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Abstract: - In this paper, the behavior of saturation term on
malaria transmission was investigated.Basic reproduction
number of the modified models was found using next generation
matrix. Theorems were also used to prove the disease free and
endemic equilibria with Local and Global Stabilities. Numerical
Simulation of the effect of the sociological and psychological
parameters or other mechanisms was done for both human and
vectors using Runge-Kutta of order 4 method. Our results reveal
that for proper treatment and eradication of malaria, saturation
term and other factors cannot be over emphasized.
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I. INTRODUCTION

Malaria is a life threatening disease caused by parasites
that are transmitted to people through the bites of
infected female Anopheles mosquito. In [1], simple
mathematical model for malaria transmission was modified.
Also, [2] and [3] considered SEIR model and simulation
between human and vector.

[4] Considered a mathematical model for endemic with
variable human and mosquito population and results showed
that disease free equilibrium is locally asymptotically stable if
the basic reproduction number is less than one.[5],[6],[7] and
[8] discussed the control and simulation of malaria
transmission.

In this paper, we studied behavioral of saturation terms on
mathematical models of malaria transmission for human and
vector. Numerical simulation shows the effect of both
sociological and physiological of some important parameters
in the model.

II. THE BASIC MATHEMATICAL MODEL

In this paper, model [1] was adopted and modified by
incorporating an incidence rate which include saturation term
m
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2.2 Disease Free Equilibrium (DFE)

At Disease Free Equilibrium,
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From equation (2),
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2.3 The Endemic Equilibrium ,BVSV*IV* =1+ mSV* Wayy + uy )EV*
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2.5 Local Stability of Disease Free Equilibrium asymptotically stable.
The Jacobian matrix becomes, 2.6 Global Stability of Disease Free Equilibrium
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Hence the disease free equilibrium is globally asymptotically
stable.

2.7 Local Stability of Endemic Equilibrium
Let
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All Eigen values solved at the endemic equilibrium contain

negative real part. Therefore, the system is locally
asymptotically stable
III. RESULTS AND DISCUSSION
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Figure 1: Graph of Susceptible (SH), Exposed (EH), Infected (IH),
Recovered (RH) against time (t) with

£ =0.1, A=10000, £=0.3,6=0.2, m=0.01,
alH 20.3, a2H :O.l

The graph shows that the lower the saturation term, the lower
the susceptible for human compartment
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Figure 2: Graph of Susceptible (SH), Exposed (EH), Infected (IH),
Recovered (RH) against time (t) with

£ =0.1, A=10000, £=03,0=0.2,m=1.0

oy =03, 0,y =0.1
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The graph shows that the higher the saturation term the higher
the susceptible for human compartment
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Figure 3: Graph of Susceptible (Sv), Exposed (Ev), Infected (Iv) against time
(t) with

B=0.1, A=10000, £=0.3,0=0.2, m=0.01,
a, =03, a,, =0.1

The graph shows that the saturation term is low that makes the
susceptible for vector to become lower because the vectors are
the carrier.
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Figure 4: Graph of Susceptible (Sv), Exposed (Ev), Infected (Iv) against time
(t) with

B =0.1, A=10000, £=0.3, 6 =0.2, m =0.02,
a,, =03, a,, =0.1

The graph shows that the saturation term is low that makes the
susceptible for vector to become lower because the vectors are
the carrier.

IV. CONCLUSION

In this paper, we showed that the model is locally
asymptotically stable if the basic reproduction number is
greater than unity and unstable otherwise. According to our
results, we discovered that malaria can be controlled by
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increasing the saturation term, by reducing the infection rate
between humans and vectors, and through proper sensitization
by health workers, giving out bed nets, insecticide and active
anti malaria drugs.
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