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Abstract:- Failure to transform to normality before classification 
affects probabilities of misclassification while comparing the 
distribution of errors of misclassification. A uniformly 
distributed random variable generated by a varied and repeated 
method was employed to generate the errors of misclassification 
for normal and Edgeworth Series Distributions. The proposed 
method was proved and on the basis of this, an algorithm was 
developed. There is a non linear dependence of the total 
probabilities of misclassification on the skewness factor. It was 
observed that there is a disordered relationship between the 
probabilities of misclassication for normal and Edgeworth Series 
Distributions. 

Keywords: Graphical Evaluation, Probabilities of 
Misclassification, Normal Distribution, Edgeworth Series 
Distribution, Skewness Factor  

I. INTRODUCTION 

dentifying an appropriate region for classification has been 
a challenge to researchers. For an experimenter who does 

not recognize a region to be non-normal, he proceeds to use 
normal region for classification [1]. The problem that 
emanates from this scenario is “how does the failure to 
transform to normality, prior to classification, affect the 
probabilities of misclassification when there is a need to 
compare the distribution of errors of misclassification” 
[2],[3],[4]. 

Errors of misclassification for classification problems, with 
two classes of univariate gamma distribution, were studied by 
[5]. The gamma density functions used were reparameterized. 
The effects of applying the normal classificatory rule to 
gamma distribution were studied and assessed theoretically by 
comparing optimum and conditional probabilities of 
misclassification.  

Errors of misclassification associated with the Inverse 
Gaussian Distribution (IGD) were worked upon by [6], 
focusing on the classification cases that are in line with the 
univariate form of the distribution considered. The effects of 
applying the Linear Discriminant Function (LDF) to IGD 
were utilized on the basis of normality. This was done by 
comparing the optimum and conditional probabilities based on 
the LDF and likelihood ratio for the distribution under 
consideration.  

Errors of misclassifications of Normal and Edgeworth Series 
Distributions in a tabular form, were generated by [2], but in 
this work, probabilities of misclassification for Normal and 
Edgeworth Series Distributions are being interpreted 
graphically and discussed. 

Preliminaries 

Suppose , 1, 2, 1, 2, , ,ij iX i j n    denote two 

independent random samples from populations, , 1,2,i i 
 

respectively. The observations ijX emanate from the common 

distribution defined by the density function 
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and 3  is the skewness factor [7]. 

Let 1, 2, .... kX X X  be independent and identically distributed 

random variables with mean 0   and finite variance, 2 . 

If   k   is constructed from a sample of size, n, and 


1

2
0( )kk  


  is asymptotically and normally distributed, 

then Edgeworth Series expansions are developed as 

approximations to distribution of estimates k  of unknown 
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quantities, 0 .
 Thus the distribution functions of  
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where  ( )x =  
2
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e  
  is the standard normal 

density function, k is the estimate of k , 0  is the true value 

of unknown parameter   and ( )x = ( )
x

x du

  is the 

standard normal distribution function. The functions jP  are 

polynomials with coefficients, depending on cumulants of  


0k  . In particular,  jP  is a polynomial of degree 3j -1 

and is odd for even j and even for odd j.  

Equation (1.3) is the Edgeworth Series or expansion, and the 
term of order k-1/2 in the same equation corrects the basic 
normal approximation for the main effect of skewness, while 
the term of order k-1 corrects the main effect of kurtosis. 

II. METHOD OF GENERATING PROBABILITIES OF 
MISCLASSIFICATION 

The simulation of experiment for the generation of 
probabilities of misclassification is anchored on the work of 
[2]. However, further attempt is made in this work for the 
proposition of inverse transformation method. Let 

(0,1)N U  be a uniformly distributed continuous random 

variable X. For any cumulative distribution F(x) that is strictly 
increasing over all x, we have 0 < F(x) < 1, Suppose the 
random variable X is defined by X= F-1(U), then the random 
variable X has the distribution F. This implies that F-1(x) is 
defined to be equal to the value of x for which F(x) = x [8]. 

Proof 
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Since F(x) is a monotone function, it follows that 
1( )F U a  if and only if  

( ) [ ( )] ( ).yF a P U f a F a   From the above 

proposition, a random variable X with a continuous function F 
is simulated by generating a number U and then setting 

1( )X F U  

Algorithm 

1. Set (0,1)N U  where U is the generator of the 

random observation 

2. Set F(x) = U 

3 Solve F(x) = U for X such that F-1 (U) = X, X  is the 
generated random observation. 

III. SIMULATION RESULTS 

 

Table 1: Optimum Probabilities of Misclassification at Different Values of Skewness for ESD 

 
Optimum Probability of Misclassification 

Skewness Factor (λ3) E12E E21E Total 

0.00625 0.3082 0.3088 0.6170 

0.0125 0.3079 0.3091 0.6170 

0.025 0.3074 0.3096 0.6170 

0.05 0.3063 0.3107 0.6170 

0.10 0.3041 0.3129 0.6170 

0.15 0.3019 0.3151 0.6170 

0.20 0.2997 0.3173 0.6170 

0.25 0.2975 0.3195 0.6170 

0.30 0.2953 0.3217 0.6170 

0.35 0.2931 0.3239 0.6170 

0.40 0.2909 0.3261 0.6170 

 

Source: [2] 

(1.3) 
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Figure 1.1:  Graph showing optimum probabilities of misclassification at different values of skewness for ESD (all parameters known) 

 

Figure1. 2: Graph showing total optimum probabilities of misclassification at different values of skewness for ESD 

Table 2:  Comparison of Errors of Misclassification for Means unknown and Estimated by Average Values over 5 Samples. 

 ESD ND 

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.140 0.400 0.540 0.140 0.400 0.540 

0.0125 0.220 0.410 0.630 0.220 0.410 0.630 

0.025 0.225 0.465 0.690 0.220 0.475 0.695 

0.05 0.210 0.395 0.605 0.205 0.400 0.605 

0.10 0.205 0.475 0.680 0.175 0.495 0.670 

0.15 0.260 0.285 0.545 0.230 0.320 0.550 

0.20 0.305 0.365 0.670 0.295 0.395 0.690 

0.25 0.455 0.185 0.640 0.420 0.230 0.650 

0.30 0.195 0.465 0.660 0.115 0.545 0.660 

0.35 0.225 0.465 0.660 0.125 0.520 0.645 

0.40 0.440 0.180 0.610 0.360 0.250 0.610 

Source: [2] 
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Figure 2.1:   Graph showing probabilities of misclassification for unknown parameters averaged over 5 samples. 

 

Figure 2.2:   Graph showing probabilities of misclassification for unknown parameters averaged over 5 samples. 

 

Figure 2.3:   Graph showing total probabilities of misclassification for unknown parameters average over 5 samples. 
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Table 3:  Comparison of Errors of Misclassification for Means unknown and Estimated by Average Values over 10 Samples. 

 
ESD 

 
ND  

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.252 0.249 0.501 0.252 0.315 0.567 

0.0125 0.236 0.236 0.472 0.236 0.236 0.472 

0.025 0.266 0.219 0.485 0.231 0.295 0.526 

0.05 0.224 0.282 0.506 0.216 0.314 0.530 

0.10 0.290 0.278 0.568 0.208 0.336 0.544 

0.15 0.387 0.203 0.590 0.215 0.220 0.435 

0.20 0.277 0.320 0.597 0.270 0.337 0.607 

0.25 0.255 0.245 0.500 0.230 0.292 0.522 

0.30 0.248 0.334 0.582 0.182 0.394 0.576 

0.35 0.216 0.339 0.555 0.175 0.354 0.529 

0.40 0.253 0.209 0.462 0.170 0.196 0.366 
 

Source: [2] 

 

Figure 3.1: Graph showing probabilities of misclassification for unknown parameters averaged over 10 samples 
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Figure 3.2: Graph showing probabilities of misclassification for unknown parameters averaged over 10 samples 

 

Figure 3.3:    Graph showing probabilities of misclassification for unknown parameters averaged over 10 samples 

Table 4: Comparison of Errors of Misclassification for Means unknown and Estimated by Average Values over 15 Samples. 

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.345 0.145 0.490 0.345 0.150 0.495 

0.0125 0.310 0.310 0.620 0.310 0.310 0.620 

0.025 0.405 0.280 0.685 0.400 0.285 0.685 

0.05 0.230 0.390 0.620 0.225 0.395 0.620 

0.10 0.375 0.305 0.680 0.350 0.315 0.665 

0.15 0.405 0.180 0.585 0.360 0.225 0.585 

0.20 0.355 0.325 0.680 0.320 0.355 0.675 

0.25 0.295 0.340 0.635 0.235 0.395 0.630 

0.30 0.320 0.350 0.670 0.230 0.385 0.615 

0.35 0.260 0.345 0.605 0.200 0.430 0.630 

0.40 0.315 0.375 0.690 0.145 0.415 0.560 

 

Source: [2] 

 

Figure 4.1:      Graph showing probabilities of misclassification for unknown parameters averaged over 15 samples 



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194 

www.rsisinternational.org Page 117 
 

 

Figure 4.2:  Graph showing probabilities of misclassification for unknown parameters averaged over 15 samples 

 

Figure 4.3:  Graph showing probabilities of misclassification for unknown parameters averaged over 15 samples 

Table 5:  Comparison of Errors of Misclassification for Means unknown and   Estimated by Average Values over 20 Samples. 

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.220 0.206 0.426 0.220 0.206 0.426 

0.0125 0.280 0.280 0.560 0.192 0.295 0.487 

0.025 0.330 0.210 0.540 0.290 0.230 0.520 

0.05 0.345 0.205 0.550 0.295 0.250 0.545 

0.10 0.265 0.300 0.565 0.230 0.390 0.620 

0.15 0.340 0.350 0.690 0.330 0.375 0.705 

0.20 0.350 0.240 0.590 0.320 0.255 0.575 

0.25 0.295 0.270 0.565 0.270 0.295 0.565 

0.30 0.300 0.195 0.495 0.265 0.200 0.465 

0.35 0.310 0.350 0.660 0.270 0.360 0.630 

0.40 0.405 0.285 0.690 0.380 0.400 0.780 

Source:[2] 
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Figure 5.1: Graph showing probabilities of misclassification for unknown parameters averaged over 20 samples 

 

Figure 5.2:  Graph showing probabilities of misclassification for unknown parameters averaged over 20 samples. 

 

Figure 5.3: Graph showing probabilities of misclassification for unknown parameters averaged over 20 samples 
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Table 6:  Comparison of Errors of Misclassification for Means unknown and Estimated by Average Values over 25 Samples. 

Skewness Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.270 0.220 0.490 0.270 0.220 0.490 

0.0125 0.290 0.330 0.620 0.290 0.235 0.525 

0.025 0.390 0.295 0.685 0.375 0.310 0.685 

0.05 0.340 0.270 0.610 0.335 0.280 0.615 

0.10 0.375 0.305 0.680 0.360 0.315 0.675 

0.15 0.360 0.230 0.590 0.345 0.245 0.590 

0.20 0.275 0.430 0.705 0.225 0.480 0.705 

0.25 0.375 0.255 0.630 0.320 0.290 0.610 

0.30 0.390 0.240 0.630 0.300 0.330 0.630 

0.35 0.290 0.300 0.590 0.240 0.345 0.585 

0.40 0.405 0.225 0.630 0.305 0.290 0.595 

Source:[2] 

 

Figure 6.1:    Graph showing probabilities of misclassification for unknown parameters averaged over 25 samples 

 

Figure 6.2: Graph showing probabilities of misclassification for unknown parameters averaged over 25 samples 
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Figure 6.3: Graph showing probabilities of misclassification for unknown parameters averaged over 25 samples 

IV. DISCUSSION OF RESULTS 

The plots of the probabilities of misclassification in Tables 1- 
6 are all shown in Figures 1.1- 6.3. 

In Figure 1.1, there is a positive linear relationship between 

the skewness factor 3( )  and E12E, and negative linear 

relationship between skewness factor 3( )  and E12N. The 

upward trend of E12E is more pronounced when 3 = 0.00625, 

and the down ward trend is more pronounced when 3 = 0.05. 

In Figure 1.2, the total probabilities of misclassification 
remain constant irrespective of the increase in the skewness 

factor 3( ) . The relationship between 3( )  and the total 

optimum probabilities of misclassification is unpredictable 
since there is non-linear dependence of the total optimum 

probabilities of misclassification on the skewness factor 3( ) .  

In Figures 2.1, the up and down trends of E12E and E12N move 
towards the same direction with E12E and E12N meeting at 

points 0.140 when 3 = 0.00625 and point 0.220 when 3  = 

0.0125. 

The up and down movements of E21E and E21N in Figure 2.2 
also follow the same direction. E21E and E21N meet at points 

0.400 when 3  = 0.00625 and at point 0.410 when 3 = 

0.0125. 

In Figure 2.3, the trends of total probabilities of 
misclassification for ESD and ND also follow the same 

direction with three meeting points: 0.540 when  3  = 

0.00625, 0.630 when 3  = 0.0125 and 0.610 when 3 = 0.40. 

 In Figure 3.1, there is disordered movements of trends of E12E 

and E12N which eventually coincide at point 0.252 when 3  

=0.00625 and at point 0.236 when 3 = 0.0125  

In Figure 3.2, the up and down movements of the trends E21E 

and E21N meet at point 0.236 when 3 = 0.0125. 

In Figure 3.3, the trends of the total probabilities of 
misclassification for ESD and ND are interwoven with the 

meeting point at 0.472 when 3 = 0.0125.  

The plots of E12E and E12N in Figure 4.1 meet at point 0.345 

when 3 = 0.00625, 0310 when 3 = 0.0125. 

In Figure 4.2, the trends of E21E and E21N meet at point 0.310 

when 3 = 0.0125. 

In Figure 4.3, the trends of the plots of total probabilities of 
misclassification for ESD and ND meet at point 0.620 when 

3 = 0.0125, 0.05 and at point 0.685 when 3 = 0.025. 

In Figure 5.1, the plots of E12E and E12N meet at point 0.220 

when 3 = 0.00625, with the plots also swinging in the same 

direction.  

The plots of E21E and E21N in Figure 5.2 exhibit up and down 
movement in a chaotic form, with the trends of E21E and E21N -

meeting at point 0.206 when 3 = 0.00625.  

The plots of total probabilities of misclassification using ESD 
and ND in Figure 5.3 are in disordered form, but meeting at 

point = 0.426 when 3 = 0.00625. 
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In Figure 6.1, the up and down movements of trends E12E and 

E12N meet at point 0.270 when 3 = 0.0625 and at point 0.290 

when 3 = 0.0125. 

In Figure 6.2, the plots E21E and E21N are also not in ordered 
form. The trends of E12E and E12N meet at point 0.220 when 

3 = 0.00625.  

The plots of the total probabilities of misclassification using 
ESD and ND in Figure 6.3, at every level of skewness factor (

3 ), meet at point 0.490 when 3 = 0.00625 and point 0.630 

when 3 = 0.30. 

V. CONCLUSION 

Graphical evaluation of the errors of misclassification using 
Normal and Edgeworth Series Distributions has been 
discussed in this work. An algorithm from a uniformly 
distributed random variable that was proved has also been 
developed. It is observed that there exists a disordered 
relationship between the probabilities of misclassification for 
Normal and Edgeworth Series distributions. The total 

probabilities of misclassification remain constant irrespective 
of the increase in the skewness factor. 
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