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Abstract: - In this paper, the behavior of saturation term on 
malaria transmission was investigated.Basic reproduction 
number of the modified models was found using next generation 
matrix. Theorems were also used to prove the disease free and 
endemic equilibria with Local and Global Stabilities. Numerical 
Simulation of the effect of the sociological and psychological 
parameters or other mechanisms was done for both human and 
vectors using Runge-Kutta of order 4 method. Our results reveal 
that for proper treatment and eradication of malaria, saturation 
term and other factors cannot be over emphasized. 
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I. INTRODUCTION 

alaria is a life threatening disease caused by parasites 
that are transmitted to people through the bites of 

infected female Anopheles mosquito. In [1], simple 
mathematical model for malaria transmission was modified. 
Also, [2] and [3] considered SEIR model and simulation 
between human and vector. 

[4] Considered a mathematical model for endemic with 
variable human and mosquito population and results showed 
that disease free equilibrium is locally asymptotically stable if 
the basic reproduction number is less than one.[5],[6],[7] and 
[8] discussed the control and simulation of malaria 
transmission. 

In this paper, we studied behavioral of saturation terms on 
mathematical models of malaria transmission for human and 
vector.  Numerical simulation shows the effect of both 
sociological and physiological of some important parameters 
in the model. 

II. THE BASIC MATHEMATICAL MODEL 

In this paper, model [1] was adopted and modified by 
incorporating an incidence rate which include saturation term 
m  

The Existing model MOJEEB (2017)  
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2.1 Proposed model
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2.2 Disease Free Equilibrium (DFE) 

At Disease Free Equilibrium, 

0,0,,00,=  VVHHH EIRE  

From equation (2), 
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2.3 The Endemic Equilibrium 

At endemic equilibrium, 
0,0,00,  VVHH EIE  

Therefore, from equation (2), we have; 
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Also to get 
*

HS  from equation (2), we say,
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Also to get 
*

HI  from equation (2), we say;
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Also to get 
*

HR  from equation (2) we say,
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To get 
*

VS  from equation (2),we get; 
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To get 
*

VE  from equation (2), we obtain;
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To get 
*

VI  from equation (2), we get;  
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2.4   Basic Reproduction Number HVR0  

Using next generation matrix
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The inverse of V is obtained because 
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 Hence, 1
0 .  VFR HV
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2.5 Local Stability of Disease Free Equilibrium 

 The Jacobian matrix becomes, 
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The determinant of the matrix becomes,
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All Eigen values solved at the equilibrium points contain 
negative real part therefore the system is locally 
asymptotically stable. 

2.6 Global Stability of Disease Free Equilibrium
 

We consider the Lyapunov function, 
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Hence the disease free equilibrium is globally asymptotically 
stable. 

2.7 Local Stability of Endemic Equilibrium  
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By linearizing, we get 
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The Jacobian matrix becomes, 
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Therefore the Eigen values become, 

 

All Eigen values solved at the endemic equilibrium contain 
negative real part. Therefore, the system is locally 
asymptotically stable 

III. RESULTS AND DISCUSSION 

 
Figure 1:  Graph of Susceptible (SH), Exposed (EH), Infected (IH), 

Recovered (RH) against time (t) with 
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The graph shows that the lower the saturation term, the lower 
the susceptible for human compartment 

 
Figure 2:  Graph of Susceptible (SH), Exposed (EH), Infected (IH), 

Recovered (RH) against time (t) with 

1.0,3.0

0.1,2.0,3.0,10000,1.0
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The graph shows that the higher the saturation term the higher 
the susceptible for human compartment 

 
Figure 3:  Graph of Susceptible (Sv), Exposed (Ev), Infected (Iv) against time 

(t) with 

1.0,3.0

,01.0,2.0,3.0,10000,1.0
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The graph shows that the saturation term is low that makes the 
susceptible for vector to become lower because the vectors are 
the carrier. 

 
Figure 4:  Graph of Susceptible (Sv), Exposed (Ev), Infected (Iv) against time 

(t) with 

1.0,3.0

,02.0,2.0,3.0,10000,1.0
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The graph shows that the saturation term is low that makes the 
susceptible for vector to become lower because the vectors are 
the carrier. 

IV. CONCLUSION 

In this paper, we showed that the model is locally 
asymptotically stable if the basic reproduction number is 
greater than unity and unstable otherwise. According to our 
results, we discovered that malaria can be controlled by 

increasing the saturation term, by reducing the infection rate 
between humans and vectors, and through proper sensitization 
by health workers, giving out bed nets, insecticide and active 
anti malaria drugs. 
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