Generalization of Pure-Supplemented Modules

R.S. Wadbude

Mahatma Fule Arts, Commerce and Sitaramji Chaudhari Science Mahavidyalaya, Warud. SGB Amravati University Amravati [M.S.], India

Abstract: Let R be a ring and M be an R-module. We generalized the concepts pure-lifting and pure-supplemented module and introduce weak distribution with fully invariant. We prove every pure g-lifting is pure g-supplemented module. Let M be a weak distribution pure g-supplemented module, then M/A is pure gsupplemented module for every submodule A of M. Let M = $M_1 \oplus M_2$ be a weakly distributive R-module. Then each M_i , $i \in \{1, 2\}$ is closed weak g-supplemented if and only if M is closed weak g-supplemented.

Key	Words:	g-small,	g-supplemented,	pure-lift	ing, p	oure-
suppl	lemented,	pure	g-supplemented,	closed	weak	g-
supplemented, Distributive, weak Distributive modules.						

I. INTRODUCTION

Throughout this paper R is an associative ring with unity and all modules are unitary R-modules. [12] Sahira M. Yasen and W. Khalid Hasan introduce the concepts puremodule and pure-supplemented module with some conditions. Let M be an R-module, a sub module L of module M is denoted by $L \leq M$. submodule L of M is called essential (large) in M, abbreviated $K \leq_e M$, if for every submodule N of M, $L \cap N$ implies N = 0. A submodule N of a module M is called small in M, denoted by N≪M, if for every sub module L of M, the equality N + L = M implies L = M. [2] A submodule K of m is called generalized small (g-small) submodule of M denoted by N \ll_{σ} M, if for every essential submodules T of M with the property M = K + T implies that T = M. Supplemented modules and two other generalizations amply supplemented and weakly supplemented modules were studied by Helmut Zoschinger and he posed their whole structure over discrete valuation rings. " After Zoschinger, some variations of supplemented modules were studied. Let M be an R-module and U. V are submodules of M. If M = U +V and V is minimal with respect to property, or equivalently, M = U + V and $U \cap V \ll V$, then V is called a supplement of U in M. M is called supplemented if every submodule of M has supplement in M. If M = U + V and $U \cap V \ll M$, then V is called a weak supplement of U in M.[10] M is called weak supplemented if every submodule of M has weak supplement in M. [12] Let M be an R-module. P is called a g-pure sub module of M if $KM \cap P = KP$ for every ideal in R. An Rmodule M is called lifting if for every submodule N of M there is a decomposition $M = M_1 + M_2$ such that $M_1 \le N$ and $N \cap M_2 \ll M$. An R-module M is called pure-lifting module if for every submodule A of M there exists a pure submodule P of M, P \leq A such that M = P + X with A \cap X \ll X. Let M be a module. M is called Pure g-lifting module for every submodule A of M there exists a g- pure submodule P of M,

 $P \le A$ such that M = P + X with $A \cap X << gM$. Every g-lifting module is pure g-lifting module. An R-module M is called pure-supplemented module if for given any submodule A of M there exists a pure submodule P of M such that M = A + X iff M = P + X. [2] B. Kosen, C. Nebiyen and a. Pakin, introduce the concept g-supplemented module. Let M be an R-module and U, V are submodules of M. If M = U + V and M = U + T with T is essential in V implies T = V, or equivalently, M = U + V and $U \cap V << gM$, then V is called g-supplement of U in M.

In this paper we generalized the concepts pure-lifting and pure-supplemented module. The concepts small, e-small, csmall and g-small play a key role in the study of supplemented, weak supplemented pure- supplemented and pure-lifting modules.

Proposition: 1) Every hollow module is pure g-supplemented module.

2) Every lifting module is pure g-supplemented module.

3) Every pure g-supplemented module is weakly g-supplemented module.

Proof: [12].

Theorem: The following are equivalent for an R-module:

- 1) M is pure-g-lifting module.
- 2) Every essential submodule N of M can be written as N = A + K, where A is g-pure in M and K << $_{g}M$.
- 3) For every essential submodule N of M there exists a pure g-submodule A of N such that M = A + K and $\frac{N}{M} \ll \frac{M}{M}$.

$$A \overset{f}{}^{g} A$$

Proof:1⇒ 2. Let M is pure-g-lifting module i.e. for every submodule N of M there exists a g- pure submodule P of M, P ≤ N such that M = P + X with N ∩ X<< X. Hence N ∩ X<< g M. We have N = N ∩ M = N ∩ (P + X) = N ∩ T + N ∩ X = P + (N ∩ X). If A = P, then K = N ∩ X with (K<< gM).

 $2 \Rightarrow 3.$ Let N be an essential submodule of M, since N = A + K, where A is g-pure in M and K << gM. We have M = N +

L, therefore
$$\frac{M}{A} = \frac{A+K}{A} + \frac{L}{A}$$
, this implies $A + K + L = M$.

Since K << gM, therefore A + K = M and $\frac{N}{A} <<_{g} \frac{M}{A}$.

therefore

 $3 \Rightarrow 1$. Let N be an essential submodule of M, there exists a pure g-submodule A of N such that M = A + K and $\frac{N}{A} \ll_g \frac{M}{A}$ to prove that N \cap K \ll K. Suppose that N \cap K +

T = K, where $T \le K$. Then $M = A + K = A + N \cap K + T$ implies

$$\frac{M}{A} = \frac{A + (N + K) + T}{A} = \frac{(N + K) + A}{A} + \frac{A + T}{A} = \frac{N}{A} + \frac{A + T}{A} \frac{A + P}{P} < \leq_g \frac{M}{P} \Rightarrow \frac{A + P}{A} < \leq_g \frac{M}{A} \text{ with}$$

$$\frac{M}{A} = \frac{A + (N + K) + T}{A} = \frac{(N + K) + A}{A} + \frac{A + T}{A} = \frac{N}{A} + \frac{A + T}{A} \frac{A + P}{P} \cap \frac{K}{P} < \leq_g \frac{M}{P}.$$

$$\frac{M}{A} = \frac{M}{A} = \frac{A + T}{A} \text{ Hence } A + T = M \qquad \Leftarrow \text{ Let } A \text{ be a submodule of } M, \text{ then the and } T = K. \text{ Thus } N \cap K \leq \leq K.$$

and T = K. Thus $N \cap K \ll K$.

Proposition: Every Pure g-lifting is pure g-supplemented module.

Proof: Let M be pure g-lifting module and A be a a submodule of M. i.e. for every submodule A of M there exists a g- pure submodule P of M, $P \le A$ such that M = P + X with

 $A \cap X \ll gM$. Suppose that M = A + X then M = P + T, where $P \le A$ and $P \le gM$ and

 $A \cap T \leq gM$. We have $A = A \cap M = A \cap (P + T) = A \cap P + C$ $A \cap T = P + (A \cap T)$, then

Let $M = A + X = P + (A \cap T) + X$. Since $(A \cap T) \leq gM$. (A \cap T),then M = P + X thus

M = P + X, since $P \le A$ such that M = P + X with $A \cap X \le$ gM. //

Proposition: Let M be an R-module is pure g-supplemented module if and only if for every submodule A of M there exist

a g-pure submodule P of M such that $\frac{A+P}{P} \ll_g \frac{M}{P}$ and

$$\frac{A+P}{A} <<_g \frac{M}{A}.$$

Proof: \Rightarrow Let M be an R-module is pure g-supplemented module i.e. every submodule A of M there exists a g- pure submodule P of M, $P \le A$ such that M = A + X iff M = P + Xwith

A
$$\cap$$
 X<< gX. Let K \leq M and suppose that
 $\frac{A+P}{P} + \frac{K}{P} = \frac{M}{P}$ then $\frac{A+P+K}{P} = \frac{M}{P}$ implies
 $\frac{A+K}{P} = \frac{M}{P}$.

Then A + K = M. Since M is pure g-supplemented, therefore $A + K = M = P + X, P \leq A$, then

A + X ≤ K, implies M ≤ K. This shows K= M i.e. $\frac{K}{P} = \frac{M}{P}$ $\frac{A+P}{D} \cap \frac{K}{D} \ll_g \frac{K}{P}$

then

be a submodule of M, then there exist a g-pure submodule P of M such that $\frac{A+P}{P} \ll_g \frac{M}{P}$ and $\frac{A+P}{A} \ll_g \frac{M}{A}.$ If M = A + X (X $\leq M$) then $\frac{M}{P} = \frac{A+P}{P} + \frac{X+P}{P}. \quad \text{But} \quad \frac{A+P}{P} <<_g \frac{M}{P}. \quad \text{Then}$ $\frac{M}{D} = \frac{X+P}{D}$, thus M = X + P \Rightarrow M = X + A and X + A

Proposition: Let M be pure g-Supplemented module and A be a sub module of M. If for every g-pure submodule of M $\frac{A+P}{A} \ll_g \frac{M}{A} \text{ then } \frac{M}{A} \text{ is pure g-supplemented module.}$

Proof: Let $N \le M$ and let M = N + X for X is a submodule of M. Then $\frac{N}{A} \le \frac{M}{A}$ and $\frac{M}{A} = \frac{N}{A} + \frac{X}{A}$, for $A \le X$. Since M = N + X, therefore M = P + X, where P is g-pure in M. Then $\frac{M}{\Lambda} = \frac{P+X}{\Lambda}$

$$\frac{M}{A} = \frac{P+A}{A} + \frac{X}{A}. \text{ Since } \frac{P+A}{A} \cap \frac{X}{A} <<_g \frac{M}{A} \text{ therefore}$$
$$\frac{M}{A} = \frac{X}{A} \text{ implies } \frac{M}{A} \text{ is pure g-supplemented. //}$$

Recall that a sub module N of M is called fully invariant, if $f(N) \le N$, for each $f \in End_R(M)$. The set $f^{-1}(N) = \{m \in M : f\}$ (m) $\in N$ }. Note that f⁻¹(N) is a submodule of M and that f (f $^{-1}(N) \leq N$. Note further that f (f $^{-1}(N) = N$ in case f is an epimorphism. Moreover, for any submodules $L \le N$ of M, we have $f^{-1}(L) \leq f^{-1}(N)$. A module M is called duo module if every essential submodule is fully invariant . [9] Let M be an R- module and U \leq M. A submodule U is said to be a distributive submodule of M if $U = U \cap X + U \cap Y$ for all X. $Y \in M$. A module M is called distributive if and only if for every submodules K, L, N of M such that $N + (K \cap L) = (N + L)$ K) \cap (N + L) or N \cap (K + L) = (N \cap K) + (N \cap L). Weakly

distribution module are proper generalization of distributive modules. A submodule U is said to be a weak distributive submodule of M if $U = U \cap X + U \cap Y$ for all X, $Y \in M$ such that X + Y = M. A module M is said to be weakly distributive if for every submodule of M is a weak distributive submodule of M. A ring R is weakly distributive if R is a weakly distributive left R-module.

Proposition: Let M be a weak distribution pure gsupplemented module, then M/A is pure g-supplemented module for every submodule A of M.

Proof: Let X be direct summand of M, then $M = X \oplus Y$ for some Y submodule of M.

Since M = X + Y, therefore $\frac{M}{A} = \frac{X}{A} + \frac{Y}{A}$ and $\frac{U}{A} \le \frac{M}{A}$. Since M is a weak distributive pure g-supplemented module. $U = (U \cap X) + (U + Y)$ i.e.

$$\frac{U}{A} = \frac{(U \cap X)}{A} + \frac{(U \cap Y)}{A} = \left(\frac{U}{A} \cap \frac{X}{A}\right) + \left(\frac{U}{A} \cap \frac{Y}{A}\right) = \frac{U}{A} \cap \frac{Y}{A}$$

with $\frac{X}{A} \cap \frac{Y}{A} = \{0\}$

$$\Rightarrow \frac{M}{A} = \frac{X \cap A}{A} \oplus \frac{Y \cap A}{A}. \text{ Hence } \frac{X \cap A}{A} \text{ is a direct}$$

summand of $\frac{M}{A} \Rightarrow \frac{M}{A} = \frac{X \cap A}{A} + \frac{Y \cap A}{A}.$

A

Hence
$$\frac{M}{A}$$
 is a pure g-supplemented module. //

Proposition: Let A be a sub module of M and $eA \le A$ for all $e^2 = e \in End_R(M)$ then $\frac{M}{A}$ is pure g-supplemented module. In particular for every fully invariant submodule Y of M, $\frac{M}{V}$ is

pure g- supplemented module.

Proof: Let X be the direct summand of M. Now the projection e : M \rightarrow X, then e² = e \in End_R(M) and eA \leq A, where A is submodule of M. Hence $eA = A \cap X$. Then M = X + Y, for some Y∈M,

A = (A
$$\cap$$
 X) + (A \cap Y). Now $\frac{X+A}{A} = \frac{X \oplus (A \cap Y)}{A}$ and
 $\frac{Y+A}{A} = \frac{Y \oplus (A \cap X)}{A}$.

$$M=X\oplus Y=(X+A)\oplus (Y+A)=\{X\oplus (A\cap Y)\}+(Y+A).$$

Then 1.
$$\frac{M}{A} = \frac{X \oplus (Y+A)}{A} + \frac{Y+A}{A}$$

 $\{X \oplus (A \cap Y)\} \cap (Y + A) = \{(X \oplus A) \cap$ 2. $(X \oplus Y) \} \cap (Y + A)$

$$= \{ [(X \oplus A) \cap Y] \cap [(X \oplus Y) \cap Y] + \{ [(X \oplus A) \cap A] \cap [(X \oplus Y) \cap A] \}$$
$$= (A \cap Y) \cap (A \cap A) = A$$

Then
$$\frac{M}{A} = \frac{X \oplus (Y+A)}{A} \oplus \frac{Y+A}{A}$$
. Therefore $\frac{Y+A}{A}$ is direct summand of $\frac{M}{A}$ with $\frac{Y+A}{A} <<_g \frac{M}{A}$.

Hence $\frac{M}{A}$ is pure g-supplemented. //

Theorem: Let $M = M_1 \oplus M_2$ be a weakly distributive R-module. Then each M_i , $i \in \{1, 2\}$ is closed weak gsupplemented Aff and only if M is closed weak gsupplemented.

Proof: Let A \leq^{c} M. Since M_i, i \in {1, 2} is closed weak gsupplemented R-modules. Let $M = M_1 + M_2$, M_1 , M_2 are submodules of M. We have $A \cap M_i \leq^c M_i$. Let $A \cap M_i \leq eB$ in Mi, since M is a weakly distributive R-module.

We have $A = A \cap M = A \cap (M_1 \oplus M_2) = (A \cap M_1) \oplus (A \cap M_2)$ $\leq_{e} B \oplus (A \cap M_{2})$ in M. Since $A \leq^{c} M \implies A = (A \cap M_{1}) \oplus (A)$ \cap M₂) = B \oplus (A \cap M₂), therefore A \cap M₁ = B, thus A \cap M₁ \leq^{c} M₁. Similarly A \cap M₂ \leq^{c} M₂. Since M₁, M₂ are closed weak g-supplemented R-modules. Then there are sub modules N_1 , N_2 such that $M_1 = N_1 + (A \cap M_1)$ and $N_1 \cap (A \cap M_1) = N_1 \cap A$ $<<_{\sigma}M_1$. Similarly $M_2 = N_2 + (A \cap M_2)$ and $N_2 \cap (A \cap M_2)$ = $N_2 \cap A \ll_g M_2$. Put N = $N_1 \oplus N_2$. So we get

$$\begin{split} \mathbf{M} &= \mathbf{M}_1 \oplus \mathbf{M}_2 \ = \{ \ \mathbf{N}_1 + (\mathbf{A} \cap \mathbf{M}_1) \} \oplus \{ \ \mathbf{N}_2 + (\mathbf{A} \cap \mathbf{M}_2) \} \\ &= (\mathbf{N}_1 \oplus \mathbf{N}_2) + \{ (\mathbf{A} \cap \mathbf{M}_1) \oplus (\mathbf{A} \cap \mathbf{M}_2) \} \\ &= (\mathbf{N}_1 \oplus \mathbf{N}_2) + \{ \mathbf{A} \cap (\mathbf{M}_1 \oplus \mathbf{M}_2) \} \\ &= (\mathbf{N}_1 \oplus \mathbf{N}_2) + \{ \mathbf{A} \cap \mathbf{M} \} = (\mathbf{N}_1 \oplus \mathbf{N}_2) + \mathbf{A} \end{split}$$

 \therefore M = X + A. Since M is weakly distributive module. Now $X \cap A = (N_1 \oplus N_2) \cap A$

 $= (N_1 \cap A) \oplus (N_2 \cap A) \ll (M_1 \oplus M_2) = M$. Then X is weak g-supplement of A in M.

hence M is closed weak g- supplemented. //

REFERENCES

- [1] B. Kosar, Co-finitely G-supplemented modules, British J. Math. 17(4), (2016) 1-6.
- B. Kosar, C. Nebiyev and A. Pakin, A generalization of g-[2] supplemented modules, Miskolc Math. 20(1), (2019) 345-352.
- [3] C. Lomp, On semilocal modules and rings, Comm. Alg. 27(4), (199) 1921-1935.

- [4] C. Nebiyev and Hasan H. Okten, Weakly G- supplemented modules, European J. of Pure and applied Math., 10(3) 2017, 521-528.
- [5] C. Nebiyev, Hasan H. Okten and A. Pakin, Essential supplemented modules, Int J. of Pure and Applied Math. 120(2) (2018), 253-257.
- [6] D. Keskin & N. Orhan, Generalization of weak lifting modules, Soochow J. Math, 32(1), (2006), 71-76.
- [7] G. Azumaya some characterization of regular modules, Publications Mathematiques, 34 (1990) 241-248.
- [8] K. Vardharajan, Modules with supplements Pac. J. Math. 82(1979), 559-564.
- [9] R. Alizade and E. Buyukasik, Cofinite weakly supplemented modules, comm. Alg. 31(11), (2003), 5377-5390.
- [10] R. Wisbauer, Foundation of Modules and Rings, Goldan and Breach, Philadelphia (1991).

- [11] S. K. Coubey, B. M. Pandeya and A. J. Gupta, Amply weak Radsupplemented modules, 6 (27) (2012), 1335-1341.
- [12] S.M. Yasen and W. K. Hasan, Pure-supplemented modules, Iraqi J. of Science. 53(4)(2012) 882-886
- [13] W. Anderson and K. Fuller, Rings and Categories of Modules, Springer-Verlag, NewYork, 1992.
- [14] W. Khalid and A. S. Wadi, Generalized Radical g- lifting modules, Int. J. of Science and Research, 6(7), 2015, 2211-2214
- [15] Y. Wang & N. Ding, A generalized supplemented modules. Hac. J. Math., 45 (1), (2016),129-137.
- [16] Y. Wang & N. Ding, Generalized supplemented modules. Taiwanese J. Math., 10, No.6, (2006),1589-1601.
- [17] Y.Talebi, T. Amouzegar and A. Mahmodui, Closed weak generalized supplemented modules, J. of Algebra, Number theory, 11 (1) (2014), 33-47.