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Abstract:- This paper investigates governing equations for 
unsteady Magnetohydrodynamic convective oscillatory flow with 
thermal radiation and soret effect through a semi-infinite 
vertical permeable moving plate with; one stationary and the 
other non-stationary embedded in a porous medium via heat 
absorption. The velocity was maintained at a constant value and 
the flow was subject to a transverse magnetic field. The 
computed values obtained from the analytical solution for the 
velocity temperature, concentration field, skin friction 
coefficient, Peclet number, Schmidt and Reynolds number with 
their amplitude and phase are presented graphically. After a 
suitable transformation of the governing partial differential 
equations was transformed to ordinary differential equation. 
These equations were solved analytically by using two-term 
harmonic and non-harmonic functions. The velocity decreases 
with increase in Peclet number, the magnetic field parameter 
whereas reverse trend is seen with increasing the heat generation 
parameter, radiation parameter, porous parameters, soret 
number and Grashof numbers. The temperature decreases as the 
values of Peclet number increases and the reverse is seen by 
increasing the values of thermal radiation parameter, heat 
source parameter, the concentration increases as the values of 
the Peclet number increases, despite increase in radiation and 
Grashof number, heat transfer remains the same.  

I. INTRODUCTION 

n recent years, a great deal of interest has been established 
in the area of heat and mass transfer. The study of unsteady 

magneto hydrodynamic convection flow in a porous medium 
has received much attention in recent time owing to diverse 
new technological developments in modern metallurgical and 
metal-working processes. Engineers are continuously taking 
the task to improve the efficiency of the MHD energy 
systems. Convective heat and mass transfer in porous media 
has also been a subject of great interest for the last few 
decades due to its application in various disciplines, such as 
geophysical, solar power collectors, cooling of electronic 
systems, chemical catalytic reactors, thermal insulating 
engineering, high-performance building insulating modeling 
of packed sphere beds etc. Singh et al. (1989) investigated the 
effect of permeability variation on free convective flow in a 
porous medium bounded by a vertical porous wall. Shreekanth 
et al. (2006) have investigated the effects of time-dependent 
permeability variation in the free convection flow past a 
vertical porous wall placed in a porous medium. Raptis et al. 
(2004) analyzed the steady MHD asymmetric flow of an 
electrically conducting fluid past a semi-infinite stationary 
plate in the presence of radiation. Bakier (2001) investigated 

the effect of radiation on mixed convection from a vertical 
plate in a saturated porous medium. Makinde and Mhone 
(2005) have investigated the effect of magnetic field and 
thermal radiation on oscillatory flow in a channel filled with 
porous medium.  

Cookey et al. (2003) examined the effect of viscous 
dissipation and thermal radiation on unsteady MHD free 
convection flow past an infinite heated vertical surface in a 
porous medium with time-dependent suction. 

Nowadays, the studies of fluid flows through porous 
medium become interesting and inevitable in case of 
extraction of crude oil from the pores of rocks. The 
hydromagnetic convection with heat and mass transfer in 
porous medium has been studied due to its importance in the 
design of MHD generators and accelerators in geophysics, in 
design of underground water energy storage system, soil-
sciences, astrophysics, nuclear power reactors and so on. 
Magnetohydrodynamics is currently undergoing a period of 
great enlargement and differentiation of subject matter. The 
interest in these new problems generates from their 
importance in liquid metals, electrolytes and ionized gases. 

The present work, we make an attempt to study an 
unsteady oscillatory hydromagnetic mixed convection flow 
through a porous medium with periodic temperature variation. 
The work deals with realistic values for the leading 
parameters. There are four governing equations which 
includes: continuity, momentum, energy, and concentration 
equation. We analyzed an unsteady flow of viscous 
incompressible and electrically conducting fluid through a 
porous medium with thermal radiation and heat source. The 
porous medium was bounded by two infinite vertical plates at 
a distance d apart. One of the plate is stationary and the other 
non-stationary. The Cartesian system is chosen such that the 
other plate is neglected to a uniform velocity u and the same 
constant suction velocity v′ . A homogenous magnetic field of 
strength Bo was applied normal to the plane of the plates. By 
the infinite nature of the plates, the fluid properties except 
pressure became function of y and t only. 

II. MATHEMATICAL MODELLING 

We analyze an unsteady flow of a viscous, incompressible and 
electrically conducting fluid through a porous medium with 
thermal radiation and heat source. The Statistical packaged 
used in this work is Mathematica package (Latex). The porous 
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medium is bounded by two infinite vertical plates at distance 
d apart. One of the plate is stationary and the other non
stationary. The Cartesian system is chosen such that the other 
plate is neglected to a uniform velocity U and the same 
constant suction velocity V′. A homogeneous magnetic field 
of strength Bo is applied normal to the plane of the plates. By 
the infinite nature of the plates, the fluid properties except 
pressure becomes function of y and t′.  The original equation 
was generated first by Israel-Cookey C., Amos Emeka and 
Nwaigwe C., (2017).   

Figure 1:  A schematic of the flow region

డ௩ᇲ

డ௬ᇲ = 0                                        

                                

డ௨ᇲ

డ௧ᇲ + 𝑣ᇱ డ௨ᇲ

డ௬ᇲ = −
ଵ

ఘ

డ௨ᇲ

డ௫ᇲ + ѵ
డమ௨ᇲ

డ௬ᇲమ −
ѵ

௞ᇲ 𝑢ᇱ − 𝜎
஻బ

మ

ఘ
𝑢

𝑔𝛽(𝑇ᇱ − 𝑇ை
ᇱ ) + 𝑔𝛽(𝐶ᇱ − 𝐶ை

ᇱ )                     

డ୘ᇲ

డ௧ᇲ      +    V 
డ୘ᇲ

డ௬భ   =  
௄

௉௖೛
   

డమ୘ᇲ

డ௬ᇲమ    -  
ଵ

௉௖೛
    

డ୯ᇲ

డ௬ᇲ   +    

                                     

డୡᇲ

డ௧ᇲ  +    𝑉ᇱ 
డୡᇲ

డ௬ᇲ   =   D  
డమେᇲ

డ௬ᇲమ     +    D1     
డమ୘ᇲ

డ௬ᇲమ    

                    

Therefore, the governing equation in dimensionless
tabulating such flow takes the form, 

Subject to: 

u′  = 0  ,      T′  = T0   ,    C ′ = 𝐶଴
ᇱ ′  at y′    =  0 

u’ = U,    T′   =  Tw
′  ,    C′  =𝐶௪

ᇱ    =  y′  = d 

Where p′ is the pressure, ρ is the density of the fluid t
time, u1 is the velocity, k is the permeability of the porous 
medium, g is the acceleration due to gravity, 
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dimensionless form for 

the pressure, ρ is the density of the fluid t1 is the 
is the velocity, k is the permeability of the porous 

medium, g is the acceleration due to gravity, ʋ is the 

kinematic viscosity of the fluid, βT and β
thermal and concentration expansion respectively. C
specific heat at constant pressure, q
the mass diffusivity, D1 is the soret coefficient, Q
source. 

Israel-Cookey C., Amos Emeka and Nwaigwe C., (2017)
worked on this governing equations without soret coefficient 
term. 

Equation (1), (2), (3) and (4) are continuity equation, 
momentum equation, energy equation and the concentration 
equation. 
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Substituting equation (4a) into equation (2). Then, t
dimensionless form of equation (2) is;
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Equation (5) is the modified momentum equation in its 
dimensionless form. 
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Equation (6) is the modified energy equation in its 
dimensionless form. 

And the dimensionless form of equation (4) is; 
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Equation (7) is the modified concentration coefficient in its 
dimensionless form. 

We also non – dimensionalized the boundary conditions as 
follows; 

The mathematical formulation is now complete and the 
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Subject to: 

𝑢଴ = 0, 𝜕଴ = 0, ∅଴ = 0 at y = 0    
                             (11) 

𝑢଴ = 1, 𝜕଴ = 1, ∅଴ = 1 at y = 1   
                             (12) 

Method of Solution of equation (5), (6) and (7) 

We assume a solution of the form 
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 ∅ᇱᇱ
௢ 𝑃௘ −  ∅ᇱ

௢  + (𝑃𝑒𝑠 − 𝑁௘ − 𝑖𝑤 𝑃௘) ∅௢ = 0  
  

𝑑𝑐

𝑑𝑡
+  

𝑑𝑐

𝑑𝑦
  =  

1

𝑅௘

  ቆ
1

𝑆𝑐
 
𝑑ଶ𝑐

𝑑𝑦ଶ
 + 𝑆௢ 

𝑑ଶ𝑇

𝑑𝑦ଶ
ቇ 

𝑖𝑤 +  𝑒௜௪௧
𝑑∅௢

𝜕𝑦
 =  

1

𝑅௘

 ቆ
1

𝑆𝑐
 𝑒௜௪௧  

𝑑ଶ∅௢

𝑑𝑦ଶ
 + 𝑆௢  𝑒

௜௪௧
𝑑ଶ∅௢

𝑑𝑦ଶ
ቇ   

𝑖𝑤 ∅௢ +  
𝑑∅௢

𝜕𝑦
 =  

1

𝑅௘

 ቆ
1

𝑆𝑐
  

𝑑ଶ∅௢

𝑑𝑦ଶ
 + 𝑆௢  

𝑑ଶ∅௢

𝑑𝑦ଶ
ቇ 

 
ଵ

ோ೐ௌ೐
   

ௗమ∅೚

ௗ௬మ −   
ௗ∅೚

డ௬
−  𝑖𝑤 ∅௢   =   −  

ௌ೚

ோ೐
   

ௗమ∅೚

ௗ௬మ    

ௗమ∅೚

ௗ௬మ  −   𝑅௘𝑆௘  
ௗ∅೚

డ௬
  − 𝑖𝑤  𝑅௘𝑆௘   ∅௢    =  − 𝑆௢𝑆௖

ௗమఏ೚

ௗ௬మ   

                                               (15) 
From equation (5), we have: 

డ௨

డ௧
+  

డ௨

డ௬
   =  − 

డ௣

డ௫
  +  

ଵ

ோ೐
  

డమ୳

డ௬మ   -  
ଵ

௞
 𝑢  −  

ெమ

ோ೐
 u + G௥Re T +

G௠ReC          

  
డ

డ௧
 (𝑢௢𝑒௜௪௧)  +    

డ௨బ

డ௧
   𝑒௜௪௧   =   P 𝑒௜௪௧    +  

ଵ

ோ೐
   

డమ௨బ

௄
   -   

ெమ

ோ೐
  

𝑒௜௪௧𝑢௢ + GrR𝑒௜௪௧  ∅௢ 

𝑖𝑤 𝑒௜௪௧𝑢௢ + 𝑒௜௪௧   
డ௨బ

డ௬
  = - 𝑒௜௪௧  P - 

௘೔ೢ೟

ோ೐
   

డమ୳

డ௬మ  -   
௘೔ೢ೟௨೚

௄
   -    

ெమ

ோ೐
  

𝑒௜௪௧  

𝑖𝑤 𝑢௢  +  
డ௨బ

డ௬
    =   P +  

ଵ

ோ೐
   

డమ௨బ

௄
   -  

௨ି

௞
   -  

ெమ

ோ೐
 u௢ + Gr Re 

∅௢ + 𝐺௠ 𝑅௘ ∅௢ 

𝑖𝑤 𝑅௘  𝑢௢+  𝑅௘       
డ௨బ

డ௬
    =   𝑅௘  P +  

డమ௨ష

௄డ௬మ   -  
ோ೐

௞
 u௢  -  𝑀ଶu௢ +

𝑅௘  P − Gr Reଶ ∅௢ + 𝐺௠ 𝑅௘మ ∅௢ 

డమ୳೚

డ௬మ  −  𝑅௘  
డ௨బ

డ௬
 - 𝑖𝑤 𝑅௘  𝑢௢  − -  

ோ೐  

௞
  𝑢௢  - 𝑀ଶu௢ =  −𝑅௘  P −

Gr Reଶ ∅௢ + 𝐺௠ 𝑅௘మ ∅௢ 

డమ୳೚

డ௬మ  −  𝑅௘  
డ௨బ

డ௬
  - ቀ

ோ೐  

௞
+  𝑀ଶ +  𝑖𝑤 𝑅௘  ቁ 𝑢௢ =  −𝑅௘  P − Gr Reଶ 

∅௢ − 𝐺௠ 𝑅௘మ                                                         (16) 

 

Subject to:  

𝑢௢   =   0,  𝜕଴  = 0,   ∅௢  =   0   𝑎𝑡 𝑦 = 0 

𝑢௢   =   1,  𝜕଴  = 1,   ∅௢  =   1   𝑎𝑡 𝑦 = 1 

డ௨

డ௧
+

డ௨

డ௧
= −

డ௣

డ௫
+

ଵ

ோ೐

డమ௨

డ௬మ −
ଵ

௞
𝑢 −

ெమ௨

ோ೐
+ 𝐺௥𝑅௘𝑇 + 𝐺௥𝑅௘𝐶

                              (17) 

డ்

డ௧
+

డ்

డ௬
=

ଵ

௉೐

డమ்

డ௬మ −
ேమ்

௉೐
+ 𝑆𝑇   

                 (18) 

డ஼

డ௧
+

డ஼

డ௬
=

ଵ

ோ೐ௌ೎

డమ஼

డ௬మ +
ௌ೚

ோ೐

డమ்

డ௬మ    

                               (19) 

𝑢 = 0   ,   𝑇 = 0   ,   𝐶 = 𝑂   ,    𝑎𝑡 𝑦 = 0     𝑢 = 1   ,   𝑇 =
1   ,   𝐶 = 1   ,   

 𝑎𝑡 𝑦 = 1     
                      (20) 

Adopting                                                       

u(y,t) =𝑢௢(𝑦)𝑒௜ఠ௧      
                      (21) 

𝑇(𝑦, 𝑡) = 𝜃௢(𝑦)𝑒௜ఠ௧      
                                           (22) 

C(y,t)=∅௢(𝑦)𝑒௜ఠ௧                                                               
                                                                (23) 

 Substituting equation (14), (15) and (16) respectively into 
equation  

(10), (11), (12) and (13) gives: 

𝑢௢
ᇱᇱ − 𝑅௘𝑢௢

ᇱ − ቀ
ோ೐

௞
+ 𝑀ଶ + 𝑖𝜔𝑅௘ቁ 𝑢௢ = −𝑅௘𝑃 − 𝐺௥𝑅௘

ଶ𝜃௢ −

𝐺௠𝑅௘
ଶ𝜃௢                                                                 (24) 

𝜃௢
ᇱᇱ − 𝑃௘𝜃௢

ᇱ − (𝑁ଶ − 𝑃௘𝑆 + 𝑖𝜔𝑃௘)𝜃௢ = 0  
                                      (25) 

∅௢
ᇱᇱ − 𝑅௘𝑆௖∅௢

ᇱ − 𝑖𝜔𝑅௘𝑆௖∅௢ = −𝑆௢𝑆௖𝜃ை
ᇱᇱ  

                                      (26) 

Subject to ;   𝑢௢ = 0  ,   𝜃௢ = 0  , ∅௢ = 0    

𝑎𝑡  𝑦 = 0  , 𝑢௢ = 1  , ∅௢ = 1   ,   𝜃௢ = 1  𝑎𝑡 𝑦 = 1       (26a)
     

We first solve equation (18):   Let 𝜃௢ = 𝑒ఈ௬  𝑏𝑒 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛.  

Then the auxillary system is of; 

𝛼ଶ − 𝑃௘𝛼 − 𝐴ଵ = 0  

Where 
𝐴ଵ = 𝑁ଶ − 𝑃௘𝑆 + 𝑖𝜔𝑃௘ ,
𝑎𝑛𝑑 𝛼 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡𝑤𝑜 𝑟𝑜𝑜𝑡𝑠 𝑎𝑠 (𝛼ଵ, 𝛼ଶ)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡; 

𝛼ଵ =
௉೐±ඥ௉௘మିସ஺

ଶ
  

𝛼ଶ =
௉೐ିඥ௉௘మାସ஺

ଶ
  

and     𝜃௢ = 𝐶ଵ𝑒ఈభ௬ + 𝐶ଶ𝑒ఈమ௬   
                      (27) 

on application of the boundary condition  on  (3.20)  we 
obtain: 

𝐶ଵ =
ଵ

௘ഀమ೤ି௘ഀభ೤  𝑎𝑛𝑑 𝐶ଶ = −
ଵ

௘ഀమ೤ି௘ഀభ೤    

  𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑙𝑦 𝑡ℎ𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑜 𝜃௢ 𝑎𝑓𝑡𝑒𝑟 

 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑏𝑒𝑐𝑜𝑚𝑒𝑠: 

௘ഀమ೤ି௘ഀభ೤

௘ഀమି௘ഀభ
     

                      (28) 
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We next solve equation (3.19) following similar procedure as 
in the case of equation  

(3.18) we obtain the complimentary function as  

∅௢௖ = 𝐶ଷ𝑒ఈయ௬ + 𝐶ସ𝑒ఈర௬    
                             (29) 

Where 𝐶ଷ 𝑎𝑛𝑑 𝐶ସ  are constants to be determined from the 
boundary conditions and 

𝛼ଷ =
ோ௘ௌ௖ାඥ(ோ௘ௌ௖)మାସ௜ఠோ௘ௌ௖

ଶ
  

𝛼ସ =
ோ௘ௌ௖ିඥ(ோ௘ௌ௖)మାସ௜ఠோ௘ௌ௖

ଶ
  

On application of the boundary conditions on equation (3.23) 
we obtain, the complete equation (3.19) as nonhomogeneous. 

To consider the nonhomogeneous part we write the particular 
solution (𝜃௢௣) as  

𝜃௢௣ = 𝐶ହ𝛼ଶ𝑒ఈమ௬ + 𝐶଺𝛼ଵ𝑒ఈభ௬  

Hence,       𝜃௢௣
ᇱ =   𝐶ହ𝛼ଶ𝑒ఈమ௬ + 𝐶଺𝛼ଵ𝑒ఈభ௬         

                           (30) 

𝜃௢௣
ᇱᇱ = 𝐶ହ𝛼ଶ

ଶ𝑒ఈమ௬ + 𝐶଺𝑒ఈభ௬  

On substituting (24) into (19) we have 

𝐶ହ𝛼ଶ
ଶ𝑒ఈమ௬ − 𝐶଺𝛼ଵ

ଶ𝑒ఈభ௬ − 𝑅𝑒𝛼𝑆𝑐(𝐶ହ𝛼ଶ𝑒ఈమ௬ + 𝐶଺𝛼ଵ𝑒ఈభ௬)
− 𝑖𝜔𝑅௘𝑆௖(𝐶ହ𝑒ఈమ௬ + 𝐶଺𝑒ఈభ௬) 

= −𝑆௢𝑆஼ ቆ
ఈ

మ೐
ഀమ೤షഀభ

మ೐
ഀభ೤

మ

௘ഀమି௘ഀభ
ቇ  

Hence,    𝐴ଶ = 𝐶ହ =  
ௌ೚ௌ೎ఈభ

మ

ఈభ
మିொఈభି்

 

𝐴ଷ = 𝐶଺ = −
ௌ೚ௌ೎ఈమ

మ

ఈమ
మିொఈమି்

  

Q= ReSc  ,T= i𝜔𝑅௘𝑆஼  with ∅௢ୀ∅೚೎ା∅೚೛   ,ೢ೐ ೓ೌೡ  
 

∅௢ = 𝐶ଷ𝑒ఈయ௬ + 𝐶ସ𝑒ఈర೤ −
ௌ೚ௌ೎ఈమ

మ

ఈమ
మିொఈమି்

+ 
ௌ೚ௌ೎ఈభ

మ

ఈభ
మିொఈభି்

 

                         (31) 

On application of the boundary conditions to (25) we obtain 

𝐴ସ = 𝑐ସ =
ଵି஺య(௘ഀయି௘ഀ

మ)ି஺మ(௘ഀభି௘ഀయ)

௘ഀరି௘ഀయ
   

𝑐ସ = − ቂ
ଵି஺య(௘ഀయି௘ഀమ)ି஺మ(௘ഀభି௘ഀయ)

௘ഀరି௘ഀయ
− 𝐴ଷ + 𝐴ଶቃ 𝑒ఈయ೤  

+ 

ቄ1 − 𝐴ଷ(𝑒ఈయ − 𝑒ఈమ௬) − 𝐴
ଶ(௘ഀభష೐ഀయ

)
ቅ 𝑒ఈర௬ −

𝐴ଷ𝑒ఈమ௬+𝐴ଷ𝑒ఈ೤ + 𝐴ଶ௘ഀభ೤ 

Simplifying further, we have 

∅௢ = (𝐴ଷ − 𝐴ଶ − 𝐴ସ)𝑒ఈయ௬ + 𝐴ସ𝑒ఈయ௬ − 𝐴ଷ𝑒ఈమ௬ + 𝐴ଶ𝑒ఈభ௬

                       (32) 

We next consider equation (17) 

 𝑢௢
ᇱᇱ − 𝑅௘𝑢௢

ᇱ − ቀ
ோ೐

௞
+ 𝑀ଶ + 𝑖𝑤𝑅௘ቁ 𝑢଴ = −𝑅௘𝑃 − 𝐺௥𝑅௘

ଶ𝜃௢ −

𝐺௠𝑅௘
ଶ∅௢  

𝑢௢
ᇱᇱ − 𝑅௘𝑢௢

ᇱ − 𝑇௢𝑢௢ = −𝑅௘𝑃 − 𝐺௥𝑅௘
ଶ𝜃௢ − 𝐺௠𝑅௘

ଶ∅௢  

Where 𝑇ଵୀ
ோ೐

௞
+ 𝑀ଶ + 𝑖𝜔𝑅 ௘  

The solution to the auxillary equation is  

𝑢௢௖ = 𝐸ଵ𝑒ఈఱ೤ + 𝐸ଵ𝑒ఈల௬    
                              (33) 

  𝛼଺ =
ோ೐ିටோ೐

మାସ భ்

ଶ
 

For the particular integral  to (17) we set the RHS as: 

-𝑅௘𝑃 − 𝐺௥𝑅௘
ଶ ቂ

௘ഀమ೤ି௘ഀమ೤

௘ഀమష೐ഀభ ቃ—𝐺௠𝑅௘
ଶ𝐴଻௘ഀయ೤+𝐴଼[(𝐴ଷି𝐴ଶ −

𝐴ସ)𝑒ఈయ௬ + 𝐴ସ𝑒ఈర௬ − 𝐴ଷ𝑒ఈమ೤ + 𝐴ଶ𝑒ఈభ௬] 

 𝑠𝑜 𝑡ℎ𝑎𝑡  𝑢௢௣ = 𝐵 + 𝐴ହ𝑒ఈమ௬ + 𝐴଺𝑒ఈభ௬ + 𝐴଼𝑒ఈర௬  

𝑢௢௣
ᇱ = 𝐴ହ𝛼ଶ𝑒ఈమ௬ + 𝐴଺𝛼ଵ𝑒ఈభ௬ + 𝐴଻𝛼ଷ𝑒ఈయ௬ + 𝐴଼𝛼ସ𝑒ఈర೤

                               (34) 

𝑢௢௣
ᇱᇱ = 𝐴ହ𝛼ଶ

ଶ𝑒ఈమ௬ + 𝐴଺𝛼ଵ
ଶ𝑒ఈభ௬ + 𝐴଻𝛼ଷ

ଶ𝑒ఈయ௬ + 𝐴଼𝛼ସ
ଶ𝑒ఈర೤

  

Substituting (28) into equation (17) we obtain: 𝐴ହ𝛼ଶ
ଶ𝑒ఈమ௬ +

𝐴଺𝛼ଵ
ଶ𝑒ఈభ௬ + 𝐴଻𝛼ଷ

ଶ𝑒ఈయ௬ + 𝐴଼𝛼ସ
ଶ𝑒ఈర೤ −

𝑅௘ൣ஺ఱఈమ௘ഀమ೤ା஺లఈభ௘ഀభ೤ା஺ళఈయ௘ഀయ೤ା஺ఴఈర௘
ഀర೤൧ − 𝑇ସ[𝐵 + 𝐴ହ𝑒ఈమ௬ +

𝐴଺𝑒ఈభ௬ + 𝐴଼𝑒ఈర௬] = − − 𝑅௘𝑃 − 𝐺௥𝑅௘
௘ഀమ೤

௘ഀమି௘ഀభ
+

ீ೘ோ೐
మ௘

ഀభ೤

௘ഀమି௘ഀభ
−

𝐺௠𝑅𝑒ଶ𝐴ଷ𝑒ఈభ௬
ି𝐺௠𝑅𝑒ଶ(𝐴ଷ − 𝐴ଶି𝐴ସ)𝑒ఈయ௬ − 𝐺௠𝑅𝑒ଶ𝐴ସ𝑒ఈర௬ 

Consequently, after simplification, we have: 

𝐴ହ =
𝐺௥𝑅௘

ଶ𝑇ଶ + 𝐺௠𝑅௘
ଶ𝐴ଷ

𝛼ଶ
ଶ − 𝑅௘𝛼ଶ − 𝑇ଵ

, 𝐴଺ =
𝐺௥𝑅௘

ଶ𝑇ଶ + 𝐺௠𝑅௘
ଶ𝐴ଶ

𝛼ଵ
ଶ − 𝑅௘𝛼ଵ − 𝑇ଵ

, 𝐵

=
𝑅௘𝑝

𝑇ଵ

, 𝐴଻ =
𝐺௠𝑅௘

ଶ(𝐴ଷ − 𝐴ଶ − 𝐴ସ)

𝛼ଷ
ଶ − 𝑅௘𝛼ଷ − 𝑇ଵ

, 

𝐴଼ =
ீ೘ோ௘మ஺ర

ఈర
మିோ೐ఈరି భ்

  

Hence, the general solution is: 

𝑢௢ = 𝑢௢௖ + 𝑢௢௣ =

𝐸ଵ𝛼ହ𝑦 + 𝐸ଶ𝑒ఈల௬ +
ோ೐௣

஽
+

ቀ
ீ೘ோ௘మ஺యିீೝோ௘మ

మ்

ఈమ
మିோ௘ఈమି భ்

ቁ 𝑒ఈమ௬+ ൬
ீೝோ೐

మ்( )మାீ೘ோ೐
మ஺మ

ఈభ
మିோ೐ఈభି భ்

൰ 𝑒ఈభ௬ 

−
ீ೘ோ௘మ(஺యି஺మି஺ర)௘ഀయ೤

ఈయ
మିோ௘ఈయି భ்

−
ீ೘ோ೐

మ஺ర௘ఈഀర೤

ఈర
మିோ௘ఈరି భ்

  

                             (35) 

Applying the boundary conditions on equation (26a) we 
obtain: 

𝐸ଵ = −𝐸ଶ − 𝐵 − 𝐴ହ − 𝐴଺ + 𝐴଻ + 𝐴 ଼   
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𝐸ଶ = 1 − ቀ𝐴଼ + 𝐴଻ − 𝐴଺ − 𝐴ହ −
ோ೐௣

భ்
ቁ 𝑒ఈఱ − 𝐵 − 𝐴ହ𝑒ఈమ −

𝐴଺𝑒ఈభ + 𝐴଻𝑒ఈయ + 𝐴଼𝑒ఈర  

So that 

𝑢௢ = (𝐴ଽ𝑒ఈఱ + 𝐴ଵ଴)𝑒ఈఱ௬ + ቀ
ଵି஺వ௘ഀఱି஺భబ

௘ഀలି௘ഀఱ
ቁ 𝑒ఈల௬ + 𝐵 +

𝐴ହ𝑒ఈమ௬ + 𝐴଺𝑒ఈభ௬ − 𝐴଻𝑒ఈయ௬                                       (36) 

Where 𝐴ଽ =  𝐵 + 𝐴ହ𝑒ఈమ + 𝐴଺𝑒ఈభ − 𝐴଻𝑒ఈయ − 𝐴଼𝑒ఈర 

𝐴ଵ଴ = 𝐴଼ + 𝐴଻ − 𝐴଺ − 𝐴ହ − 𝐵  

Based on equation (14-16) our general solution is     

U=ቂ(𝐴ଽ𝑒ఈఱ + 𝐴ଵ଴)𝑒ఈఱ௬ + ቀ
ଵି஺వ௘ഀఱି஺భబ

௘ഀలି௘ഀఱ
ቁ 𝑒ఈల௬ + 𝐵 +

𝐴ହ𝑒ఈమ௬ + 𝐴଺𝑒ఈభ௬ − 𝐴଻𝑒ఈయ௬ቃ 𝑒௜ఠ௧                                  (37) 

𝜃 = ቂ
௘ഀమ೤ି௘ഀభ೤

௘ഀమି௘ഀభ
ቃ 𝑒௜ఠ௧    

                 (38) 

∅ = [(𝐴ଷ − 𝐴ଶ − 𝐴ସ)𝑒ఈయ௬ + 𝐴ସ𝑒ఈర௬ − 𝐴ଷ𝑒ఈమ௬ +
𝐴ଶ𝑒ఈభ௬]𝑒௜ఠ௧                             (39) 

𝑐𝑓 =  ቀ
డ௨೚

డ௬
ቁ ∣௬ୀ௢ =  𝛼ହ(𝐴ଽ.ఈఱ+ 𝐴ଵ଴) + 𝛼଺(1 − 𝐴ଽ𝑒ఈఱ +

𝐴ଵ଴) + 𝛼ଶ𝐴ହ + 𝛼ଵ𝐴଺ − 𝛼ଷ𝐴଻       

𝑁𝑢 =  ൬
𝜕𝜃௢

𝜕𝑦
൰ ∣௬ୀ௢ =   ൤

𝛼ଶ 𝑒ఈమ௬ − 𝛼ଵ𝑒ఈభ௬

𝑒ఈమ − 𝑒ఈభ
൨  

𝑆ℎ =  ቀ
డ∅೚

డ௬
ቁ ∣௬ୀ௢ = 

ఈమషఈభ

௘ഀమି௘ഀభ 

III. DISCUSSION OF RESULTS 

The significance of the problem under consideration is 
discussed with realistic values for the leading parameter. 

Figure 1 shows the influence of soret on the temperature 
profile. It is observed that increase in Soret increases the 
temperature. Physically, increase in Soret shows in diffusive 
motion which leads to increase in temperature. 

The effect of pedlet number on the temperature is shown in 
figure 2. The profile indicates that increase in the pedlet 
number decreases the temperature. Physically this indicates 
increased dominance of advection over diffusion. In between 
the parameter values, the effect is more pronounced at the 
center of the flow region. 

The influence of radiation on the temperature is shown in 
figure 3. It is shown that increase in the radiation parameter 
decreases the temperature. Physically this is an indication that 
the momentum boundary layer thickness is decreased as a 
result of the increase in radiation. 

Figure 4 illustrates the effect of the Reynolds number on the 
concentration. It is observed that increase in the Reynolds 
number increases the concentration. This is because of 
increase in the ratio of inertial forces to viscous forces. 

The effect of the pedlet number on the fluid concentration is 
shown in figure 5. We noticed that increase in Pedlet number 

increases the concentration of the fluid. This effect is more 
pronounced at higher values of the pedlet number, which is an 
indication of advectively dominated flow. 

Figure 6 shows the effect of the Schmidt number in the 
concentration. The profile indicates that increase in the 
Schmidt number leads to increase in the concentration as a 
result of decreased momentum diffusivity as compared to man 
diffusivity. 

Figure 7 shows that the fluid concentration decreases with 
increase in radiation. 

 The influence of frequency of oscillation is shown in figure 8.  
Increase in the frequency of oscillation leads to decrease in 
concentration. This indicates that intra molecular forces in the 
fluid medium are weakened by increased frequency of 
oscillation. The effect is more pronounced in higher 
oscillations. 

The effect of radiation on the heat transfer is shown in figure 
9. It is observed that despite increase in the radiation 
parameter, and the Grashof number, the heat transfer remains 
the same. This observation is the same as shown in figure 10. 

We have studied MHD convective oscillatory flow with 
thermal radiation and soret effects. To gain insight into the 
problem we have used realistic values on the physical 
parameters such as magnetic fluid M, Schmidt number Sc, 
frequency of oscillation w, Grashof number Gr, Soret 
parameter So1, modified Grashof number Gm. To present the 
results in graphical form and subsequently their interpretation. 
Figure 11 shows the effect of the magnetic field on the 
velocity profile. It is observed that increase in the magnetic 
field decreases the velocity. Physically this is as a result of the 
action of the Lorentz force which retards the flow. 

In figure 12. The effect of the frequency of oscillation is 
presented. The profile reveals that increase in the frequency of 
oscillation reduces the flow velocity. 

The effect of the Schmidt number on the velocity is presented 
in figure 13. Increasing Schmidt number leads to increase in 
the velocity. The profile reveals that very little increase leads 
to significant increase in the velocity. 

Physically this is true, increase in Sc means decrease of 
molecular diffusion. 

Figure 14 shows the effect of surds in the velocity profile. The 
profile shows that increase in the soret parameter increases the 
velocity. This is true physically since increase in soret 
increases the driving   force for man diffusion. 

It is observed in figure 15 that increase in porosity leads to 
increase in the velocity. The increase is not very significant in 
this study. 

The effect of the graph of linear velocity is shown in figure 
16. It is noted in the profile that increase in the graph of 
number shows the velocity. This illustrates the fact that their 
thermal buoyancy force enhances velocity. Similar effects are 
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noted in the modified graph of number (fig 17) where the 
increase in velocity is more significant. 

Figure 4.18 shows the effect of the radian parameter on the 
velocity. It reveals that increase in radian is not very 
significant as increase in velocity. Though the parameter 
values used here are close to each other. 

Fig 19 shows the effect of the Reynolds molecules in the 
velocity. It is observed that the velocity increases in a result of 
increase in the Reynolds number. 

Figure 20 shows the effect of the graph of number on the skin 
friction. The profile shows that increasing the air leads to 
increase in the skin friction. The increase in the soret causes a 
linking relationship to be established. 

The effect of the magnetic field on the skin friction is shown 
in fig 21. It is observed that increase in the magnetic field 
leads to a reduction in the skin friction. 

 Temperature Profile 

 

 

Figure 1: Effect of Soret on temperature for  𝜔 = 0.50, 𝑡 = 0.1, 𝑃𝑒 = 1.0 , 𝑁ଶ =  0.5, 𝑆 = 1.0 

 

 

 

Figure 2: Effect of Peclet number on temperature for  𝜔 = 0.50, 𝑡 = 0.1, 𝑁ଶ =  0.5, 𝑆 = 1.0 
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Figure 3: Effect of radiation on temperature for  𝜔 = 0.50, 𝑡 = 0.1, 𝑃𝑒 = 1.0, 𝑆 = 1.0 

 

 

Figure 4: Effect of Renolds number on concentration for  𝜔 = 0.50, 𝑡 = 0.1, 𝑃𝑒 = 1.0 , 𝑁ଶ =  0.5, 𝑆 = 1.0, 𝑆𝑜 = 0.5, 𝑆𝑐 = 0.5 

 

 

Figure 5: Effect of Peclet number on concentration for  𝜔 = 0.50, 𝑡 = 0.1, 𝑅𝑒 = 1.0 , 𝑁ଶ =  0.5, 𝑆 = 1.0, 𝑆𝑜 =    0.5, 𝑆𝑐 = 0.5 
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Figure 6: Effect of Schmidt number on concentration for  𝜔 = 0.50, 𝑡 = 0.1, 𝑃𝑒 = 1.0 , 𝑁ଶ =  0.5, 𝑆 = 1.0, 𝑆𝑜 =      0.5, 𝑅𝑒 = 1.0 

 

Figure 7: Effect of radiation parameter on concentration for  𝜔 = 0.50, 𝑡 = 0.1, 𝑃𝑒 = 1.0 , 𝑅𝑒 =  0.5, 𝑆 = 1.0, 𝑆𝑜 =    0.5, 𝑆𝑐 = 0.5 

 

Figure 8: Effect of oscillatory parameter  on concentration for 𝑅𝑒 = 1.0, 𝑡 = 0.1, 𝑃𝑒 = 1.0 , 𝑁ଶ =  0.5, 𝑆 =    1.0, 𝑆𝑜 = 0.5, 𝑆𝑐 = 0.5 
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Figure 9: Effect of Radiation parameter on heat transfer for  𝜔 = 0.50, 𝑡 = 0.1, 𝑃𝑒 = 1.0 , 𝑁ଶ =  0.5, 𝑆 = 1.0 

 

 

Figure 10: Effect of Radiation parameter on  heat transfer for  𝜔 = 0.50, 𝑡 = 0.1, 𝑃𝑒 = 1.0 , 𝑁ଶ =  0.5, 𝑆 = 1.0 

Velocity Profile 

 

Figure 11: Effect of thermal radiation on velocity for 𝐺𝑟 = 10, 𝐺𝑚 = 10, 𝜔 = 3, 𝑆𝑐 = 0.5, 𝑃 = 1, 𝐾 = 0.5, 𝑀 = 1, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5, 𝑃𝑒 = 1 
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Figure 12: Effect of Grashof on velocity for 𝑁 = 0.5, 𝐺𝑚 = 10, 𝜔 = 3, 𝑆𝑐 = 0.5, 𝑃 = 1, 𝐾 = 0.5, 𝑀 = 1, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5, 𝑃𝑒 = 1 

 
Figure 13: Effect of modified Grashof number on velocity for 𝐺𝑟 = 10, 𝑁 = 0.5, 𝜔 = 3, 𝑆𝑐 = 0.5, 𝑃 = 1, 𝐾 = 0.5, 𝑀 = 1, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5, 𝑃𝑒 = 1 

 
Figure 14: Effect of frequency of oscillations on velocity for 𝐺𝑟 = 10, 𝐺𝑚 = 10, 𝑁 = 0.5, 𝑆𝑐 = 0.5, 𝑃 = 1, 𝐾 = 0.5, 𝑀 = 1, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5, 𝑃𝑒 = 1 
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Figure 15: Effect of magnetic field on velocity for 𝐺𝑟 = 10, 𝐺𝑚 = 10, 𝜔 = 3, 𝑆𝑐 = 0.5, 𝑃 = 1, 𝐾 = 0.5, 𝑁 = 0.5, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5, 𝑃𝑒 = 1 

 
Figure 16: Effect of porosity on velocity for 𝐺𝑟 = 10, 𝐺𝑚 = 10, 𝜔 = 3, 𝑆𝑐 = 0.5, 𝑃 = 1, 𝑁 = 0.5, 𝑀 = 1, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5, 𝑃𝑒 = 1 

 
Figure 17: Effect of Scmidt number on velocity for 𝐺𝑟 = 10, 𝐺𝑚 = 10, 𝜔 = 3, 𝑁 = 0.5, 𝑃 = 1, 𝐾 = 0.5, 𝑀 = 1, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5, 𝑃𝑒 = 1 
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Figure 18.: Effect of Soret on velocity for 𝐺𝑟 = 10, 𝐺𝑚 = 10, 𝜔 = 3, 𝑆𝑐 = 0.5, 𝑃 = 1, 𝐾 = 0.5, 𝑀 = 1, 𝑅𝑒 = 1, 𝑁 = 0.5, 𝑃𝑒 = 1 

 
 

Figure 19: Effect of Grashof number and Soret on the skin friction for 𝑁 = 0.5, 𝐺𝑚 = 10, 𝜔 = 3, 𝑆𝑐 = 0.5, 𝑃 = 1, 𝐾 = 0.5, 𝑀 = 1, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5, 𝑃𝑒 = 1 

 
Figure 20: Effect of frequency of oscillation and Grashof number on the skin friction for 𝐺𝑚 = 10, 𝑆𝑐 = 0.5, 𝑃 = 1, 𝐾 = 0.5, 𝑀 = 1, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5, 𝑃𝑒 = 1 
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Figure 21: Effect of magnetic field and Peclet number on velocity for 𝐺𝑟 = 10, 𝐺𝑚 = 10, 𝜔 = 3, 𝑆𝑐 = 0.5,  

𝑃 = 1, 𝐾 = 0.5, 𝑅𝑒 = 1, 𝑆𝑜 = 0.5.  

IV. CONCLUSION 

The governing equations for unsteady MHD convective heat 
and mass transfer past a semi-infinite vertical permeable 
moving plate embedded in a porous medium with heat 
absorption was formulated. The plate velocity was maintained 
at a constant value and the flow was subject to a transverse 
magnetic field. The computed values obtained from analytical 
solutions for the velocity, temperature, concentration fields as 
well as skin-friction coefficient, Nusselt number and the 
Sherwood number with their amplitude and phase are 
presented graphically and in tabular form. After a suitable 
transformation, the governing partial differential equations 
were transformed to ordinary differential ones. These 
equations were solved analytically by using two-term 
harmonic and non-harmonic functions. We conclude the 
following after analyzing the graphs: The velocity decreases 
with increasing the Prandtl number, and magnetic field 
parameter whereas reverse trend is seen with increasing the 
heat generation parameter, radiation parameter, porous 
parameter, Soret number, thermal and solutal Grashof 
numbers. The temperature decreases as the values of Prandtl 
number increase and reverse trend is seen by increasing the 
values of the thermal radiation parameter, heat source 
parameter. The concentration decreases as the values of the 
chemical reaction parameter and B Schmidt number whereas 
concentration increases with increase the value of Soret 1 
number. 
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