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Abstract- Machine learning is a branch of artificial intelligence 
that is used to analyze large set of data. Machine learning 
approach is a statistical approach on learning more about a raw 
data set. When considering the existing systems in the world, 
there is a huge output of data which are not well analyzed. The 
use of machine learning techniques provide a way of analyzing a 
huge data set in order to find patterns and relationships among 
different entities which cannot be observed without advanced 
analyzing techniques. In this paper, the machine learning 
techniques that will be considered include; Box-Jenkins method, 
artificial neural network (ANN) technique, and Kalman 
technique. Each technique will be implemented using python, and 
the results obtained using the mentioned methods will be 
compared. This paper explores the application of effective 
machine learning to overcome challenges associated with data 
analysis and demonstrates how machine learning techniques have 
contributed and are contributing to research in machine learning. 

Keywords: machine learning, big data, Box-Jenkins, artificial 
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I. INTRODUCTION 

n recent years, the amount of information that can be 
extracted from data has rapidly increased. Machine learning 

is not just about storing large amounts of data, but it is a part 
of artificial intelligence (AI). Artificial Intelligence is the 
improvement of the computer programs to perform tasks that 
usually require the human intervention, such as decision 
making (Mohamed, 2017). The field of machine learning is 
concerned with how to construct computer programs that 
automatically improves with experience. Each machine 
learning method has its strengths and limitations, and as real 
world problems do not always satisfy the assumptions of a 
particular method, one approach is to apply an appropriate 
machine learning technique and select the one that provides 
the best solution (Alesheykh, 2016). This research explores 
the application of effective machine learning to overcome 
challenges associated with data analysis and demonstrates 
how machine learning techniques have contributed to 
research.  

As an intelligent system, machine learning techniques 
can be used to understand the meaning of a data set in a 
logical way and provide useful outputs from raw data for 
different purposes. Machine learning approach is a statistical 
approach on learning more about a raw data set. When 
considering the existing systems in the world, there is a huge 
output of data which are not well analyzed. The machine 
learning techniques provide a way of analyzing a huge data 

set in order to find patterns and relationships among different 
entities which cannot be observed without advanced analyzing 
techniques (Vibatha et al., 2016).In this research, some 
machine learning techniques such as Box-Jenkins method, 
artificial neural network, and Kalman technique are 
implemented using python and the results obtained from the 
mentioned methods are compared. 

The contributions of this research are as follows: 

1. This research will be able to identify a reliable 
machine learning technique 

2. This research will be applicable to big data 
3. The application of the machine learning techniques 

will help to push the accuracy of models beyond 
those achieved by conventional techniques 

II. LITERATURE REVIEW 

Machine learning is one of the important lanes 
of artificial intelligence which is a very important subject in 
the research or industry. Machine learning, like artificial 
intelligence covers a broad range of processes that it is 
difficult to define precisely. Machine learns whenever it 
changes its structure, program, or data (based on its inputs or 
in response to external information) in such a manner that its 
expected future performance improves. Some of these 
changes, such as the addition of a record to a data base, falls 
comfortably within the province of other disciplines and are 
not necessarily better understood for being called learning. 
Machine learning usually refers to the changes in systems that 
perform tasks associated with artificial intelligence (AI). Such 
tasks involve recognition, diagnosis, planning, robot control, 
prediction, etc (Nils, 2005). The essence of machine learning 
is to compile data when the program learns to generate the 
information that be used. Machine learning is a field 
of computer science that uses statistical techniques to 
give computer systems the ability to learn (e.g., progressively 
improve performance on a specific task) with data, without 
being explicitly programmed (Samuel, 1959). It refers to the 
automated detection of meaningful patterns in data. 

The perceptron was introduced (Rosenblatt, 1958). The 
perceptron is designed to illustrate some of the fundamental 
properties of intelligent systems in general, without becoming 
too deeply enmeshed in the special and frequently unknown 
conditions which hold for particular biological 
organisms. (Minsky & Papert, 1969) proposed the 
famous XOR problem. Thereafter, work on neural network 
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researches were dormant up until 1980s. Neural network 
researchers successively presented the idea of multi-layer 
perceptron with practical back-propagation training 
(Rumelhart, 1985). Back-propagation is the key to neural 
network architectures. One of the most important machine 
learning breakthroughs was the support vector machines 
(SVM), proposed by Cortes&Vladimir (1995), with very 
strong theoretical standing and empirical results. Support 
vector machines are able to exploit all the knowledge of 
convex optimization, generalization margin theory and 
kernels.  

A machine learning model was proposed by Freund et 
al. (1999). It proposeda set of classifiers 
called Adaboost. Adaboost set of classifiers are easy to train, 
and this model is the basis of many different tasks like face 
recognition and detection. The integrated grey model with 
multiple regression model (IGMMRM) was applied to 
modeling of data, in comparison with Grey model (GM) and 
multiple regression method (Wang & Xia. 2009). The 
modeling techniques were assessed using relative error (RE), 
mean absolute error (MAE), root mean square error (RMSE), 
and mean absolute percentage error (MAPE) to evaluate the 
accuracy of the models. The study suggests that the 
performance of IGMMRM was higher than the other two 
models based on historical data. 

Artificial neural network (ANN) was described in Damak 
(2011) as a hidden-layer feed-forward network technique and 
it’s a widely used technique for time-series modelling and 
forecasting. The paper described that the technique is based on 
pattern recognition, and able to forecast for non-linear models. 
Neural networks are similar to the least square estimation 
technique and can be viewed as an alternative statistical 
approach to solving least squares problems (Chen et al. 2001). 
The paper presented an artificial neural network-based 
short-term load forecasting technique for estimating data. The 
ANN technique utilized a combination of the three layer 
feed-forward neural network and a back-propagation training 
technique. 

Computational analysis is a collection of procedures that 
is used to process large amounts of data with a view of 
obtaining results based on processed data and as a result, 
getting their behavioral pattern. A review of machine learning 
techniques is undertaken, with the aim of identifying and 
selecting an accurate and reliable technique for modelling 
data. The techniques are discussed in the following sections.  

A. Box-Jenkins Technique 

The general form of the model that is used to describe 
Box-Jenkins technique is 

φ(𝐵)z୲ = ϕ(𝐵)∇ୢz୲ = θ଴ + θ(𝐵)a୲ 
where 

𝜙(𝐵) = 1 − 𝜙ଵ𝐵 − 𝜙ଶ𝐵ଶ − ⋯ − 𝜙௣𝐵௣ 
𝜃(𝐵) = 1 − 𝜃ଵ𝐵 − 𝜃ଶ𝐵ଶ − ⋯ − 𝜃௤𝐵௤  

𝜙(𝐵) and 𝜃(𝐵) are polynomial operators in B of degrees p and 
q. This process is referred to as an ARMA (p, q) process. The 

ARIMA model can be expressed explicitly in terms of current 
and previous shocks (Box et al., 2008). A linear model can be 
written as the output 𝑧௧ from the linear filter  

𝑧௧ = 𝑎௧ + 𝜓ଵ𝑎௧ିଵ + 𝜓ଶ𝑎௧ିଶ + ⋯ 

= 𝑎௧ + ෍ 𝜓௝𝑎௧ି௝

ஶ

௝ୀଵ

 

= 𝜓(𝐵)𝑎௧  

whose input is a white noise, or a sequence of uncorrelated 
shocks 𝑎௧ with mean 0 and common variance 𝜎௔

ଶ. Then 

𝜑(𝐵)𝑧௧ = 𝜑(𝐵)𝜓(𝐵)𝑎௧ 

B. Artificial Neural Network 

Artificial neural network (ANN) is based on the 
recognition that the human brain computes in an entirely 
different way from the conventional digital computer. It has the 
capability to organize its structural constituents, known as 
neurons, so as to perform certain computations (e.g., pattern 
recognition, perception, and motor control) many times faster 
than the fastest digital computer in existence today(Simon, 
2009).  

The neural network has at least two physical components, 
namely, the processing elements and the connections between 
them. The processing elements are called neurons, and the 
connections between the neurons are known as links. Each 
neuron receives stimulus from the neighboring neurons 
connected to it, process the information, and produces an 
output. Neurons that receive stimuli from outside the network 
are called input neurons. Neurons whose outputs are used 
externally are called output neurons. Neurons that receive 
stimuli from other neurons and whose output is a stimulus for 
other neurons in the neural network are known as hidden 
neurons (David, 2005).The block diagram of Fig. 1 shows the 
model of a neuron, which forms the basis for designing a large 
family of neural networks. 

 
Fig.1 Artificial neuron model (Simon, 2009) 

The three basic elements of the neural model are: 

1) A set of synapses, or connecting links, each of which is 
characterized by a weight or strength of its own. 
Specifically, a signal 𝑥௝  at the input of synapse j 
connected to neuron k is multiplied by the synaptic weight 



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194 

www.rsisinternational.org Page 148 

𝜔௞௝ . It is important to make a note of the manner in which 
the subscripts of the synaptic weight 𝜔௞௝are written. The 
first subscript in 𝜔௞௝refers to the neuron in question, and 
the second subscript refers to the input end of the synapse 
to which the weight refers. Unlike the weight of a synapse 
in the brain, the synaptic weight of an artificial neuron 
may lie in a range that includes negative as well as 
positive values. 

2) An adder for summing the input signals, weighted by the 
respective synaptic strengths of the neuron; the operations 
described here constitutes a linear combiner. 

3) An activation function for limiting the amplitude of the 
output of a neuron. The activation function is also referred 
to as a squashing function, in that it squashes (limits) the 
permissible amplitude range of the output signal to some 
finite value (Simon, 2009). 

Artificial neural network with feed-forward topology is 
called feed-forward artificial neural network and as such has 
only one condition: information must flow from input to output 
in only one direction with no back-loops. There are no 
limitations on number of layers, type of transfer function used 
in individual artificial neuron or number of connections 
between individual artificial neurons (Andrej, 2011). This is 
presented in Fig. 2.  

 
Fig.2Feed-forward network 

C. Kalman Filter Adaptation Algorithm 

The Kalman filter addresses the general problem of trying 
to estimate the state 𝑥 ∈ ℜ௡of a discrete-time controlled 
process that is governed by the linear stochastic difference 
equation 

𝑥௞ = 𝐴𝑥௞ିଵ + 𝐵𝑢௞ିଵ + 𝑤௞ିଵ  

with a measurement z∈ ℜ௡  that is 

𝑧௞ = 𝐻𝑥௞ + 𝑣௞  

The random variables 𝑤௞  and 𝑣௞  represent the process and 
measurement noise, respectively (Welch & Bishop, 2006). 
They are assumed to be independent of each other and with 
normal probability distributions 

𝑝(𝑤)~𝑁(0, 𝑄) 

𝑝(𝑣)~𝑁(0, 𝑅) 

The a priori and a posterior estimates are defined as:  

𝑒௞
⁻ ≡ 𝑥௞ − 𝑥ො௞

⁻     , and 

𝑒௞ ≡ 𝑥௞ − 𝑥ො௞ 

The a priori estimate error covariance is then 

𝑃௞
ି = 𝐸[𝑒௞

ି𝑒௞
ି்] 

and the a posteriori estimate error covariance is  

𝑃௞ = 𝐸[𝑒௞𝑒௞
்] 

In deriving the equations for the Kalman filter, an 
equation is derived that computes an a posteriori estimate 𝑥ො௞ 
as a linear combination of an a priori estimate 𝑥ො௞

⁻  and a 
weighted difference between an actual measurement 𝑧௞ and a 
measurement prediction 𝐻𝑥௞

⁻ . 

𝑥ො௞ = 𝑥ො௞
⁻ + 𝐾௞(𝑧௞ − 𝐻𝑥ො௞

⁻ ) 

The resulting K is given byMaybeck (1979); Brown and 
Hwang (1992); Jacobs (1993) 

𝐾௞ = 𝑃௞
ି𝐻்(𝐻𝑃௞

ି𝐻் + 𝑅)ିଵ 

=
𝑃௞

ି𝐻்

𝐻𝑃௞
ି𝐻் + 𝑅

 

The equations for the Kalman filter falls into two groups: 
time update equations and measurement update equations. The 
time update equations are responsible for projecting forward in 
time the current state and error covariance estimates to obtain 
the a priori estimates for the next time step. The measurement 
update equations are responsible for the feedback for 
incorporating a new measurement into the a priori estimate to 
obtain an improved a posteriori estimate. The time update 
equations can be defined as predictor equations, while the 
measurement update equations are defined as corrector 
equations.  

The time update projects the current state estimate ahead 
in time. The measurement update adjusts the projected estimate 
by an actual measurement at that time. The discrete Kalman 
filter time update equations are (Welch & Bishop, 2008): 

xො୩
ି = Axො୩ିଵ

ି + Bu୩ିଵ 

𝑃௞
ି = 𝐴𝑃௞ିଵ𝐴் + 𝑄 

The discrete Kalman filter measurements update equations are 
(Welch & Bishop, 2008): 

𝐾௞ = 𝑃௞
ି𝐻்(𝐻𝑃௞

ି𝐻் + 𝑅)ିଵ 

𝑥ො௞ = 𝑥ො௞
⁻ + 𝐾௞(𝑧௞ − 𝐻𝑥ො௞

⁻ ) 

𝑃௞ = (𝐼 − 𝐾௞𝐻)𝑃௞
ି 

The first task during the measurement update is to 
compute Kalman gain, 𝐾௞. The next step is to actually measure 
the process to obtain 𝑧௞, and then to generate an a posteriori 
state estimate. The final step is to obtain an a posteriori error 
covariance estimate. After each time and measurement update 
pair, the process is repeated with the previous a posterior 
estimates used to predict the new a priori estimates. This 
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recursive nature is one of the very appealing features of the 
Kalman filter.  

III. METHODOLOGY 

This section gives an outline of research methods that 
in this study. The overall objective of this 
perform a comparative analysis of machine learning 
techniques. The system development and design of this model 
for comparative analysis of machine learning techniques was 
undertaken by implementing the various machine learning 
algorithms using Python programming la
comparative analysis model input data set into the 
Box-Jenkins, ANN, and Kalman technique, then a testing 
dataset is also passed into this machine learning technique to 
test the ability of these algorithms and then the output is used as 
an evaluative mechanism for performance comparison.
shown in Fig. 3. 

Fig.3Comparative analysis model 

A. Data Set 

The research utilizes an energy distribution and usage 
dataset collected online. It has the following fields: The 
dataset has the following fields: Date,
Global_active_power,Global_reactive_power,Voltage,Global
_intensity, Sub_metering_1,Sub_metering_2,Sub_metering_3.

The dataset has 260,641 data value, where 154,261 were 
used for training the machine learning techniques, while 
56,924 was used as the testing dataset leaving 49,456.

The algorithms for the Box-Jenkins, artificial neural 
network and Kalman techniques are tested on an energy 
distribution and usage dataset. 

B. Implementation of Machine Learning Techniques

The implementation of the study requires the analysis of the 
machine learning algorithms for the comparative analysis of 
machine learning techniques. The graphical analytics 
performance of the techniques are discussed in the following 
sections. 

Box-Jenkins Technique: The system design of the Box
technique is given on Fig. 4. 

Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454

 

recursive nature is one of the very appealing features of the 

gives an outline of research methods that are used 
study. The overall objective of this research is to 

comparative analysis of machine learning 
techniques. The system development and design of this model 
for comparative analysis of machine learning techniques was 

machine learning 
s using Python programming language.The 

data set into the 
Jenkins, ANN, and Kalman technique, then a testing 

dataset is also passed into this machine learning technique to 
test the ability of these algorithms and then the output is used as 

ative mechanism for performance comparison. This is 

 

an energy distribution and usage 
t has the following fields: The 

fields: Date, Time, 
Global_reactive_power,Voltage,Global

Sub_metering_1,Sub_metering_2,Sub_metering_3. 

The dataset has 260,641 data value, where 154,261 were 
used for training the machine learning techniques, while 

used as the testing dataset leaving 49,456. 

Jenkins, artificial neural 
network and Kalman techniques are tested on an energy 

B. Implementation of Machine Learning Techniques 

requires the analysis of the 
machine learning algorithms for the comparative analysis of 

graphical analytics 
of the techniques are discussed in the following 

design of the Box-Jenkins 

Figure 4 Data flow diagram for Box

The algorithm for Box- Jenkins algorithm

Step 1 

Define significance level α, and estimate σ using confidence 
interval. Set l = 0.  

Step 2 

 If l is outside the confidence interval (,), set l = l+1, and 
repeat Step 2 

 Else, go to Step 3 

Step 3 

Calculate the percentage φ of auto
from lag l to the maximum lag.   

 If φ is less than or equal to 1-α,   

 then let  q=l and stop.  

 Else, q is undetermined and stops. 

Comments are in order on this algorithm.  

If q= 0 from the above algorithm,  

then the residual can be said to be a white noise. 

Box-Jenkins technique was implemented using python 
programming language (Appendix A). The output is displayed 
in Fig. 5 and Fig. 6. 

Fig.5 Implementation diagram for Box
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Data flow diagram for Box-Jenkins 

algorithm is given as follows: 

Define significance level α, and estimate σ using confidence 

If l is outside the confidence interval (,), set l = l+1, and 

Calculate the percentage φ of auto correlation  coefficients 

 

Else, q is undetermined and stops.  

Comments are in order on this algorithm.   

If q= 0 from the above algorithm,   

then the residual can be said to be a white noise.  

Jenkins technique was implemented using python 
(Appendix A). The output is displayed 

 

Implementation diagram for Box-Jenkins 
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Fig.6Auto correlation plot of energy 

Artificial Neural Network Technique: This study uses the 
artificial neural network back propagation method, 
implemented using python. The programme is presented in 
Appendix B. The output is displayed in Figure 7. 

Fig.7 Implementation for artificial neural networks

Kalman Filter Adaptation Technique: The output using 
Kalman filter algorithm and implemented by python 
programming language is given in Figure 8. The Program is 
displayed in Appendix C.  

Fig.8Implementation for Kalman filter

IV. SUMMARY AND CONCLUSION

This research aims to do a comparative analysis of machine 
learning techniques. The study was tested and 
using python programming language on Box
amd Kalman filter techniques, and the results were presented 
in a graphical form. Performance evaluation 
compute graphically the overall result of the proposed model 
on machine learning techniques. The three machine learning 
techniques were described. Also presented were their 
oriented based models. The modelswere used 
performance of these three machine learning technique. Based 
on this result, it clearly shows the complexity of th
algorithms and how well they work on data making ANN as 
the highest rated. 
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APPENDIX

Python Code for Box-Jenkins Technique
 
import pandas as pd 
import numpy as np 
import statsmodels.api as sm 
from statsmodels.tsa.arima_model import ARIMA, 
ARIMAResults 
from statsmodels.tsa.stattools import acf, pacf
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
import matplotlib.pylab as plt 
import matplotlib.dates as dates 
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 6 
##################################################
## 
 LOAD DATA 
##################################################
## 
loading data 
dataMaster = pd.read_csv('dataset.csv')
sp_500 = dataMaster['Voltage'] 
print(sp_500.head(12)) 
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APPENDIX A 

Jenkins Technique 

statsmodels.tsa.arima_model import ARIMA, 

from statsmodels.tsa.stattools import acf, pacf 
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 

t rcParams 

##################################################

##################################################

dataMaster = pd.read_csv('dataset.csv') 
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ran = pd.date_range('1995-01', '2016-1', freq = 'M') 
ts = pd.Series(dataMaster['Voltage'].values, index = ran) 
print(ts.head(12)) 
print(ts.dtypes) 
##################################################
## 
  DO EXPLORATORY ANALYSIS 
##################################################
## 
plt.plot(ts) 
plt.title('Time Series Plot for Energy Use') 
 plt.xlim([0, 255]) 
plt.show() 
 
sp500_TR = ts['1995':'2014'] 
print(sp500_TR) 
##################################################
## 
  MODEL ESTIMATION 
##################################################
## 
DIAGNOSING ACF 
acf = plot_acf(ts, lags = 20) 
plt.title("Autocorellation Function Plot of Energy Use") 
acf.show() 
# DIAGNOSING PACF 
pacf = plot_pacf(ts, lags = 20) 
plt.title("Partial Autocorellation Function Plot of Energy 
Use") 
pacf.show() 
 TRANSFORMING OUR DATA TO ADJUST FOR 
NON-STATIONARITY 
sp500_diff = ts - ts.shift() 
diff = sp500_diff.dropna() 
print(diff.head(12)) 
print(diff.dtypes) 
plt.figure() 
plt.plot(diff) 
plt.title('First Difference Time Series Plot') 
plt.show() 
acfDiff = plot_acf(diff, lags = 20) 
plt.title("ACF Plot of Energy Use(Difference)") 
acfDiff.savefig("images/timeSeriesACFDiff.png", format = 
'png') 
acfDiff.show() 
edit this shit on the actual project ! 
pacfDiff = plot_pacf(diff, lags = 20) 
plt.title("PACF Plot of Energy Use(Difference)") 
pacfDiff.savefig("images/pacfDiff.png", format = 'png') 
pacfDiff.show() 
##################################################
## 
  BUILD MODEL 
##################################################
## 
mod = ARIMA(sp500_TR, order = (0, 1, 1), freq = 'M') 
results = mod.fit() 

print(results.summary()) 
##################################################
## 
  FORECAST 
##################################################
## 
predVals = results.predict(239, 251, typ='levels') 
print(predVals) 
predVals = predVals.drop(predVals.index[0]) 
print(predVals) 
sp500_for = pd.concat([ts, predVals], axis = 1, 
keys=['original', 'predicted']) 
print(sp500_for['2014':'2015']) 
plt.figure() 
plt.plot(sp500_for) 
plt.title("Actual Vs. Forecasted Values") 
plt.savefig("images/sp500_for.png", format = 'png') 
plt.show() 
plt.figure() 
plt.plot(sp500_for) 
plt.title('Real Vs. Predicted Values for 2015') 
plt.savefig("images/sp500_for2.png", format = 'png') 
plt.show() 
 

APPENDIX B 

Python Code for Artificial Neural Network 
import numpy as np 
from src.NeuralNetworkClass import NeuralNetwork 
import src.utils as utils 
def main(): 
    # =================================== 
    # Settings 
    # =================================== 
    filename = "data/dataset.csv" 
    n_hidden_nodes = [5]  # nodes in hidden layers i.e. 
[n_nodes_1, n_nodes_2, ...] 
    l_rate = 0.6  # learning rate 
    n_epochs = 800  # number of training epochs 
    n_folds = 4  # number of folds for cross-validation 
    print("Neural network model:\n n_hidden_nodes = 
{}".format(n_hidden_nodes)) 
    print(" l_rate = {}".format(l_rate)) 
    print(" n_epochs = {}".format(n_epochs)) 
    print(" n_folds = {}".format(n_folds)) 
    # =================================== 
    # Read data (X,y) and normalize X 
    # =================================== 
    print("\nReading '{}'...".format(filename)) 
    X, y = utils.read_csv(filename)  # read as matrix of 
floats and int 
    utils.normalize(X)  # normalize 
    N, d = X.shape  # extract shape of X 
    n_classes = len(np.unique(y)) 
    print(" X.shape = {}".format(X.shape)) 
    print(" y.shape = {}".format(y.shape)) 
    print(" n_classes = {}".format(n_classes)) 
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    # =================================== 
    # Create cross-validation folds 
    # These are a list of a list of indices for each fold 
    # =================================== 
    idx_all = np.arange(0, N) 
    idx_folds = utils.crossval_folds(N, n_folds, seed=1) 
    # =================================== 
    # Train and evaluate the model on each fold 
    # =================================== 
    acc_train, acc_test = list(), list()  # training/test accuracy 
score 
    print("\nTraining and cross-validating...") 
    for i, idx_test in enumerate(idx_folds): 
        # Collect training and test data from folds 
        idx_train = np.delete(idx_all, idx_test) 
        X_train, y_train = X[idx_train], y[idx_train] 
        X_test, y_test = X[idx_test], y[idx_test] 
        # Build neural network classifier model and train 
        model = NeuralNetwork(n_input=d, 
n_output=n_classes, n_hidden_nodes=n_hidden_nodes) 
        model.train(X_train, y_train, l_rate=l_rate, 
n_epochs=n_epochs) 
        # Make predictions for training and test data 
        y_train_predict = model.predict(X_train) 
        y_test_predict = model.predict(X_test) 
        # Compute training/test accuracy score from 
predicted values 
        
acc_train.append(100*np.sum(y_train==y_train_predict)/len(
y_train))        
acc_test.append(100*np.sum(y_test==y_test_predict)/len(y_te
st)) 

        # Print cross-validation result 
        print(" Fold {}/{}: train acc = {:.2f}%, test acc = 
{:.2f}% (n_train = {}, n_test = {})".format(i+1, n_folds, 
acc_train[-1], acc_test[-1], len(X_train), len(X_test))) 
 
    # =================================== 
    # Print results 
    # =================================== 
    print("\nAvg train acc = 
{:.2f}%".format(sum(acc_train)/float(len(acc_train)))) 
    print("Avg test acc = 
{:.2f}%".format(sum(acc_test)/float(len(acc_test)))) 
# Driver 
if __name__ == "__main__": 
    main() 
 

APPENDIX C 

Python Code for Kalman Filter Technique 
 
from __future__ import (absolute_import, division, 
print_function, 
                        unicode_literals) 
import numpy.random as random 
import numpy as np 

import matplotlib.pyplot as plt 
from filterpy.kalman import FadingKalmanFilter 
from pytest import approx 
from scipy.spatial.distance import mahalanobis as 
scipy_mahalanobis 
DO_PLOT = False 
def test_noisy_1d(): 
    f = FadingKalmanFilter(3., dim_x=2, dim_z=1) 
    f.x = np.array([[2.], 
                    [0.]])       # initial state (location and 
velocity) 
    f.F = np.array([[1.,1.], 
                    [0.,1.]])    # state transition matrix 
    f.H = np.array([[1.,0.]])     # Measurement function 
    f.P *= 1000.                  # covariance matrix 
    f.R = 5.**2                    # state uncertainty 
    f.Q = np.array([[0, 0], 
                    [0, 0.0001]]) # process uncertainty 
    measurements = [] 
    results = [] 
    zs = [] 
    for t in range (100): 
        # create measurement = t plus white noise 
        z = t + random.randn() * np.sqrt(f.R) 
        zs.append(z) 
        # perform kalman filtering 
        f.update(z) 
        f.predict() 
        # save data 
        results.append(f.x[0, 0]) 
        measurements.append(z) 
        # test mahalanobis 
        a = np.zeros(f.y.shape) 
        maha = scipy_mahalanobis(a, f.y, f.SI) 
        assert f.mahalanobis == approx(maha) 
        print(z, maha, f.y, f.S) 
        assert maha < 4 
    # now do a batch run with the stored z values so we can test 
that 
    # it is working the same as the recursive implementation. 
    # give slightly different P so result is slightly different 
    f.X = np.array([[2.,0]]).T 
    f.P = np.eye(2)*100. 
    m, c, _, _ = f.batch_filter(zs,update_first=False) 
    # plot data 
    if DO_PLOT: 
        p1, = plt.plot(measurements,'r', alpha=0.5) 
        p2, = plt.plot (results,'b') 
        p4, = plt.plot(m[:,0], 'm') 
        p3, = plt.plot ([0, 100],[0, 100], 'g') # perfect result 
        plt.legend([p1,p2, p3, p4], 
                   ["noisy measurement", "KF output", 
"ideal", "batch"], loc=4) 
        plt.show() 
if __name__ == "__main__": 
    DO_PLOT = True 
 


