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Abstract: -The paper considered a SIR epidemic model having 
saturation terms and disease induced death which were neglected 
in the previous literature. We determine the basic reproduction 
number of the modified models by Linearization method.  We 
also investigate the effect of disease induced death by providing 
Numerical Simulation using Runge-kutta of order 4 method. The 
results show that saturation term has an appreciable effect than 
disease induced death on the epidemic model. 
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I. INTRODUCTION 

n [1], Stability Analysis of an SIR epidemic model with 
Non-Linear Incidence Rate and Treatment was 

considered.[2], [3] and [4] also studied Mathematical 
modeling and control of infectious disease. Also, [5] and [6] 
investigated the numerical simulation of epidemic 
model.[7],[8] and[9] analyzed the Disease free Equilibrium 
(DFE)and concluded that it is Locally and Globally 
asymptotically stable. 

In this paper, we considered an SIR epidemic model with 
saturation terms and disease induced death, where 

qp IS

KSI

 1
 is the nonlinear incidence rate with 

transmission rate K, and 1>q=p , p and q being positive 

constant,  and are the parameters which measure the 

effects of Sociological, Physiological or other mechanisms.  

II. THE BASIC MATHEMATICAL MODEL 

In this paper, model of [1] was adopted and modified by 
removing treatment term  and incorporating disease induced 
death m . 

The Existing model of [1] 
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2.1 Proposed Model 
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2.2 Disease Free Equilibrium (DFE) 

At disease free equilibrium, 0R0,=   
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2.3 The Endemic Equilibrium 

At endemic equilibrium, 2,0  qpI  

Therefore, from equation (2), we have; 
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Also to get *S  from equation (2), we say, 
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Also to get *I  from equation (2), we get;
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2.4 Basic Reproduction Number 0R  

By Linearization, 
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The inverse of v becomes, 

 

2.5 Local Stability of Disease Free Equilibrium 
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The Jacobian matrix becomes, 
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The determinant of matrix becomes, 
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All Eigen values solved at the equilibrium points contain 
negative real part therefore the system is Locally 
Asymptotically Stable 

2.6 Global Stability of Disease Free Equilibrium
 

We consider the Lyapunov function, 

 (10)

 

Hence, the disease free equilibrium is globally asymptotically 
stable. 

2.7 Local Stability of Endemic Equilibrium  

Let 
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The Jacobian matrix becomes, 
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The determinant of matrix 
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We can write the characteristic equation above as; 

 

Where: 

 

   Using the Routh-Hurwitz criterion, it can be seen that all the 
Eigen values of the   characteristics equation above have 
negative real part if and only if : 

0,0,0,0  DBCDCB
 

Hence, it is locally asymptotically stable if and only if 
inequalities above are satisfied 

III. RESULTS AND DISCUSSION
 

m=0.1 

 
Figure 1:  Graph of Susceptible (S), Exposed (E), Infected (I), Recovered (R) 

against time (t) with 
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Figure 2:  Graph of Susceptible (S), Exposed (E), Infected (I), Recovered (R) 

against time (t) with 

4.0,2.0,5.0,5.0,5.0

,50,2.0,19.0,100,1.0
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3.1 Discussion 

From fig 1-2, it shows a simulation result when disease 
induced death is considered. The model of [1] has both 
saturation terms including treatment. The Simulation shows 
that disease induced death is not a better measure for disease 
eradication as shown in the simulation result. The presence of 
saturation terms in the model makes disease induced disease 
death rate less effective.Therefore, other measures like 
Treatment and vaccination including saturation terms would 
have been better. Hence, disease induced death has no 
significant role to play in disease eradication in the presence 
of saturation terms. 
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