
International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194

www.rsisinternational.org Page 146

A Comparative Analysis of Machine Learning
Techniques

P. A. Ozoh1, A. A. Adigun2, L. O. Omotosho3
1,2,3Department of ICT, Osun State University, Osogbo, Nigeria

Abstract- Machine learning is a branch of artificial intelligence
that is used to analyze large set of data. Machine learning
approach is a statistical approach on learning more about a raw
data set. When considering the existing systems in the world,
there is a huge output of data which are not well analyzed. The
use of machine learning techniques provide a way of analyzing a
huge data set in order to find patterns and relationships among
different entities which cannot be observed without advanced
analyzing techniques. In this paper, the machine learning
techniques that will be considered include; Box-Jenkins method,
artificial neural network (ANN) technique, and Kalman
technique. Each technique will be implemented using python, and
the results obtained using the mentioned methods will be
compared. This paper explores the application of effective
machine learning to overcome challenges associated with data
analysis and demonstrates how machine learning techniques have
contributed and are contributing to research in machine learning.

Keywords: machine learning, big data, Box-Jenkins, artificial
neural network, kalman technique

I. INTRODUCTION

n recent years, the amount of information that can be
extracted from data has rapidly increased. Machine learning

is not just about storing large amounts of data, but it is a part
of artificial intelligence (AI). Artificial Intelligence is the
improvement of the computer programs to perform tasks that
usually require the human intervention, such as decision
making (Mohamed, 2017). The field of machine learning is
concerned with how to construct computer programs that
automatically improves with experience. Each machine
learning method has its strengths and limitations, and as real
world problems do not always satisfy the assumptions of a
particular method, one approach is to apply an appropriate
machine learning technique and select the one that provides
the best solution (Alesheykh, 2016). This research explores
the application of effective machine learning to overcome
challenges associated with data analysis and demonstrates
how machine learning techniques have contributed to
research.

As an intelligent system, machine learning techniques
can be used to understand the meaning of a data set in a
logical way and provide useful outputs from raw data for
different purposes. Machine learning approach is a statistical
approach on learning more about a raw data set. When
considering the existing systems in the world, there is a huge
output of data which are not well analyzed. The machine
learning techniques provide a way of analyzing a huge data

set in order to find patterns and relationships among different
entities which cannot be observed without advanced analyzing
techniques (Vibatha et al., 2016).In this research, some
machine learning techniques such as Box-Jenkins method,
artificial neural network, and Kalman technique are
implemented using python and the results obtained from the
mentioned methods are compared.

The contributions of this research are as follows:

1. This research will be able to identify a reliable
machine learning technique

2. This research will be applicable to big data
3. The application of the machine learning techniques

will help to push the accuracy of models beyond
those achieved by conventional techniques

II. LITERATURE REVIEW

Machine learning is one of the important lanes
of artificial intelligence which is a very important subject in
the research or industry. Machine learning, like artificial
intelligence covers a broad range of processes that it is
difficult to define precisely. Machine learns whenever it
changes its structure, program, or data (based on its inputs or
in response to external information) in such a manner that its
expected future performance improves. Some of these
changes, such as the addition of a record to a data base, falls
comfortably within the province of other disciplines and are
not necessarily better understood for being called learning.
Machine learning usually refers to the changes in systems that
perform tasks associated with artificial intelligence (AI). Such
tasks involve recognition, diagnosis, planning, robot control,
prediction, etc (Nils, 2005). The essence of machine learning
is to compile data when the program learns to generate the
information that be used. Machine learning is a field
of computer science that uses statistical techniques to
give computer systems the ability to learn (e.g., progressively
improve performance on a specific task) with data, without
being explicitly programmed (Samuel, 1959). It refers to the
automated detection of meaningful patterns in data.

The perceptron was introduced (Rosenblatt, 1958). The
perceptron is designed to illustrate some of the fundamental
properties of intelligent systems in general, without becoming
too deeply enmeshed in the special and frequently unknown
conditions which hold for particular biological
organisms. (Minsky & Papert, 1969) proposed the
famous XOR problem. Thereafter, work on neural network

I

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194

www.rsisinternational.org Page 147

researches were dormant up until 1980s. Neural network
researchers successively presented the idea of multi-layer
perceptron with practical back-propagation training
(Rumelhart, 1985). Back-propagation is the key to neural
network architectures. One of the most important machine
learning breakthroughs was the support vector machines
(SVM), proposed by Cortes&Vladimir (1995), with very
strong theoretical standing and empirical results. Support
vector machines are able to exploit all the knowledge of
convex optimization, generalization margin theory and
kernels.

A machine learning model was proposed by Freund et
al. (1999). It proposeda set of classifiers
called Adaboost. Adaboost set of classifiers are easy to train,
and this model is the basis of many different tasks like face
recognition and detection. The integrated grey model with
multiple regression model (IGMMRM) was applied to
modeling of data, in comparison with Grey model (GM) and
multiple regression method (Wang & Xia. 2009). The
modeling techniques were assessed using relative error (RE),
mean absolute error (MAE), root mean square error (RMSE),
and mean absolute percentage error (MAPE) to evaluate the
accuracy of the models. The study suggests that the
performance of IGMMRM was higher than the other two
models based on historical data.

Artificial neural network (ANN) was described in Damak
(2011) as a hidden-layer feed-forward network technique and
it’s a widely used technique for time-series modelling and
forecasting. The paper described that the technique is based on
pattern recognition, and able to forecast for non-linear models.
Neural networks are similar to the least square estimation
technique and can be viewed as an alternative statistical
approach to solving least squares problems (Chen et al. 2001).
The paper presented an artificial neural network-based
short-term load forecasting technique for estimating data. The
ANN technique utilized a combination of the three layer
feed-forward neural network and a back-propagation training
technique.

Computational analysis is a collection of procedures that
is used to process large amounts of data with a view of
obtaining results based on processed data and as a result,
getting their behavioral pattern. A review of machine learning
techniques is undertaken, with the aim of identifying and
selecting an accurate and reliable technique for modelling
data. The techniques are discussed in the following sections.

A. Box-Jenkins Technique

The general form of the model that is used to describe
Box-Jenkins technique is

φ(𝐵)z୲ = ϕ(𝐵)∇ୢz୲ = θ଴ + θ(𝐵)a୲
where

𝜙(𝐵) = 1 − 𝜙ଵ𝐵 − 𝜙ଶ𝐵ଶ − ⋯ − 𝜙௣𝐵௣
𝜃(𝐵) = 1 − 𝜃ଵ𝐵 − 𝜃ଶ𝐵ଶ − ⋯ − 𝜃௤𝐵௤

𝜙(𝐵) and 𝜃(𝐵) are polynomial operators in B of degrees p and
q. This process is referred to as an ARMA (p, q) process. The

ARIMA model can be expressed explicitly in terms of current
and previous shocks (Box et al., 2008). A linear model can be
written as the output 𝑧௧ from the linear filter

𝑧௧ = 𝑎௧ + 𝜓ଵ𝑎௧ିଵ + 𝜓ଶ𝑎௧ିଶ + ⋯

= 𝑎௧ + ෍ 𝜓௝𝑎௧ି௝

ஶ

௝ୀଵ

= 𝜓(𝐵)𝑎௧

whose input is a white noise, or a sequence of uncorrelated
shocks 𝑎௧ with mean 0 and common variance 𝜎௔

ଶ. Then

𝜑(𝐵)𝑧௧ = 𝜑(𝐵)𝜓(𝐵)𝑎௧

B. Artificial Neural Network

Artificial neural network (ANN) is based on the
recognition that the human brain computes in an entirely
different way from the conventional digital computer. It has the
capability to organize its structural constituents, known as
neurons, so as to perform certain computations (e.g., pattern
recognition, perception, and motor control) many times faster
than the fastest digital computer in existence today(Simon,
2009).

The neural network has at least two physical components,
namely, the processing elements and the connections between
them. The processing elements are called neurons, and the
connections between the neurons are known as links. Each
neuron receives stimulus from the neighboring neurons
connected to it, process the information, and produces an
output. Neurons that receive stimuli from outside the network
are called input neurons. Neurons whose outputs are used
externally are called output neurons. Neurons that receive
stimuli from other neurons and whose output is a stimulus for
other neurons in the neural network are known as hidden
neurons (David, 2005).The block diagram of Fig. 1 shows the
model of a neuron, which forms the basis for designing a large
family of neural networks.

Fig.1 Artificial neuron model (Simon, 2009)

The three basic elements of the neural model are:

1) A set of synapses, or connecting links, each of which is
characterized by a weight or strength of its own.
Specifically, a signal 𝑥௝ at the input of synapse j
connected to neuron k is multiplied by the synaptic weight

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194

www.rsisinternational.org Page 148

𝜔௞௝ . It is important to make a note of the manner in which
the subscripts of the synaptic weight 𝜔௞௝are written. The
first subscript in 𝜔௞௝refers to the neuron in question, and
the second subscript refers to the input end of the synapse
to which the weight refers. Unlike the weight of a synapse
in the brain, the synaptic weight of an artificial neuron
may lie in a range that includes negative as well as
positive values.

2) An adder for summing the input signals, weighted by the
respective synaptic strengths of the neuron; the operations
described here constitutes a linear combiner.

3) An activation function for limiting the amplitude of the
output of a neuron. The activation function is also referred
to as a squashing function, in that it squashes (limits) the
permissible amplitude range of the output signal to some
finite value (Simon, 2009).

Artificial neural network with feed-forward topology is
called feed-forward artificial neural network and as such has
only one condition: information must flow from input to output
in only one direction with no back-loops. There are no
limitations on number of layers, type of transfer function used
in individual artificial neuron or number of connections
between individual artificial neurons (Andrej, 2011). This is
presented in Fig. 2.

Fig.2Feed-forward network

C. Kalman Filter Adaptation Algorithm

The Kalman filter addresses the general problem of trying
to estimate the state 𝑥 ∈ ℜ௡of a discrete-time controlled
process that is governed by the linear stochastic difference
equation

𝑥௞ = 𝐴𝑥௞ିଵ + 𝐵𝑢௞ିଵ + 𝑤௞ିଵ

with a measurement z∈ ℜ௡ that is

𝑧௞ = 𝐻𝑥௞ + 𝑣௞

The random variables 𝑤௞ and 𝑣௞ represent the process and
measurement noise, respectively (Welch & Bishop, 2006).
They are assumed to be independent of each other and with
normal probability distributions

𝑝(𝑤)~𝑁(0, 𝑄)

𝑝(𝑣)~𝑁(0, 𝑅)

The a priori and a posterior estimates are defined as:

𝑒௞
⁻ ≡ 𝑥௞ − 𝑥ො௞

⁻ , and

𝑒௞ ≡ 𝑥௞ − 𝑥ො௞

The a priori estimate error covariance is then

𝑃௞
ି = 𝐸[𝑒௞

ି𝑒௞
ି்]

and the a posteriori estimate error covariance is

𝑃௞ = 𝐸[𝑒௞𝑒௞
்]

In deriving the equations for the Kalman filter, an
equation is derived that computes an a posteriori estimate 𝑥ො௞
as a linear combination of an a priori estimate 𝑥ො௞

⁻ and a
weighted difference between an actual measurement 𝑧௞ and a
measurement prediction 𝐻𝑥௞

⁻ .

𝑥ො௞ = 𝑥ො௞
⁻ + 𝐾௞(𝑧௞ − 𝐻𝑥ො௞

⁻)

The resulting K is given byMaybeck (1979); Brown and
Hwang (1992); Jacobs (1993)

𝐾௞ = 𝑃௞
ି𝐻்(𝐻𝑃௞

ି𝐻் + 𝑅)ିଵ

=
𝑃௞

ି𝐻்

𝐻𝑃௞
ି𝐻் + 𝑅

The equations for the Kalman filter falls into two groups:
time update equations and measurement update equations. The
time update equations are responsible for projecting forward in
time the current state and error covariance estimates to obtain
the a priori estimates for the next time step. The measurement
update equations are responsible for the feedback for
incorporating a new measurement into the a priori estimate to
obtain an improved a posteriori estimate. The time update
equations can be defined as predictor equations, while the
measurement update equations are defined as corrector
equations.

The time update projects the current state estimate ahead
in time. The measurement update adjusts the projected estimate
by an actual measurement at that time. The discrete Kalman
filter time update equations are (Welch & Bishop, 2008):

xො୩
ି = Axො୩ିଵ

ି + Bu୩ିଵ

𝑃௞
ି = 𝐴𝑃௞ିଵ𝐴் + 𝑄

The discrete Kalman filter measurements update equations are
(Welch & Bishop, 2008):

𝐾௞ = 𝑃௞
ି𝐻்(𝐻𝑃௞

ି𝐻் + 𝑅)ିଵ

𝑥ො௞ = 𝑥ො௞
⁻ + 𝐾௞(𝑧௞ − 𝐻𝑥ො௞

⁻)

𝑃௞ = (𝐼 − 𝐾௞𝐻)𝑃௞
ି

The first task during the measurement update is to
compute Kalman gain, 𝐾௞. The next step is to actually measure
the process to obtain 𝑧௞, and then to generate an a posteriori
state estimate. The final step is to obtain an a posteriori error
covariance estimate. After each time and measurement update
pair, the process is repeated with the previous a posterior
estimates used to predict the new a priori estimates. This

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454

www.rsisinternational.org

recursive nature is one of the very appealing features of the
Kalman filter.

III. METHODOLOGY

This section gives an outline of research methods that
in this study. The overall objective of this
perform a comparative analysis of machine learning
techniques. The system development and design of this model
for comparative analysis of machine learning techniques was
undertaken by implementing the various machine learning
algorithms using Python programming la
comparative analysis model input data set into the
Box-Jenkins, ANN, and Kalman technique, then a testing
dataset is also passed into this machine learning technique to
test the ability of these algorithms and then the output is used as
an evaluative mechanism for performance comparison.
shown in Fig. 3.

Fig.3Comparative analysis model

A. Data Set

The research utilizes an energy distribution and usage
dataset collected online. It has the following fields: The
dataset has the following fields: Date,
Global_active_power,Global_reactive_power,Voltage,Global
_intensity, Sub_metering_1,Sub_metering_2,Sub_metering_3.

The dataset has 260,641 data value, where 154,261 were
used for training the machine learning techniques, while
56,924 was used as the testing dataset leaving 49,456.

The algorithms for the Box-Jenkins, artificial neural
network and Kalman techniques are tested on an energy
distribution and usage dataset.

B. Implementation of Machine Learning Techniques

The implementation of the study requires the analysis of the
machine learning algorithms for the comparative analysis of
machine learning techniques. The graphical analytics
performance of the techniques are discussed in the following
sections.

Box-Jenkins Technique: The system design of the Box
technique is given on Fig. 4.

Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454

recursive nature is one of the very appealing features of the

gives an outline of research methods that are used
study. The overall objective of this research is to

comparative analysis of machine learning
techniques. The system development and design of this model
for comparative analysis of machine learning techniques was

machine learning
s using Python programming language.The

data set into the
Jenkins, ANN, and Kalman technique, then a testing

dataset is also passed into this machine learning technique to
test the ability of these algorithms and then the output is used as

ative mechanism for performance comparison. This is

an energy distribution and usage
t has the following fields: The

fields: Date, Time,
Global_reactive_power,Voltage,Global

Sub_metering_1,Sub_metering_2,Sub_metering_3.

The dataset has 260,641 data value, where 154,261 were
used for training the machine learning techniques, while

used as the testing dataset leaving 49,456.

Jenkins, artificial neural
network and Kalman techniques are tested on an energy

B. Implementation of Machine Learning Techniques

requires the analysis of the
machine learning algorithms for the comparative analysis of

graphical analytics
of the techniques are discussed in the following

design of the Box-Jenkins

Figure 4 Data flow diagram for Box

The algorithm for Box- Jenkins algorithm

Step 1

Define significance level α, and estimate σ using confidence
interval. Set l = 0.

Step 2

 If l is outside the confidence interval (,), set l = l+1, and
repeat Step 2

 Else, go to Step 3

Step 3

Calculate the percentage φ of auto
from lag l to the maximum lag.

 If φ is less than or equal to 1-α,

 then let q=l and stop.

 Else, q is undetermined and stops.

Comments are in order on this algorithm.

If q= 0 from the above algorithm,

then the residual can be said to be a white noise.

Box-Jenkins technique was implemented using python
programming language (Appendix A). The output is displayed
in Fig. 5 and Fig. 6.

Fig.5 Implementation diagram for Box

Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194

 Page 149

Data flow diagram for Box-Jenkins

algorithm is given as follows:

Define significance level α, and estimate σ using confidence

If l is outside the confidence interval (,), set l = l+1, and

Calculate the percentage φ of auto correlation coefficients

Else, q is undetermined and stops.

Comments are in order on this algorithm.

If q= 0 from the above algorithm,

then the residual can be said to be a white noise.

Jenkins technique was implemented using python
(Appendix A). The output is displayed

Implementation diagram for Box-Jenkins

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454

www.rsisinternational.org

Fig.6Auto correlation plot of energy

Artificial Neural Network Technique: This study uses the
artificial neural network back propagation method,
implemented using python. The programme is presented in
Appendix B. The output is displayed in Figure 7.

Fig.7 Implementation for artificial neural networks

Kalman Filter Adaptation Technique: The output using
Kalman filter algorithm and implemented by python
programming language is given in Figure 8. The Program is
displayed in Appendix C.

Fig.8Implementation for Kalman filter

IV. SUMMARY AND CONCLUSION

This research aims to do a comparative analysis of machine
learning techniques. The study was tested and
using python programming language on Box
amd Kalman filter techniques, and the results were presented
in a graphical form. Performance evaluation
compute graphically the overall result of the proposed model
on machine learning techniques. The three machine learning
techniques were described. Also presented were their
oriented based models. The modelswere used
performance of these three machine learning technique. Based
on this result, it clearly shows the complexity of th
algorithms and how well they work on data making ANN as
the highest rated.

Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454

This study uses the
propagation method, and

implemented using python. The programme is presented in
The output is displayed in Figure 7.

etworks

The output using
Kalman filter algorithm and implemented by python
programming language is given in Figure 8. The Program is

Kalman filter

CONCLUSION

aims to do a comparative analysis of machine
tested and implemented

Box-jenkins, ANN,
, and the results were presented

Performance evaluation were done to
compute graphically the overall result of the proposed model

he three machine learning
s were described. Also presented were their objected

used to evaluate the
performance of these three machine learning technique. Based
on this result, it clearly shows the complexity of the
algorithms and how well they work on data making ANN as

REFERENCES

[1] Alesheykh, R., (2016). Comparativ
Learning Algorithms with Optimization Purposes. Control and
Optimization in Applied Mathematics (COAM) Vol. 1, No. 2,
63-75.

[2] Mohamed, A., (2017). Comparative Study of Four Supervised
Machine Learning Techniques for Classification.
Journal of Applied Science and Technology

[3] Chen, X., Xu, L., Yao, Q.,(2014). Study of a Distribution Line
Overload Control Strategy Considering the Demand Response.
Electric Power Components and Systems,
970–983.

[4] Cortes, C., Vladimir, V., (1995). Support
Machine learning Vol. 20, No. 3, pp.

[5] Damak, S., (2011). Applications of Two Identification Methods
For an Electric Distribution System. Journal of Automation &
Systems Engineering, Vol. 4, pp. 176

[6] Freund, S., Robert, N., (1999). A
Journal-Japanese Society for Artificial Intelligence.

[7] Minsky, M., Papert, S., (1969). Perceptrons
[8] Nils. L., (2005)., Introduction to Machine Learning.Department of

Computer Science Stanford University. Stanford, CA 94305.
[9] Ozoh, P., Olayiwola, M.,Ogundoyin, I.,

Computational Techniques to Analyze Big Data
in Applied Sciences, Vol. 8, No. 1, pp. 1

[10] Rosenblatt, A., (1958). The Perceptron: A Probabilistic Model for
Information Storage and Organization in the Brain
Review, Vol.65, No. 6,pp. 386-408.

[11] Rumelhart, E.,Geoffrey, J., Ronald W.
representations by error propagation. No. ICS
Univ San Diego La Jolla Institute for Cognitive Science.

[12] Samuel, A., (1959). Some Studies in Machine Learning Using the
Game of Checkers. IBM Journal of Research and

[13] Vibhatha, K., Nishadi, S., Anuruddha,
Electrical Devices Identification through Power Consumption
using Machine Learning Techniques. Researchgate.
doi:10.5013/IJSSST.a.17.32.13.1473

[14] Wang, F., Xia. X., (2009). Integration of Grey Model and Multiple
Regression Model toPredict Energy Consumption
Proceedings, pp. 194–197.

APPENDIX

Python Code for Box-Jenkins Technique

import pandas as pd
import numpy as np
import statsmodels.api as sm
from statsmodels.tsa.arima_model import ARIMA,
ARIMAResults
from statsmodels.tsa.stattools import acf, pacf
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
import matplotlib.pylab as plt
import matplotlib.dates as dates
from matplotlib.pylab import rcParams
rcParams['figure.figsize'] = 15, 6
##

 LOAD DATA
##

loading data
dataMaster = pd.read_csv('dataset.csv')
sp_500 = dataMaster['Voltage']
print(sp_500.head(12))

Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194

 Page 150

REFERENCES

Comparative Analysis of Machine
Learning Algorithms with Optimization Purposes. Control and
Optimization in Applied Mathematics (COAM) Vol. 1, No. 2, pp.

Comparative Study of Four Supervised
Machine Learning Techniques for Classification. International
Journal of Applied Science and Technology.
Chen, X., Xu, L., Yao, Q.,(2014). Study of a Distribution Line
Overload Control Strategy Considering the Demand Response.
Electric Power Components and Systems, Vol. 42, No. 9, pp.

(1995). Support-vector networks.
, pp. 273-297.

Damak, S., (2011). Applications of Two Identification Methods
For an Electric Distribution System. Journal of Automation &

pp. 176–184.
(1999). A Short Introduction to Boosting.

Japanese Society for Artificial Intelligence. pp. 771-780.
(1969). Perceptrons, M.I.T. Press.

Introduction to Machine Learning.Department of
Computer Science Stanford University. Stanford, CA 94305.

M.,Ogundoyin, I., (2020). Analysis of
Computational Techniques to Analyze Big Data, Communications

o. 1, pp. 1-18.
(1958). The Perceptron: A Probabilistic Model for

Information Storage and Organization in the Brain, Psychological
408.

Ronald W., (1985). Learning internal
representations by error propagation. No. ICS-8506. California
Univ San Diego La Jolla Institute for Cognitive Science.

(1959). Some Studies in Machine Learning Using the
IBM Journal of Research and Development.

Anuruddha, R., Pasika, U., (2016).
Electrical Devices Identification through Power Consumption
using Machine Learning Techniques. Researchgate.
doi:10.5013/IJSSST.a.17.32.13.1473-8031.

gration of Grey Model and Multiple
oPredict Energy Consumption,IEEE

APPENDIX A

Jenkins Technique

statsmodels.tsa.arima_model import ARIMA,

from statsmodels.tsa.stattools import acf, pacf
from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

t rcParams

##

##

dataMaster = pd.read_csv('dataset.csv')

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194

www.rsisinternational.org Page 151

ran = pd.date_range('1995-01', '2016-1', freq = 'M')
ts = pd.Series(dataMaster['Voltage'].values, index = ran)
print(ts.head(12))
print(ts.dtypes)
##

 DO EXPLORATORY ANALYSIS
##

plt.plot(ts)
plt.title('Time Series Plot for Energy Use')
 plt.xlim([0, 255])
plt.show()

sp500_TR = ts['1995':'2014']
print(sp500_TR)
##

 MODEL ESTIMATION
##

DIAGNOSING ACF
acf = plot_acf(ts, lags = 20)
plt.title("Autocorellation Function Plot of Energy Use")
acf.show()
DIAGNOSING PACF
pacf = plot_pacf(ts, lags = 20)
plt.title("Partial Autocorellation Function Plot of Energy
Use")
pacf.show()
 TRANSFORMING OUR DATA TO ADJUST FOR
NON-STATIONARITY
sp500_diff = ts - ts.shift()
diff = sp500_diff.dropna()
print(diff.head(12))
print(diff.dtypes)
plt.figure()
plt.plot(diff)
plt.title('First Difference Time Series Plot')
plt.show()
acfDiff = plot_acf(diff, lags = 20)
plt.title("ACF Plot of Energy Use(Difference)")
acfDiff.savefig("images/timeSeriesACFDiff.png", format =
'png')
acfDiff.show()
edit this shit on the actual project !
pacfDiff = plot_pacf(diff, lags = 20)
plt.title("PACF Plot of Energy Use(Difference)")
pacfDiff.savefig("images/pacfDiff.png", format = 'png')
pacfDiff.show()
##

 BUILD MODEL
##

mod = ARIMA(sp500_TR, order = (0, 1, 1), freq = 'M')
results = mod.fit()

print(results.summary())
##

 FORECAST
##

predVals = results.predict(239, 251, typ='levels')
print(predVals)
predVals = predVals.drop(predVals.index[0])
print(predVals)
sp500_for = pd.concat([ts, predVals], axis = 1,
keys=['original', 'predicted'])
print(sp500_for['2014':'2015'])
plt.figure()
plt.plot(sp500_for)
plt.title("Actual Vs. Forecasted Values")
plt.savefig("images/sp500_for.png", format = 'png')
plt.show()
plt.figure()
plt.plot(sp500_for)
plt.title('Real Vs. Predicted Values for 2015')
plt.savefig("images/sp500_for2.png", format = 'png')
plt.show()

APPENDIX B

Python Code for Artificial Neural Network
import numpy as np
from src.NeuralNetworkClass import NeuralNetwork
import src.utils as utils
def main():
 # ===================================
 # Settings
 # ===================================
 filename = "data/dataset.csv"
 n_hidden_nodes = [5] # nodes in hidden layers i.e.
[n_nodes_1, n_nodes_2, ...]
 l_rate = 0.6 # learning rate
 n_epochs = 800 # number of training epochs
 n_folds = 4 # number of folds for cross-validation
 print("Neural network model:\n n_hidden_nodes =
{}".format(n_hidden_nodes))
 print(" l_rate = {}".format(l_rate))
 print(" n_epochs = {}".format(n_epochs))
 print(" n_folds = {}".format(n_folds))
 # ===================================
 # Read data (X,y) and normalize X
 # ===================================
 print("\nReading '{}'...".format(filename))
 X, y = utils.read_csv(filename) # read as matrix of
floats and int
 utils.normalize(X) # normalize
 N, d = X.shape # extract shape of X
 n_classes = len(np.unique(y))
 print(" X.shape = {}".format(X.shape))
 print(" y.shape = {}".format(y.shape))
 print(" n_classes = {}".format(n_classes))

International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194

www.rsisinternational.org Page 152

 # ===================================
 # Create cross-validation folds
 # These are a list of a list of indices for each fold
 # ===================================
 idx_all = np.arange(0, N)
 idx_folds = utils.crossval_folds(N, n_folds, seed=1)
 # ===================================
 # Train and evaluate the model on each fold
 # ===================================
 acc_train, acc_test = list(), list() # training/test accuracy
score
 print("\nTraining and cross-validating...")
 for i, idx_test in enumerate(idx_folds):
 # Collect training and test data from folds
 idx_train = np.delete(idx_all, idx_test)
 X_train, y_train = X[idx_train], y[idx_train]
 X_test, y_test = X[idx_test], y[idx_test]
 # Build neural network classifier model and train
 model = NeuralNetwork(n_input=d,
n_output=n_classes, n_hidden_nodes=n_hidden_nodes)
 model.train(X_train, y_train, l_rate=l_rate,
n_epochs=n_epochs)
 # Make predictions for training and test data
 y_train_predict = model.predict(X_train)
 y_test_predict = model.predict(X_test)
 # Compute training/test accuracy score from
predicted values

acc_train.append(100*np.sum(y_train==y_train_predict)/len(
y_train))
acc_test.append(100*np.sum(y_test==y_test_predict)/len(y_te
st))

 # Print cross-validation result
 print(" Fold {}/{}: train acc = {:.2f}%, test acc =
{:.2f}% (n_train = {}, n_test = {})".format(i+1, n_folds,
acc_train[-1], acc_test[-1], len(X_train), len(X_test)))

 # ===================================
 # Print results
 # ===================================
 print("\nAvg train acc =
{:.2f}%".format(sum(acc_train)/float(len(acc_train))))
 print("Avg test acc =
{:.2f}%".format(sum(acc_test)/float(len(acc_test))))
Driver
if __name__ == "__main__":
 main()

APPENDIX C

Python Code for Kalman Filter Technique

from __future__ import (absolute_import, division,
print_function,
 unicode_literals)
import numpy.random as random
import numpy as np

import matplotlib.pyplot as plt
from filterpy.kalman import FadingKalmanFilter
from pytest import approx
from scipy.spatial.distance import mahalanobis as
scipy_mahalanobis
DO_PLOT = False
def test_noisy_1d():
 f = FadingKalmanFilter(3., dim_x=2, dim_z=1)
 f.x = np.array([[2.],
 [0.]]) # initial state (location and
velocity)
 f.F = np.array([[1.,1.],
 [0.,1.]]) # state transition matrix
 f.H = np.array([[1.,0.]]) # Measurement function
 f.P *= 1000. # covariance matrix
 f.R = 5.**2 # state uncertainty
 f.Q = np.array([[0, 0],
 [0, 0.0001]]) # process uncertainty
 measurements = []
 results = []
 zs = []
 for t in range (100):
 # create measurement = t plus white noise
 z = t + random.randn() * np.sqrt(f.R)
 zs.append(z)
 # perform kalman filtering
 f.update(z)
 f.predict()
 # save data
 results.append(f.x[0, 0])
 measurements.append(z)
 # test mahalanobis
 a = np.zeros(f.y.shape)
 maha = scipy_mahalanobis(a, f.y, f.SI)
 assert f.mahalanobis == approx(maha)
 print(z, maha, f.y, f.S)
 assert maha < 4
 # now do a batch run with the stored z values so we can test
that
 # it is working the same as the recursive implementation.
 # give slightly different P so result is slightly different
 f.X = np.array([[2.,0]]).T
 f.P = np.eye(2)*100.
 m, c, _, _ = f.batch_filter(zs,update_first=False)
 # plot data
 if DO_PLOT:
 p1, = plt.plot(measurements,'r', alpha=0.5)
 p2, = plt.plot (results,'b')
 p4, = plt.plot(m[:,0], 'm')
 p3, = plt.plot ([0, 100],[0, 100], 'g') # perfect result
 plt.legend([p1,p2, p3, p4],
 ["noisy measurement", "KF output",
"ideal", "batch"], loc=4)
 plt.show()
if __name__ == "__main__":
 DO_PLOT = True

