and BIC and with Generalized 

negative binomial having the smaller AIC and BIC 

,Generalized negative binomial  was considered as the best 

model for analysing road traffic crashes in Ekiti State, 

Nigeria. 
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