Remarks on Commutativity Results for Alternative Rings with $\left[\left(x^{2} y^{2}+y^{2} x^{2}\right), x\right]=0$

Moharram A. Khan ${ }^{1}$, Abubakar Salisu ${ }^{2}$, Shu'aibu Salisu ${ }^{3}$
${ }^{1}$ Department of Mathematics and Statistics, Faculty of Natural and applied Sciences, Umaru Musa Yar'adua University, Katsina. Katsina State, Nigeria
${ }^{2}$ Science and Technical Education Board Dutse. Jigawa State, Nigeria
${ }^{3}$ Katsina State Science and Technical Education Board, Nigeria

Abstract

In this article, it is shown that the commutativity of alternative ring satisfying the following properties:

$\left(p_{1}\right)\left[\left(x^{2} y^{2}+y^{2} x^{2}\right), x\right]=0$.
$\left(p_{2}\right) x\left(x^{2} y^{2}\right)=\left(x^{2} y^{2}\right) x$.
Keywords: Alternative ring, assosymetric ring, commutator, prime rings.

I. INTRODUCTION

Throughout R represents an alternative ring, $C(R)$ the commutator, $A(R)$ the assosymetric ring. $N(R)$ the set of nilpotent element. An alternative ring R is a ring in which $(x x) y=x(x y), y(x x)=(y x) x$ for all x, y in R, these equations are known as left and right alternative laws respectively. An assosymetric ring $\mathrm{A}(\mathrm{R})$ is one in which $(x, y, z)=(p(x), p(y), p(z))$, where p is any permutation of $x, y, z \in R$. An associator (x, y, z) we mean by $(x, y, z)=$ $(x y) z-x(y z)$ for all $x, y, z \in \mathrm{R}$. A ring R is called a prime if whenever A and B are ideals of R such that $A B=\{0\}$ then either $A=\{0\}$ or $B=\{0\}$. If in a ring R, the identity $(x, y, x)=0$ i.e. $(x y) x=x(y x)$ for all x, y in R holds then R is called flexible. A ring R is said to be m-torsion tree if $m x=0$ implies $x=0, m$ is any positive number for all $x \in R$.A non-associative rings R is an additive abelian group in which multiplication is defined, which is distributive over addition on left as well as on right $[(x+y) z=x z+y z$, $z(x+y)=z x+z y, \forall x, y, z \in R]$.

Abujabal and Khan [1] proved the commutativity of associative ring satisfies the identity $(x y)^{2}=x y^{2} x$. Gupta [2] established that a division ring R is commutative if and only if $[x y, y x]=0$. In addition, Madana and Reddy [3] have established the commutativity of non-associative ring satisfying the identities $(x y)^{2}=x^{2} y^{2} \quad$ and $\quad(x y)^{2} \in$ $Z(R) \forall x, y \in R$.Further,
Madana Mohana Reddy and Shobha latha.[4] established the commutativity of non-associative primitive rings satisfying the identities:
$\left(x\left(x^{2}+y^{2}\right)+\left(x^{2}+y^{2}\right) x \in Z(R)\right.$ and $\quad x(x y)^{2}-(x y)^{2} x \in$ $Z(R)$.

Motivated by these observation it is natural to look commutativity of alternative rings satisfies: $\left(p_{1}\right)$ \& $\left(p_{2}\right)$,.

In the present paper we consider the following theorems.

II. THE MAIN THEOREMS

The following are main results.
Theorem 2.1 Let R be a 2-torsion free alternative ring with unity satisfy (p_{1}), Then R is commutative. .

Now, we begin with the proof of our theorems.

Proof of Theorem 2.1

From the hypothesis $\left(p_{1}\right)$ we have
(1) $x\left(x^{2} y^{2}+y^{2} x^{2}\right)=\left(x^{2} y^{2}+y^{2} x^{2}\right) x$
for all $x, y \in R$.
Replace x by $(x+1)$ in (1), and Apply 2-torsion free, we get
(2) $x y^{2}=y^{2} x \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.

Replace y by $(y+1)$ we find that
(3). $2(x y-y x)=0$ Apply 2-torsion,

This implies $x y=y x$ and hence R is commutative.
Since R is a commutative ring and satisfies the identities either $(x x) y=x(x y)$ or
$y(x x)=(y x) x$, so that R is an alternative ring. Hence an alternative ring R with identity together with commutativity yields $(x, x, y)=0=(y, x, x)$, which completes the proof.

Theorem 2.2 If R is a 2-torsion free alternative ring with unity satisfy (p_{2}) then R is commutative.

Proof of Theorem 2.2

From the hypothesis $\left(p_{2}\right)$
Replace x by $(x+1)$ in $\left(p_{2}\right)$ we have
(4) $(x+1)\left[(x+1)^{2} y^{2}\right]=\left[(x+1)^{2} y^{2}\right](x+1)$
for all $x, y \in R$.
Using (p_{2}) in (4) also Apply 2-torsion, we get
(5) $x y^{2}=y^{2} x \quad$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.

Replace y by $(y+1)$ we find that
(6). $2(x y-y x)=0$ Apply 2-torsion, for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$.

This implies $x y=y x$ and hence R is commutative.
Now using the same argument as in last paragraph of the proof of the theorem 2.1.

REFERENCES

[1] H.A.S Abu Jabal and M.A Khan. (1993) "Some Elementary commutativity theorem for Associative Rings", Kyungpook Math J .1: 49-51.
[2] Gupta.R.N. (1970). Nilpotent matrices with invertable transpose,proc.Amer.Math.Soc.,24, 572-575.
[3] Y. Madana Mohana Reddy, G. Shobhatha and D.V Ramin Reddy (2017) "Some Commutativity Theorem for non-associative rings" Math Archive, 5:379-382.
[4] Madana Mohana Reddy and shobha latha.(2020). On Commutativity for certain of Non-Associative Primitive Rings with: $\left[x(x y)^{2}-\left(x y^{2}\right) x \in Z(R)\right] .7: 292-294$.

