
International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue X, October 2020|ISSN 2454-6194

www.rsisinternational.org Page 63

Design and Implementation of a Malware Detection
System on Smartphones

Atanda Aminat Oluchi1, Obi Adaobi Maria2, Anyaorah Chukwuka Charles3, Idoko Nnamdi A4, Udechukwu Precious
Emeka5, Anusiobi Chinenye Loveline6, Asogwa Samuel7, Senu Jephthah Folarin8

1,2,5,6Department of Computer Science, University of Nigeria, Nsukka, Nigeria
3Department Of Computer Science, Federal College of Education Eha-Amufu, Nigeria
4Department of Computer Science, Renaissance University, Ugbawka, Enugu, Nigeria

7Department of Computer Science, Michael Okpara University of Agriculture, Umudike, Nigeria
8Department of computer science, Federal university of tech, Minna, Nigeria

Abstract:-Due to innovative advancement, Smart phones
developed into in fact and practically refined gadgets called
mobile phones. Giving far reaching abilities, Smart phones are
getting progressively well known for the focused on clients as
well as all. Malware has been a significant issue on cell phones.
General countermeasures to Smart phone malwares are at
present restricted to signature-based enemy of infection scanners
which proficiently identify known malwares, yet they have
genuine inadequacies with new and obscure malwares making a
lucky opening for assailants. As Smart phones become a host for
delicate information and applications, broadened malware
recognition instruments not basing on marks are important com-
utilizing with the asset limitations of current cell phones. In this
work, we tackle the field of cell phone malware. We give a
reasonable clarification on what a cell phone really is. Dynamic
and static investigation was utilized in the proposed framework.
In the field of dynamic investigation, an observing framework is
presented assembling conduct and framework based data that
are handled by a distant framework utilizing AI for oddity
discovery. In the field of static investigation, we examine its
pertinence to the space of various cell phone stages, in particular
Symbian OS and Android. This paper adopted the object
oriented analysis and design method (OOADM), and utilizations
the way to deal with model true cycles, activities and information
in an all the more deftly, productively and sensibly way.

Keywords: Malware intrusion detection, Smartphones, Dynamic
and Static analysis.

I. INTRODUCTION

ndroid has become the most mainstream open source
working framework for smart phones and tablets with an

expected piece of the overall industry of 70% to 80%. A
shipment of one billion Android gadgets has been gauge in
2017; more than 50 billion applications have been
downloaded since the first Android telephone was delivered in
2008. The normal number of utilizations per gadget expanded
from 32 to 41 and the extent of time spent by clients on smart
phone applications nearly approaches the time spent on the
Web (73% versus 81%) [1].

Android is an open source working framework for cell phones
and tablets. It was dispatched by Google and Open Handset
Alliance in September 23, 2008. Android has experience a
huge development since its origin due to its ease of use, open

source, simplicity of creating and distributing applications.
Android has become the most broadly utilized working
framework on Smartphones with an expected piece of the
overall industry of 81% in 2015 [2]. As indicated by report
around 432 million smart phones were sold with Google's
Android OS making up 81.7% of the market followed by
Apple's iOS with 17.9% of the general piece of the pie [3].

The fast development of smart phone advancements and their
far reaching client acknowledgment came all the while with
an expansion in the number and refinement of malignant
delicate product focusing on mainstream stages. Malware
(short for noxious programming) created for early cell phones,
for example, Palm stages and highlighted cell phones was
identified preceding 2004. The presence of malware
specifically produced for them (generally Symbian OS)
developed exponentially with the expansion of smart phones
with in excess of 400 cases somewhere in the range of 2004
and 2007 [4]. The iPhone and Android OS were delivered
later on and turned out to be quickly the transcendent stages.
This offered ascend to a disturbing acceleration in the number
and advancement of vindictive programming focusing on
these stages, especially Android OS. Over 250.000 Android
clients have been survivor of an extraordinary portable assault
when they downloaded pernicious programming camouflaged
as genuine applications from the Android Market.A
comparative report by F-Secure uncovers that the quantity of
vindictive Android OS applications got during the first quarter
of 2012 expanded from 139 to 3063 contrasted with the first
quarter of 2011 and it as of now speaks to 97% of the absolute
portable malware before the finish of 2012 [5].A few
strategies have been proposed and actualized to recognize,
forestall and diminish malware assaults on Android
telephones. Procedures utilized for recognizing Android
malware can be grouped into Static, dynamic, mixture and AI
methods. Static investigation doesn't execute an application
yet statically review application and dismantling their code.
Static investigation includes checking different boundaries
like mark confirmation, network addresses,

A

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue X, October 2020|ISSN 2454-6194

www.rsisinternational.org Page 64

 API calls, authorization examination and so forth. Dynamic
investigation which includes identification of malware at run-
time, screens application powerfully during their execution.
During dynamic examination, a few highlights like framework
calls, API following, of an application are removed to see
whether that application is amiable or malevolent.

II. THE ORETICAL BACKGROUND

Android is an open-source operating system for mobile
phones, tablets etc. It was built based on Linux kernel,
developed by Google and released on September 23, 2008 [6].
Android offers a friendly development environment through a
variety of tools such as Android Software Development Kit
(SDK), Android Native Development Kit (NDK), Android
Debug Bridge (ADB), Android Developer Tools (Eclipse).
Google PlayStore is the official distribution center for
Android Apps which are developed by Google or third-
parties. It allows Android users to browse, install, and update
the apps.

2.1 Malware Detection Approaches and Coun-Ter Measures

Countermeasures, which help to secure a system, taken
byinstalling certain hard- or software. Three main systems for
computers can identify: firewalls, antivirus software and
intrusion detection systems

Firewalls are purported "white list” - based frameworks,
which implies that there is an uncommon rundown of rules
expressly permitting certain ports to speak with inward or
outside peers13. On the off chance that noxious programming
can take on the appearance of believed programming utilizing
a confided in port, an essential firewall will permit all
correspondence exercises [7]. Antivirus scanners use
"boycotts" so as to distinguish certain dangers remembered
for the boycott. An infection scanner can impede infections,
worms, and Trojan ponies with continuous checking or
manual examining. Malware is recognized by filtering for and
finding a specific string or example, additionally called
signature. There-front, the malware must be known by the
scanner. Infection scanners typically incorporate a particular
cleansing schedules relating to the recognized marks [8].
Interruption Detection Systems (IDS) once were frameworks
that observed organization traffic. Logged traffic was utilized
by network directors so as to identify irregular conduct [9].
Countermeasures like shutting ports or bolting frameworks
could be taken by the overseers. IDS advanced into
interruption anticipation frameworks (IPS) which can
recognize certain irregular practices and take preventive
measures naturally. Base on anomalous practices, interruption
discovery and avoidance frameworks (IDPS) are
fundamentally ready to recognize malware movement while
they do not have the expulsion schedules known from
infection scanners. Infection scanners and Intrusion Detection
Systems present the premise of our methodologies. While
firewalls center on confining organization traffic, infection
scanners and Intrusion Detection

Systems attempt to identify vindictive programming and
exercises utilizing static and dynamic examination.

2.1.2 Static Analysis and Dynamic Analysis

Infection scanners and Intrusion Detection Systems attempt to
distinguish noxious programming and exercises utilizing static
and dynamic examination. The significant distinction among
static and dynamic analysis is the way the information is
procured. Strategies that are utilized to analyze the checked
information can be the equivalent for the two methodologies.

Static Analysis Static analysis speaks to a methodology of
checking source code or ordered code of uses before it gets
executed. Static examination can utilize basic example search
activity or marginally more mind boggling AI approaches so
as to identify blemishes and powerless nesses in the code of
programming. A basic inquiry may target finding in-secure
capacity brings in C programs. A more mind boggling
approach may be the use of factual techniques so as to decide
events of specific calls.

Dynamic analysis examines the conduct of the application in a
run time condition and screens the application's dynamic
conduct and framework reactions. It executes the dubious
application inside a controlled domain regularly called
sandbox. The dynamic highlights observed are network
associations, work calls, assets utilization, framework calls
and so on.

The significant distinction among static and dynamic analysis
is that dynamic examination alludes to information obtained
on runtime while static analysis doesn't. Static examination
can exclusively depend on information removed from pairs in
a static way. Strategies being applied to the obtained
information for distinguishing malware can essentially be the
equivalent to for the two variations [10].

2.2 Review of Related Literature

At the present time, survey a part of the past techniques used
by investigators for recognizing malicious applications.
Various strategies have been used to distinguish malicious
applications and they can be by and large amassed into static,
dynamic and peculiarity based methodology. Underneath, we
give a succinct review of exploration thinks about that have
been coordinated using static and dynamic examination.

According to [11], present a standard based framework so as
to demonstrate pernicious capability of Android applications.
Hence, they gathered the top311 applications from android
market and checked them for events of certain authorization
set in an arrangement document of each. This

Check demonstrated that five of these applications executed
perilous functionalities. Another five additionally indicated
perilous authorizations however these could be contended
through gave usefulness of those applications.

In [12], study introduced a cell phone double safeguard
insurance system that permits official and elective Android

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue X, October 2020|ISSN 2454-6194

www.rsisinternational.org Page 65

Markets to identify malignant applications among those new
applications that are submitted for open delivery. This
structure comprises of workers running on mists where
engineers who wish to deliver their new applications can
transfer their product for check reason. The confirmation
worker first uses framework call measurements to recognize
expected noxious applications. After check, on the off chance
that the product is perfect, the application will at that point be
delivered to the significant business sectors. The test results
utilizing 120 test applications (which comprise of 50 malware
and 70 typical applications) demonstrate that we can
accomplish 94.2% and 99.2% exactness with J.48 and
Random woodland classifier separately utilizing this structure.

As indicated by [13], proposed another system to get and
examine cell phone application movement. They found that
observing framework calls is one of the most precise
procedures for deciding the conduct of Android applications.
The creator built up a lightweight customer called Crowdroid.
This application utilizes publicly supporting way of thinking
where a client sends non individual however conduct related
information of every application they use to the worker. This
is trailed by malware recognition dependent on the call
vectors by the worker. The exploratory outcomes did by the
writer had 100% identification rate for self-composed
malware.

In [14], express that implanted gadgets, as mobile phones,
shrewd cards or installed network sensors are generally
compact, convey remote and are battery controlled or if
nothing else vitality restricted. The plan of security for
implanted frameworks contrasts from customary security
plan, as various attributes can be found for every sort. There
are two principle gatherings of qualities that separate the
security engineering from Embedded System from that of
workstations and workers: asset impediments and physical
openness. In their work, Hwang et al. guarantee that inserted
security can't be comprehended at single security deliberation
layer and subsequently present safety efforts for all reflection
layers.

In [15], introduced TaintDroid, a productive, framework wide
data stream following apparatus that can all the while track
different wellsprings of delicate information. We additionally
utilized our TaintDroid usage to consider the conduct of 30
famous outsider applications, picked indiscriminately from
the Android Marketplace. Our investigation uncovered that
66% of the applications in our examination display dubious
treatment of touchy information, and that 15 of the 30
applications revealed clients' areas to far off promoting
workers.

In [16], a basic, but then profoundly compelling procedure for
identifying malevolent Android applications on an archive
level was proposed. The procedure performs programmed
classification dependent on global positioning framework calls
while applications are executed in a sandbox domain. The
method was actualized in an apparatus called MALINE, and

performed broad experimental assessment on a set-up of
around 12,000 applications.

According to [17], proposed a proactive plan to spot zero-day
Android Malware without depending on malware tests and
their marks to spot potential security hazards presented by
untrusted applications. They created Risk Ranker, a robotized
framework that scalably dissect applications whether they
display perilous practices. They performed static investigation
on the figured out Dalvik bytecode contained in each
application by separating the information stream and control
stream from the code way. They gathered 118,318
applications from different Android advertises and handled it
inside four days. From their examination they revealed 3281
hazardous applications.

In [18], utilized both static and dynamic examination to
distinguish malware in android applications. They
consolidated the static investigation (consent) and dynamic
examination (System call following) with AI. They performed
static examination by separating authorizations from the
Android's manifest.xml document and contemplated the
distinction between the quantity of consents mentioned by
kind and noxious applications. They understood that the
quantity of consents mentioned by favorable and pernicious
application is marginally the equivalent. This strategy was
tried on different amiable and noxious applications.

In [19], Kirin security administration which performs
lightweight affirmation of utilizations was proposed for
Android to alleviate malware at introduce time. Kirin
proclaims that a mix of consents could be risky. Kirin
comprises of three parts, installer, and security administration
and information base of security rules. The installer separates
security arrangement from the AndroidManifest.xml
document. Their outcome shows that affirmation method
fizzles for just 1.6% of uses in their dataset subsequently
Kirin can be sensible for essentially moderate malware.

According to [20], proposed DREBIN, a lightweight strategy
for recognition of Android malware that empowers
recognizing noxious applications legitimately on the cell
phone. DREBIN plays out a wide static examination, removes
a lot of highlights from the application's AndroidManifest.xml
(equipment segments, mentioned authorizations, App
segments, and separated plans) and dismantled code (limited
API calls, utilized consents, confined API calls, network
addresses) to create a joint vector space. At the point when
tried with 123,453 considerate applications and 5,560
malware tests, DREBIN effectively identified 94% of the
malware with a bogus positive pace of 1%.

According to [21], extricates six sorts of data Permission,
Intent channel, Intent channel, Process name, Intent channel,
number of re-imagined consent from show records and uses
them to identify Android malware. Results show that the
strategy can identify obscure malware tests that are
imperceptible by a straightforward mark based methodology.

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue X, October 2020|ISSN 2454-6194

www.rsisinternational.org Page 66

This methodology is modest to execute in light of the fact that
solitary the show record is examined.

In [22], introduced a quick, versatile, and exact framework for
Android malware location and family distinguishing proof
dependent on lightweight static investigation. DroidSieve
utilizes profound review of Android malware to assemble
successful and strong highlights reasonable for computational
learning. Their discoveries show that static examination for
Android can succeed in any event, when gone up against with
obscurity methods, for example, reflection, encryption and
progressively stacked local code. While essential changes in
attributes of malware stay a generally open issue, DroidSieve
stays tough against cutting edge obscurity methods which can
be utilized to rapidly determine new and grammatically
extraordinary malware variations.

According to [23], presents an authorization based Android
malware recognition framework, APK Auditor that utilizes
static investigation to describe and order Android applications
as benevolent or malevolent. APK Auditor comprises of three
parts: A mark data set to store removed data about
applications and examination results, an Android customer
which is utilized by endusers to give application investigation
demands, and a focal worker answerable for speaking with
both mark information base and cell phone customer. 8762
applications were utilized to test framework execution. Result
shows that APK Auditor can recognize most notable
malwares and features the ones with a potential in roughly
88% exactness with a 0.925 specificity.

III. ANALYSIS OF THE PROPOSED SYSTEM

The proposed framework is an application that sudden spikes
in demand for an Android OS. We propose an Android
malware discovery framework that recognizes malevolent
applications precisely. The proposed application is utilized by
Android telephone clients, analysts and the general
Smartphone clients. Thinking about the impediment of the
current framework, the proposed framework looks to address
a portion of the innate issues recognized by viably filtering
applications and distinguishing noxious applications. The
proposed framework plays out the accompanying movement
to examine and identify malware in Android Apps.

 Get the list of already installed applications.
 Extract the source_dir of the application
 Upload the source_dir on VirusTotal database
 Receive response from VirusTotal database
 Interpret the result to user/researcher
 Present result to user

Apart from the ability of the system to scan application, it also
educate the end user on necessary security tips to keep their
device and file safe.

3.1 Design of the Proposed System

The proposed system’s design is described with the following
operations:

 Application Listing: system fetches all the
applications installed on the device and display the
list to the user to scan.

 Install-Time Scanning: System provide the
functionality to scan an application that is being
installed automatically at install time. This module
listens to messages broadcasted by Android by
default signaling an installation. When this module
receives a message indicating the addition of a new
application to the system, it notifies the user to scan
the application before use.

 Static Analysis: System scrutinize the application to
be scanned and extracts the source-dir of the
application.

 Real-Time Scanning: After extracting the source_dir
of a given application, System sends it to
VirusTotal’s aggregated data which comprises
heuristic engines, known-bad signatures, metadata
extraction, identification of malicious signals, etc.

 Instruction Module: Based on previous work, it was
ascertained that majority of Smartphone users do not
know the necessary security precautions to reduce
the widespread of malware. This module adds the
functionality of educating user about the permission
system, importance of checking the user review
section and need to download applications from
official android market.

 Display of Result: This module implement a feature
that is not seen in previous work. After a user scan an
application, System generates a result that contains,
the nature of the application – benign or malicious,
the family of the malware, the damage it might cause
to the device/files and an option to uninstall the app.

 Implementation Architecture of System

IV. WALWARE DETECTION TECHNIQUES

Techniques utilized for identifying malware can be classified
comprehensively into two classifications: abnormality based
recognition and mark based discovery. An inconsistency
based identification strategy utilizes its information on what
comprises ordinary conduct to choose the noxiousness of a
program under examination. A unique sort of inconsistency
based discovery is alluded to as determination based
recognition. Determination based procedures influence some
detail or rule set of what is substantial conduct so as to choose
the perniciousness of a program under investigation. Projects
abusing the determination are viewed as bizarre and typically,
malignant. Mark based location utilizes its portrayal of what is
known to be malignant to choose the noxiousness of a
supportive of gram under assessment. As one may envision
this portrayal or mark of the malevolent conduct is the way in
to a mark based discovery technique's adequacy. Every one of
the recognition procedures can utilize one of three unique
methodologies: static, dynamic, or mixture. The particular
methodology or examination of an abnormality based or
signature-based procedure is controlled by how the strategy

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue X, October 2020|ISSN 2454-6194

www.rsisinternational.org Page 67

assembles data to identify malware. Static investigation
utilizes grammar or auxiliary properties of the program
(static)/measure (dynamic) under examination (PUI) to decide
its perniciousness. For instance, a static way to deal with
signature-based identification would just use basic data (for
example succession of bytes) to decide the noxiousness,
though a powerful methodology will use runtime data (for
example frameworks seen on the runtime pile) of the PUI.
When all is said in done, a static methodology endeavors to
distinguish malware before the program under assessment
executes. Alternately, a powerful methodology endeavors to
distinguish noxious conduct during program execution or after
supportive of gram execution.

4.1 System Architecture

The system will be designed based on a typical 3-tier system
architecture. The presentation tier, the middle tier and the data
tier. The presentation tier shows the programming that
provides the graphical user interface (GUI) and application-
specific entry forms or interactive windows. The middle tier is
tier that performs the runs the code which acts as an
intermediary between the presentation and data tier. The data
tier is the repository for date needed to be presented to the
user.

Figure 4.1: Architecture of the proposed system

4.2 Implementation Architecture

The proposed system is a lightweight and flexible system that
scans applications to detect malicious code. The architecture
of the system is based on five modules, the module of

retrieving application, the module of analysis, the module of
interpretation of results, the module of presentation of results
and the module of preferences. Figure 4.1 shows the logical
view of the architecture for implementing the system.

Figure 4.2: Implementation Architecture

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue X, October 2020|ISSN 2454-6194

www.rsisinternational.org Page 68

V. RESULTS AND DISCUSSION

Android malware growth has been increasing drastically
along with increasing the diversity and complicity of their
developing techniques. This research work provides an
effective and efficient technique to detect malicious code in
Android Application. We have been able to design and
develop an application that can scan already installed Android
applications and newly installed applications to detect
whether they are Benign or Malware. The system was
developed using Android Studio, Android SDK written with
Java and XML. The Object Oriented Analysis and Design
Methodology (OOADM) were used for the analysis, design
and development of the system using Unified Modelling
Language (UML) to model the system.Malware Detection
System clearly shows that the introduction of the system is
exact and it shows promising results similar to low
computational expense and high result. This is a convenient
application created utilizing Java. After the application has
been sent, you select application to examine, by then
eliminate information from the application and send data to
channel. You will get a responses result and if the application
is vindictive it will uninstall thusly. This module realize a
segment that isn't seen in past work. After a customer check
an application, makes a result that contains, the idea of the
application – liberal or vindictive, the gathering of the
malware, the mischief it might cause to the device/archives
and an option to uninstall the application.

5.1 Conclusion

Mobile devices mostly running Android OS have become the
new personal computer, storing as much data as a PC but
providing greater flexibility and portability. Smart devices
equipped with powerful computing, sensing, and networking
capabilities have increasingly become the platform of choice
for many users, outselling the number of PCs worldwide.
Online banking, commerce, and other business applications
put daily business and financial transactions at user fingertips.
Users are at every turn stipulated to download applications for
further increasing the value of their mobile devices. As mobile
devices grow in popularity, so do the incentives for attackers.
Mobile malware is clearly on the rise, as attackers experiment
with new business models by targeting mobile phones. This
increase is in some cases accompanied by sophisticated
techniques purposely designed to overcome security
architectures and detection mechanisms.

This research work studies various methods and approaches
that have addressed Android Malware, designed, analyzed and
developed an efficient and effective mechanism to detect
Android malware.

REFERENCES

[1]. Canalys. " Small tablets drives big share gains for Android". press
release. Aug 2013

[2]. M. (Business I. Rosoff, “IDC smartphone OS market share -
Business Insider,” 2015. [Online]. Available:
http://www.businessinsider.com/idc-smartphone-os-market-share-

2015-12?IR=T. [Accessed: 10-Aug-2017].
[3]. R. Price, “BlackBerry global smartphone market share is 0,” 2017.

[Online]. Available: http://www.businessinsider.com/blackberry-
smartphone-marketshare-zero-percent-gartner-q4-2016-2017-
2?IR=T. [Accessed: 10-Aug-2017].

[4]. Guillermo suarez- T, et al. "Evolution , Detection and analysis of
malware for smart devices". IEEE communication Survey and
tutorials. Issue 2, Vol 16. Oct 2013

[5]. Sven Dietrich. " Detection of intrusion and malware, and
vulnerability assessment" Egham, UK. July 2014.

[6]. H. A. Alatwi, “Android Malware Detection Using Category-Based
Machine Learning Classifiers,” Rochester Institute of Technology,
2016.

[7]. C.L. Lodin, S.W.; Schuba. Firewalls fend off invasions from the
net.Spectrum, IEEE, 35(2):26–34, Feb 1998.

[8]. Peter Szor.Virus Research and Defense, chapter 11 Antivirus
DefenseTechniques, pages 425–491. Symantec Press, 2005.

[9]. R.A. Kemmerer and G. Vigna. Intrusion detection: A brief
historyand overview.Computer, 35(4):27–30, Apr 2002.

[10]. Onyedeke Obinna C, et al, " Anomaly network based intrusion
detection system using hybrid techniques" international journal of
innovative research and development. vol 8, issue 3, 2020.

[11]. William Enck, Machigar Ongtang, and Patrick Drew McDaniel.
Onlightweight mobile phone application certification. InACM
Con-ference on Computer and Communications Security, pages
235–245,2009.

[12]. X. Su, M. Chuah, and G. Tan, “Smartphone Dual Defense
Protection Framework : Detecting Malicious Applications in
Android Markets,” Mob. Ad-hoc Sens. Networks (MSN), 2012
Eighth Int. Conf., pp. 153–160, 2012.

[13]. I. Burguera and U. Zurutuza, “Crowdroid : Behavior-Based
Malware Detection System for Android,” Proc. 1st ACM Work.
Secur. Priv. Smartphones Mob. devices (SPSM ’11). ACM, New
York, NY, pp. 15–26, 2011.

[14]. David D. Hwang, Patrick Schaumont, Kris Tiri, and Ingrid Ver-
bauwhede. Securing embedded systems.Security & Privacy
Magazine,IEEE, 4(2):40–49, 2006.

[15]. W. Enck, L. P. Cox, P. Gilbert, and P. Mcdaniel, “TaintDroid : An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones,” ACM Trans. Comput. Syst., p.
32(2):5, 2014.

[16]. M. Dimjaˇ, S. Atzeni, I. Ugrina, Z. Rakamari, and M. Dimjaˇ,
“Android Malware Detection Based on System Calls Android
Malware Detection Based on System Calls,” J. Comput. Secur.,
2015.

[17]. M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “RiskRanker :
Scalable and Accurate Zero-day Android Malware Detection
Categories and Subject Descriptors,” Int. Conf. Mob. Syst. Appl.
Serv., 2012.

[18]. P. Kaushik and A. Jain, “Malware Detection Techniques in
Android,” Int. J. Comput. Appl., vol. 122, no. 17, pp. 22–26, 2015.

[19]. W. Enck, M. Ongtang, and P. Mcdaniel, “On Lightweight Mobile
Phone Application Certification,” ACM Conf. Comput. Commun.
Secur., 2009.

[20]. D. Arp, M. Spreitzenbarth, H. Malte, H. Gascon, and K. Rieck,
“Drebin : Effective and Explainable Detection of Android
Malware in Your Pocket,” Proc. 17th Netw. Distrib. Syst. Secur.
Symp., pp. 23–26, 2014.

[21]. R. Sato, D. Chiba, and S. Goto, “Detecting Android Malware by
Analyzing Manifest Files,” Proc. Asia-Pacific Adv. Netw., vol. 36,
pp. 23–31, 2013.

[22]. G. Suarez-tangil, S. K. Dash, M. Ahmadi, J. Kinder, G. Giacinto,
and L. Cavallaro, “DroidSieve : Fast and Accurate Classification
of Obfuscated Android Malware,” ACM Conf. Comput. Commun.
Secur., 2017.

[23]. K. Abdullah, D. Ibrahim, and C. Aydin, “APK Auditor :
Permission-based Android malware detection system,” vol. 13, pp.
13–15, 2015.

