Triple System and Fano Plane Structure in \mathbb{Z}_{n}^{*}

Dennis Kinoti Gikunda, Benard Kivunge
Kenyatta University, Kenya

Abstract

A triple system is an absolutely fascinating concept in projective geometry. This paper is an extension of previously done work on triple systems, specifically the triples that fit into a Fano plane and the (i, j, k) triples of the quaternion group. Here, we have explored and determined the existence of triple systems in \mathbb{Z}_{n}^{*} for $n=p, n=p q$ and $n=2^{m} p$ with $m \varepsilon N, p, q \varepsilon \mathbb{P}$, and $p>q$, where \mathbf{N} is the set of natural numbers, \mathbb{P} is the set of primes and \mathbb{Z}_{n}^{*} is the set of units in $\mathbb{Z} n$. A triple system in \mathbb{Z}_{n}^{*} has been denoted by (k_{1}, k_{2}, k_{3}) where there exists $\boldsymbol{k}_{i}>1, i=1,2,3$, such that $k_{i}^{2} \equiv 1(\bmod n)$ with $k_{1} k_{2} \equiv k_{3}(\bmod n), k_{1} k_{3} \equiv k_{2}(\bmod n)$ and $k_{2} k_{3} \equiv$ $k_{1}(\bmod n)$. We have also investigated the number of triples in \mathbb{Z}_{n}^{*} and determined the general formula for getting the triples. Further, we have fitted the triples into Fano planes and established the projective geometry structure for the above defined \mathbb{Z}_{n}^{*}.

AMS Subject Classification: 20B05
Key Words: Geometry, Triple Systems, Fano Planes, Prime Numbers, Units.

I. INTRODUCTION

Any natural number n can be expressed as a product of primes, for $n \neq 0,1$. This implies that prime factors are the 'building blocks' for any $n \in \mathrm{~N}$. Mathematician find delight in understanding the composition properties of the primes and try to figure out the structure of their sequence (if any exists). The nature of their existence makes them useful in puzzles, cryptography and generation of security codes. Any discovery of their nature is always a lead to new application.

In recent years, mathematicians have made a considerably great progress in a sub-branch of mathematics that concern finite geometries. Herein, we find the concept of triple systems referring to a vector space V over a field K together with K- trilinear mapping $V \otimes V \otimes V \rightarrow V$. Girard Desargues (1591-1661) discovered the projective geometry derived from Euclidean geometry, which involved 3- dimension finite geometry. An Italian mathematician, Gino Fano (1871 1952) later discussed the 3-dimension finite geometry with 3 points in each line and 7 points on each plane. The total number of points was 15 , with 35 lines and 15 planes. The 3 points on each line form unique triple systems.
Another interesting triple is the (i, j, k) triples of the quaternion group, denoted by $\mathrm{H}=\{ \pm 1, \pm i, \pm j, \pm k\}$. The discovery of H is quite a famous story in mathematics. William Rowen Hamilton, an Irish mathematician spent much of his life seeking a 3 -dimension number system. On $16^{\text {th }}$ Oct 1843 , he discovered the fundamental formula for quaternion (action on $3 D)$;

$$
i^{2}=j^{2}=k^{2}=i j k=-1,
$$

where i, j, k are imaginary points and $1 \in \mathrm{R}$. The equation above, satisfactorily linked the imaginary part to the commonly known real part. A very useful relationship of the i, j, k triples in H is also given by:

$$
i j=k=-j i, j k=i=-k j, k i=j=-i k .
$$

The main aspect of this research is the question, "how does the ring $\mathrm{Z}_{\mathrm{n}}^{*}, n=p$ (prime), $n=p q, n=2^{m} p, p>q$ for $p, q \in \mathbb{P}$, $m \in \mathrm{~N}$, connect to the concept of the triple systems in projective geometry?"

II. PRELIMINARIES

Definition 1. A geometry can be defined by a set $G=(P, I)$, where P is the set of points and lines and I the incidence relation that is both reflective and symmetric. We say a point is incident to the line it lies on and two lines are incident only when they have all points in common. A relation R on a set A is called reflexive if $(a, a) \in R$ holds for every element $a \in A$ while a relation R on a set A is called symmetric if $(b, a) \in R$ holds when $(a, b) \in R$.

Definition 2. Let a triple $G=(P, L, I)$ be a rank 2 geometry with $P=$ set of points and $L=$ set of lines. Any geometry satisfying the following axioms is a type of projective geometry.
G_{1} : Any 2 distinct points are incident to a unique line.
G_{2} : Any 2 lines on the plane meet.
G_{3} : Any line is incident with at least 3 points.
G_{4} : There are at least 2 lines.
Definition 3. A projective space is a projection of a 2 dimensional space to a 3 - dimensional space by adding a point at infinity so that there exists no parallel lines. A projective space with at least 2 lines, such that any 2 distinct lines are incident to a unique point is called a projective plane

Definition 4. The order of a finite projective space is given by the number of points that are incident to each line, minus one. Any finite projective plane of order n contains $n^{2}+n+1$ points. A Fano plane is the smallest finite projective plane. It is of order $n=2$. the total number of points is 7 .
Definition 5. A Steiner system, denoted by $S(t, k, v)$, is a set X of v points, and a collection of subsets of X of size k (called blocks), such that any t points of X are in exactly one of the
blocks. The special case $t=2$ and $k=3$ corresponds to a socalled Steiner triple system.

Definition 6. Let n be any positive whole number, if 1 and $n \neq$ 1 are the only factors of n, n is said to be a prime number, denoted by p. We will denote the set of prime numbers by \mathbb{P}. If n has more than 2 distinct factors, it is called a composite number.

Definition 7. The expression $x \equiv y(\bmod n)$ implies that $n \mid(x-y)$ and is read as ' x is congruent to y modulo n '. In other words, x and y have the same remainders when divided by n.
Definition 8. A ring is a non-empty set R with 2 binary operations + (addition) and \cdot (multiplication) such that the following axioms are satisfied.
$R_{1}:(R,+)$ is an abelian group. i.e it satisfies the following axioms (G_{1} to G_{4}).
G_{1} : closure; $\forall a, b \in R: a+b=b+a \in R$.
G_{2} : associativity; $\forall a, b, c \in R:(a+b)+c=a+(b+c)$.
G_{3} : identity; $\exists 0_{R} \in R: 0_{R}+a=a=a+0_{R}$.
G_{4} : inverse; $\forall a \in R, \exists-a \in R: a+(-a)=0_{R}=(-a)+a$
R_{2} : multiplication is associative i.e. $(a \cdot b) \cdot c=a \cdot(b \cdot c) \forall$ $a, b, c \in R$.
R_{3} : multiplication is distributive over addition i.e $\forall a, b, c \in R$;
$a \cdot(b+c)=a \cdot b+a \cdot c \rightarrow$ left distributive law and
$(a+b) \cdot c=a \cdot c+b \cdot c \rightarrow$ right distributive law.
Definition 9. Let $(R,+, \cdot)$ be a ring. Then the set of units for this ring is denoted by R^{*}; where the units are elements in R with multiplicative inverse.
Definition 10. Let $k \in Z^{+}$. Then Euler's phi function $\phi(k)$ denotes the number of positive integers $\leq k$ and relatively prime to k.
Theorem 11. (Euler's Theorem) Given $k \in \mathrm{~N}$ with $(k, n)=1$, $k^{\phi(n)} \equiv 1(\bmod n)$.

Theorem 12. Let $\operatorname{gcd}(p, q)=1$. Given $a, b \in \mathrm{Z}$, the system of equations $x \equiv a(\bmod p)$ and $x \equiv b(\bmod q)$ has a unique solution for $x \equiv(\bmod p q)$
Corollary 13. Let $n_{1}, n_{2}, \cdots, n_{3}$ be pairwise co-prime positive integers and $x_{1}, x_{2}, \cdots, x_{k}$ be arbitrary integers. The system of simultaneous congruence $a \equiv x_{1}\left(\bmod n_{1}\right), a \equiv x_{2}\left(\bmod n_{2}\right), \cdots, a$ $\equiv x_{k}\left(\bmod n_{k}\right)$ has a unique solution modulo $n=n_{1} n_{2} \ldots n_{k}$
Theorem 14. If n is an odd number with $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots \ldots . p_{r}^{k_{r}}$ where $p_{1}, p_{2}, \ldots \ldots ., p_{r}$ are distinct odd primes and $k_{i}>0$ for $1 \leq i \leq r$, then the equation $x^{2} \equiv 1(\mathrm{mod}$ $n)$ has exactly 2^{r} distinct solutions $(\bmod n)$
Proof.

Suppose $\quad x^{2} \equiv 1\left(\bmod p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots \ldots . p_{r}^{k_{r}}\right)$, then $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots \ldots . p_{r}^{k_{r}} \mid\left(x^{2}-1\right)$. But since $p_{i}^{\prime} s$ are distinct primes, $p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots \ldots . p_{r}^{k_{r}} \mid\left(x^{2}-1\right)$ only happens iff $p_{i}^{k_{i}} \mid\left(x^{2}-1\right)_{\text {for }}$ all i, where $1 \leq i \leq r$.
But each of the congruences only has two solutions i.e. $x \equiv \pm 1\left(\bmod p_{i}^{k_{i}}\right)$.

For each $i, 1 \leq i \leq r$, choose $y_{i}= \pm 1$ and utilize the linear congruences system.
$x \equiv y_{1}\left(\bmod p_{1}^{k_{1}}\right) x \equiv y_{2}\left(\bmod p_{2}^{k_{2}}\right) \cdots x \equiv y_{r}\left(\bmod p_{r}^{k_{r}}\right)$
By Theorem 12, the above system has a unique solution ($\bmod n)=\left(\bmod p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots \ldots . p_{r}^{k_{r}}\right)$.

Since we have 2 choices for each y_{i} (namely ± 1), and we have r congruences, then, the possible choices for $y_{1} \ldots, y_{r}$ are 2^{r}
Assuming that the 2^{r} choices of x are not distinct $(\bmod n)$, i.e. $x_{1} \equiv x_{2}(\bmod n)$, then $x_{1} \equiv x_{2}\left(\bmod p_{i}^{k_{i}}\right)$ for all i. However, any 2 values of x are not congruent $p_{i}^{k_{i}}$ for at
least one i. Therefore, the above system of linear congruences has 2^{r} distinct solutions $x(\bmod n)$. Any of the 2^{r} choices satisfies $x^{2} \equiv\left(\bmod p_{i}^{k_{i}}\right)$ for $1 \leq i \leq r$. Hence, there are 2^{r} distinct solutions to $x \equiv 1(\bmod n)$.

III. MAIN RESULTS

Proposition 15. If p is prime, 1 and $p-1$ are the only integers satisfying $k^{2} \equiv 1(\bmod p)$ in the $\operatorname{set}^{\mathbb{Z}_{p}^{*}}$
Proof.
BWOC, assume that 1 and $p-1$ are not the only integers satisfying $k^{2} \equiv 1(\bmod \quad p)$. Consider $\mathbb{Z}_{p}^{*} \quad$ with $\mathbb{Z}_{p}^{*}=\{1,2, \ldots, p-1\}$. Say \exists another distinct element m with $m \in\{2,3, \ldots, p-2\}$ such that $m^{2} \equiv 1(\bmod p)$.
Now, $m^{2}=a p+1$, (where a is a natural number).

$$
\Rightarrow m^{2}-1=a p \Rightarrow p /\left(m^{2}-1\right) \Rightarrow p /(m-1)(m+1)
$$

Since p is a prime, $p /(m-1)$ or $p /(m+1)$. But $1 \leq m-1 \leq p-$ 3 and $3 \leq m+1 \leq p-1$. Hence p does not divide $(m-1)$ or $(m+1)$. Therefore, other than 1 and $p-1, \nexists$ integer satisfying $k^{2} \equiv 1(\bmod p)$.
Proposition 16. Let $n=2 p, p$ (prime), 1 and $2 p-1$ are the only integers satisfying $k^{2} \equiv 1(\bmod 2 p)$ in the set \mathbb{Z}_{n}^{*}.

Proof.

BWOC, assume that 1 and $2 p-1$ are not the only integers satisfying $k^{2} \equiv 1(\bmod 2 p)$ in $\mathbb{Z}_{2 p}^{*}=\{1,2, \ldots, 2 p-1\}$. Suppose $\exists m \in\{2,3, \ldots, 2 p-2\}$ such that $m^{2} \equiv 1(\bmod 2 p) \Rightarrow$ $m^{2}=(2 p-1)^{2}=4 p^{2}-4 p+1=1(\bmod 2 p)$. We have, $2 p /\left(4 p^{2}-4 p\right)$
resulting to $2 p-2$. Now, $m^{2}=a(2 p)+1$, where a is a natural number scalar.

$$
m^{2}-1=a(2 p) \Rightarrow 2 p /\left(m^{2}-1\right) \Rightarrow 2 p /(m-1)(m+1)
$$

Since p is prime, p must divide $(m-1)$ or $(m+1)$, which means that $m \equiv \pm 1(\bmod p)$. Which is a contradiction, since, other than 1 and $p-1$, there exists no other number with $m \equiv$ $\pm 1(\bmod p)$.

Proposition 17. If $n=3 p, p$ (prime) with $p>3, \mathbb{Z}_{n}^{*}$ has 2 possible cases of triple system;

Case 1 If $p=3 k+1$, the triple system is given by $(p+1,2 p-$ $1,3 p-1$)

Proof.

First, we show that $(p+1)(2 p-1) \equiv(3 p-1)(\bmod n)$

$$
\begin{aligned}
& \quad(p+1)(2 p-1) \equiv(3 k+2)(6 k+1)(\bmod n) \\
& =18 k^{2}+15 k+2(\bmod 3 p) \text { since } n=3 p \\
& =18 k^{2}+15 k+2(\bmod 9 k+3) \text { since } p=3 k+1
\end{aligned}
$$

but

$$
\frac{18 k^{2}+15 k+2}{9 k+3}=2 k+1 \text { remainder }(-1)
$$

$$
\text { i.e. } 18 k^{2}+15 k+2 \equiv-1(\bmod 3 p)
$$

$$
=3 p-1
$$

Now we show that $(p+1)(3 p-1) \equiv(2 p-1)(\bmod n)$
We already have:

$$
(3 p-1) \equiv-1(\bmod 3 p)
$$

Hence,

$$
\begin{aligned}
& (p+1)(3 p-1) \equiv(p+1)(-1)(\bmod 3 p) \\
& =(-p-1)(\bmod 3 p) \\
& =3 p-p-1 \\
& =2 p-1
\end{aligned}
$$

Finally, we show that $(2 p-1)(3 p-1) \equiv(p+1)(\bmod n)$.
We have $(3 p-1) \equiv-1(\bmod 3 p)$
Hence,
$(2 p-1)(3 p-1) \equiv(2 p-1)(-1)(\bmod 3 p)$
$=(-2 p+1)(\bmod 3 p)$
$=3 p-2 p+1$
$=p+1$
Example 18. For $p=7, n=3 p=21$ and the triple is given by $(8,13,20)$.

$$
8 * 13=104 \equiv 20 \bmod (21)
$$

$8 * 20=160 \equiv 13 \bmod (21) 13 * 20=260 \equiv 8 \bmod (21)$
$8^{2} \equiv 13^{2} \equiv 20^{2} \equiv 1(\bmod 21)$
Case 2: If $p=3 k+2$, the triples are given by $(p-1,2 p+1,3 p$
-1)
Proof.
First, we show that $(p-1)(2 p+1)=(3 p-1)(\bmod n)$.
$(p-1)(2 p=1) \equiv(3 k+1)(6 k+5)(\bmod n)$
$=18 k^{2}+21 k+5(\bmod 3 p)$ since $n=3 p$
$=18 k^{2}+21 k+5(\bmod 9 k+6)$ since $p=3 k+1$
But
$\frac{18 k^{2}+21 k+5}{9 k+3}=2 k+1$ remainder (-1)
i.e.

$$
18 k^{2}+21 k+5 \equiv-1(\bmod 3 p)
$$

$=3 p-1$
Now we show that $(p-1)(3 p-1)=(2 p+1)(\bmod n)$
We already have $(3 p-1) \equiv-1(\bmod 3 p)$.
Hence,

$$
(p-1)(3 p-1) \equiv(p-1)(-1)(\bmod 3 p)
$$

$=(-p+1)(\bmod 3 p)$
$=3 p-p+1$
$=2 p+1$
Finally, we show that $(2 p+1)(3 p-1)=(p-1)(\bmod n)$

We have $(3 p-1) \equiv-1(\bmod 3 p)$.
Hence,
$(2 p+1)(3 p-1) \equiv(2 p+1)(-1)(\bmod 3 p)$
$=(-2 p-1)(\bmod 3 p)$
$=3 p-2 p-1$
$=p-1$
Example 19. For $p=5, n=p q=5 * 3=15$ and the triple is given by $(4,11,14)$

$$
\begin{gathered}
4 * 11=44 \equiv 14 \bmod (15) \\
4 * 14=56 \equiv 11 \bmod (15) \\
11 * 14=154 \equiv 4 \bmod (15) \\
4^{2} \equiv 11^{2} \equiv 14^{2} \equiv 1(\bmod 15)
\end{gathered}
$$

Proposition 20. If $n=5 p, p$ (prime) with $p>5$, for some $k \in \mathbb{N}, \mathbb{Z}_{n}^{*}$ has 4 possible cases of triple system;

Case 1. if $p=5 k+1$ the triple is $(2 p-1,3 p+1,5 p-1)$ e.g. for $p=11$, the triple is given by $(21,34,54), n=55 ; 21^{2} \equiv 34^{2} \equiv$ $54^{2} \equiv 1(\bmod 55)$.

Case 2. if $p=5 k+2$ the triple is $(p-1,4 p+1,5 p-1)$ e.g. for $p=$ 7 , the triple is given by $(6,29,34), n=35 ; 6^{2} \equiv 29^{2} \equiv 34^{2} \equiv$ $1(\bmod 35)$.

Case 3. if $p=5 k+3$ the triple is $(p+1,4 p-1,5 p-1)$ e.g. for $p=13$, the triple is given by $(14,51,64), n=65 ; 14^{2} \equiv 51^{2} \equiv$ $64^{2} \equiv 1(\bmod 65)$.

Case 4. if $p=5 k+4$ the triple is $(2 p+1,3 p-1,5 p-1)$ e.g. for $p=19$, the triple is given by $(39,56,94), n=95 ; 39^{2} \equiv 56^{2} \equiv$ $94^{2} \equiv 1(\bmod 95)$.

Proof. Similar to the proof of Proposition 17.
Proposition 21. If $n=7 p, p$ (prime) with $p>7$ for some
$k \in \mathbb{N}, \mathbb{Z}_{n}^{*}$ has 6 possible cases of triple system;
Case 1. if $p=7 k+1$ the triple is $(2 p-1,5 p+1,7 p-1)$ e.g. for $p=29$, the triple is given by $(57,146,202), n=203 ; 57^{2} \equiv$ $146^{2} \equiv 202^{2} \equiv 1(\bmod 203)$.

Case 2. if $p=7 k+2$ the triple is $(p-1,6 p+1,7 p-1)$ e.g. for $p=23$, the triple is given by $(22,139,160), n=161 ; 22^{2} \equiv$ $139^{2} \equiv 160^{2} \equiv 1(\bmod 161)$.

Case 3. if $p=7 k+3$ the triple is $(3 p-1,4 p+1,7 p-1)$ e.g. for $p=17$, the triple is given by $(50,69,118), n=119 ; 50^{2} \equiv$ $69^{2} \equiv 118^{2} \equiv 1(\bmod 119)$.
Case 4. if $p=7 k+4$ the triple is $(3 p+1,4 p-1,7 p-1)$ e.g. for $p=11$, the triple is given by $(34,43,76), n=77 ; 34^{2} \equiv 43^{2} \equiv$ $76^{2} \equiv 1(\bmod 77)$.

Case 5. if $p=7 k+5$ the triple is $(p+1,6 p-1,7 p-1)$ e.g. for $p=19$, the triple is given by $(20,113,132), n=133 ; 20^{2} \equiv$ $113^{2} \equiv 132^{2} \equiv 1(\bmod 133)$.

Case 6. if $p=7 k+6$ the triple is $(2 p+1,5 p-1,7 p-1)$ e.g. for $p=13$, the triple is given by $(27,64,90), n=91 ; 27^{2} \equiv 64^{2} \equiv$ $90^{2} \equiv 1(\bmod 91)$.

Proof. Similar to proof of Proposition 17.
Proposition 22. If $n=11 p, p$ (prime) with $p>11$ for some $k \in \mathbb{N}, \mathbb{Z}_{n}^{*}$ has 10 possible cases of triple system;

Case 1. if $p=11 k+1$ the triple is $(2 p-1,9 p+1,11 p-1)$ e.g. for $p=23$, the triple is given by $(45,208,252), n=253$; $45^{2} \equiv 208^{2} \equiv 252^{2} \equiv 1(\bmod 253)$.

Case 2. if $p=11 k+2$ the triple is $(p-1,10 p+1,11 p-1)$ e.g. for $p=13$, the triple is given by $(12,131,142), n=143$; $12^{2} \equiv 131^{2} \equiv 142^{2} \equiv 1(\bmod 143)$.

Case 3. if $p=11 k+3$ the triple is $(3 p+1,8 p-1,11 p-1)$ e.g. for $p=47$, the triple is given by $(142,375,516), n=517$; $142^{2} \equiv 375^{2} \equiv 516^{2} \equiv 1(\bmod 517)$.

Case 4. if $p=11 k+4$ the triple is $(5 p+1,6 p-1,11 p-1)$ e.g. for $p=37$, the triple is given by $(186,221,406), n=407$; $186^{2} \equiv 221^{2} \equiv 406^{2} \equiv 1(\bmod 407)$.

Case 5. if $p=11 k+5$ the triple is $(4 p+1,7 p-1,11 p-1)$ e.g. for $p=71$, the triple is given by $(285,496,780), n=781$; $285^{2} \equiv 496^{2} \equiv 780^{2} \equiv 1(\bmod 781)$.

Case 6. if $p=11 k+6$ the triple is $(4 p-1,7 p+1,11 p-1)$ e.g. for $p=17$, the triple is given by $(67,120,186), n=187$; $67^{2} \equiv 120^{2} \equiv 186^{2} \equiv 1(\bmod 187)$.

Case 7. if $p=11 k+7$ the triple is $(5 p-1,6 p+1,11 p-1)$ e.g. for $p=29$, the triple is given by $(144,175,318), n=319$; $144^{2} \equiv 175^{2} \equiv 318^{2} \equiv 1(\bmod 319)$.

Case 8. if $p=11 k+8$ the triple is $(3 p-1,8 p+1,11 p-1)$ e.g. for $p=19$, the triple is given by $(56,153,208), n=209$; $56^{2} \equiv 153^{2} \equiv 208^{2} \equiv 1(\bmod 209)$.

Case 9. if $p=11 k+9$ the triple is $(p+1,10 p-1,11 p-1)$ e.g. for $p=31$, the triple is given by $(32,309,340), n=341$; $32^{2} \equiv 309^{2} \equiv 340^{2} \equiv 1(\bmod 341)$.

Case 10. if $p=11 k+10$ the triple is $(2 p+1,9 p-1,11 p-1)$ e.g. for $p=43$, the triple is given by $(87,386,472), n=473$; $87^{2} \equiv 386^{2} \equiv 472^{2} \equiv 1(\bmod 473)$.

Proof. Similar to proof of Proposition 17.
Proposition 23. If $n=13 p, p$ (prime) with $p>13$ for some $k \in \mathbb{N}, \mathbb{Z}_{n}^{*}$ has 12 possible cases of triple system;
Case 1. if $p=13 k+1$ the triple is $(2 p-1,11 p+1,13 p-1)$ e.g. for $p=53$, the triple is given by $(105,584,688), n=689$; $105^{2} \equiv 584^{2} \equiv 688^{2} \equiv 1(\bmod 689)$.

Case 2. if $p=13 k+2$ the triple is $(p-1,12 p+1,13 p-1)$ e.g. for $p=41$, the triple is given by $(40,493,532), n=533$; $40^{2} \equiv 493^{2} \equiv 532^{2} \equiv 1(\bmod 533)$.

Case 3. if $p=13 k+3$ the triple is $(5 p-1,8 p+1,13 p-1)$ e.g. for $p=29$, the triple is given by $(144,233,376), n=377$; $144^{2} \equiv 233^{2} \equiv 376^{2} \equiv 1(\bmod 377)$.

Case 4. if $p=13 k+4$ the triple is $(6 p+1,7 p-1,13 p-1)$ e.g. for $p=17$, the triple is given by $(103,118,220), n=221$; $103^{2} \equiv 118^{2} \equiv 220^{2} \equiv 1(\bmod 221)$.

Case 5. if $p=13 k+5$ the triple is $(3 p-1,10 p+1,13 p-1)$ e.g. for $p=31$, the triple is given by $(92,311,402), n=403$; $92^{2} \equiv 311^{2} \equiv 402^{2} \equiv 1(\bmod 403)$.

Case 6. if $p=13 k+6$ the triple is $(4 p+1,9 p-1,13 p-1)$ e.g. for $p=19$, the triple is given by $(77,170,246), n=247$; $77^{2} \equiv 170^{2} \equiv 246^{2} \equiv 1(\bmod 247)$.

Case 7. if $p=13 k+7$ the triple is $(4 p-1,9 p+1,13 p-1)$ e.g. for $p=59$, the triple is given by $(235,532,766), n=767$; $235^{2} \equiv 532^{2} \equiv 766^{2} \equiv 1(\bmod 767)$.

Case 8. if $p=13 k+8$ the triple is $(3 p+1,10 p-1,13 p-1)$ e.g. for $p=47$, the triple is given by $(142,469,610), n=611$; $142^{2} \equiv 469^{2} \equiv 610^{2} \equiv 1(\bmod 611)$.

Case 9. if $p=13 k+9$ the triple is $(6 p-1,7 p+1,13 p-1)$ e.g. for $p=61$, the triple is given by $(365,428,792), n=793$; $365^{2} \equiv 428^{2} \equiv 792^{2} \equiv 1(\bmod 793)$.

Case 10. if $p=13 k+10$ the triple is $(5 p+1,8 p-1,13 p-1)$ e.g. for $p=23$, the triple is given by $(116,183,298), n=299$; $116^{2} \equiv 183^{2} \equiv 298^{2} \equiv 1(\bmod 299)$.

Case 11. if $p=13 k+11$ the triple is $(p+1,12 p-1,13 p-1)$ e.g. for $p=37$, the triple is given by $(38,443,480), n=481$; $38^{2} \equiv 443^{2} \equiv 480^{2} \equiv 1(\bmod 481)$.

Case 12. if $p=13 k+12$ the triple is $(2 p+1,11 p-1,13 p-$ 1) e.g. for $p=103$, the triple is given by $(207,1132,1338), n=$ $1339 ; 207^{2} \equiv 1132^{2} \equiv 1338^{2} \equiv 1(\bmod 1339)$.

Proof. Similar to proof of Proposition 17
Proposition 24. In the ring \mathbb{Z}_{n}^{*} for $n=p q$, where $p, q \in \mathbb{P}$, with $p>q$, the unit elements in \mathbb{Z}_{n}^{*} form $q-1$ triple systems for every $q \geq 3$. The triple system is of the form ($s p+1$, $[q-$ $s] p-1, q p-1$), with $1 \leq s \leq q-1$

The general form of the triples is given by;

$$
\begin{gathered}
(\mathrm{p} \quad+1,[q-1] p-1, p q-1) \\
(2 p+1,[q-2] p-1, p q-1) \\
(3 p+1,[q-3] p-1, p q-1)
\end{gathered}
$$

$$
([q-1] p+1, p-1, p q-1)
$$

Theorem 25. Consider the set \mathbb{Z}_{n}^{*}, for $n=p q, \quad p, q \in \mathbb{P}$, with $p>q>2$. We have 4 integer solutions satisfying $x^{2} \equiv 1(\bmod n)$, with 3 of the solutions forming a triple for each case of q.
Proof.
By Theorem 14, there are $2^{2}=4$ distinct solutions to the equation $x^{2} \equiv 1(\bmod n)$, for $n=p q$, with $p, q \in \mathbb{P}$ where $p>q>$ 2.

By Theorem 12, the solutions are of the form:
Case A: We have two trivial solutions that correspond to items (i) and (ii)
i. $x \equiv 1(\bmod p) \equiv 1(\bmod q) \Rightarrow x \equiv 1(\bmod p q)$
\{(i) represents the unit solution. The remaining 3 are non-unit solutions, which form the triple system\}
ii. $\quad x \equiv-1(\bmod p) \equiv-1(\bmod q) \Rightarrow x \equiv p q-1(\bmod p q)$

Case B: The non-trivial solutions correspond to items (iii) to $($ viii) iii. $x \equiv-1(\bmod p) \equiv 1(\bmod q)$ iv. $x \equiv 1(\bmod p) \equiv-1(\bmod$ q)
\Rightarrow There is exactly one triple system for each case of q.
Theorem 26. Consider the set \mathbb{Z}_{n}^{*} for $n=2^{m} p$, where p is an odd prime and $m \in \mathbb{N}$ with $m \geq 3$. The equation $x^{2} \equiv 1(\bmod n)$ has 8 distinct solutions.

Proof.

$x^{2} \equiv 1\left(\bmod 2^{m} p\right) \Rightarrow x^{2} \equiv 1\left(\bmod 2^{m}\right)$ and $x^{2} \equiv 1(\bmod p)$
We note that:
i. $\quad x^{2} \equiv 1\left(\bmod 2^{3}\right)$ has 4 solutions, namely $x \equiv$ $\pm 1, \pm 3\left(\bmod 2^{3}\right)$.
ii. $\quad x^{2} \equiv 1\left(\bmod 2^{4}\right)$ has 4 solutions, namely $x \equiv$ $\pm 1, \pm 7\left(\bmod 2^{4}\right)$.
iii. $\quad x^{2} \equiv 1\left(\bmod 2^{5}\right)$ has 4 solutions, namely $x \equiv$ $\pm 1, \pm 15\left(\bmod 2^{5}\right)$.
iv. $\quad x^{2} \equiv 1\left(\bmod 2^{6}\right)$ has 4 solutions, namely $x \equiv$ $\pm 1, \pm 31\left(\bmod 2^{6}\right)$.

By deductive reasoning, if $m \geq 3$ then, $x^{2} \equiv 1\left(\bmod 2^{m}\right)$ has exactly $2^{2}=4$ solutions
i.e. $x \equiv \pm 1, \pm\left(2^{m-1}-1\right)\left(\bmod 2^{m}\right)$.

If $x \equiv \pm 1\left(\bmod 2^{m}\right), x^{2} \equiv 1\left(\bmod 2^{m}\right)$.
If $x \equiv \pm\left(2^{m-1}-1\right)\left(\bmod 2^{m}\right), x^{2} \equiv 2^{2 m-2}\left(2^{m-1}\right)+1\left(\bmod 2^{m}\right)$

$$
\equiv 2^{m}\left(2^{m-2}\right)-2^{m}+1\left(\bmod 2^{m}\right)
$$

$\equiv 1\left(\bmod 2^{m}\right)$, since $m \geq 3$.
By Theorem 14, there are 2^{1} distinct solutions to the equation $x^{2} \equiv 1(\bmod p)$, with $p \in \mathbb{P}$ where $p \geq 3$. Combining with the results above, $x^{2} \equiv 1\left(\bmod 2^{m} p\right)$ has exactly $2^{2+1}=8$ solutions.

Table 1: Triple systems in $n=2^{m} p$

2^{m}	p	$n=$ $2^{m} p$	values of x satisfying $x^{2} \equiv 1($ mod $n)$						
2^{3}	3	24	5	7	11	13	17	19	23
2^{3}	5	40	9	11	19	21	29	31	39
2^{3}	7	56	13	15	27	29	41	43	55
2^{3}	11	88	21	23	43	45	65	67	87
2^{3}	13	104	25	27	51	53	77	79	103
2^{4}	3	48	7	17	23	25	31	41	47
2^{4}	5	80	9	31	39	41	49	71	79
2^{4}	7	112	15	41	55	57	71	97	111
2^{4}	11	176	23	65	87	89	111	153	175
2^{4}	13	208	25	79	103	105	129	183	207
2^{5}	3	96	17	31	47	49	65	79	95
2^{5}	5	160	31	49	79	81	111	129	159
2^{5}	7	224	15	97	111	113	127	209	223
2^{5}	11	352	65	111	175	177	241	287	351
2^{5}	13	416	79	129	207	209	287	337	415

2^{6}	3	192	31	65	95	97	127	161	191
2^{6}	5	320	31	129	159	161	191	289	319
2^{6}	7	448	97	127	223	225	321	351	447
2^{6}	11	704	65	287	351	353	417	639	703
2^{6}	13	832	12 9	287	415	417	545	703	831

From the table above, we pick 2 examples, from which we illustrate computational analysis for the triples of $n=2^{m} p$ for an odd prime p and $m \in \mathrm{~N}$ where $m \geq 3$ and fit the triples into Fano Planes.

Example 27. From the 7 non-unit solutions in Z_{24}, the triples are given by:
i. $\quad 5 * 7 \equiv 11(\bmod 24), 5 * 11 \equiv 7(\bmod 24), 7 * 11 \equiv$ $5(\bmod 24) \Rightarrow$ The triple is given by $(5,7,11)$
ii. $5 * 13 \equiv 17(\bmod 24), 5 * 17 \equiv 13(\bmod 24), 13 * 17 \equiv$ $5(\bmod 24) \Rightarrow$ The triple is given by $(5,13,17)$
iii. $\quad 5 * 19 \equiv 23(\bmod 24), 5 * 23 \equiv 19(\bmod 24), 19 * 23 \equiv$ $5(\bmod 24) \Rightarrow$ The triple is given by $(5,19,23)$
iv. $\quad 7 * 13 \equiv 19(\bmod 24), 7 * 19 \equiv 13(\bmod 24), 13 * 19 \equiv$ $7(\bmod 24) \Rightarrow$ The triple is given by $(7,13,19)$
v. $\quad 7 * 17 \equiv 23(\bmod 24), 7 * 23 \equiv 17(\bmod 24), 17 * 23 \equiv$ $7(\bmod 24) \Rightarrow$ The triple is given by $(7,17,23)$
vi. $11 * 13 \equiv 23(\bmod 24), 11 * 23 \equiv 13(\bmod 24), 13 * 23$ $\equiv 11(\bmod 24) \Rightarrow$ The triple is given by $(11,13,23)$
vii. $11 * 17 \equiv 19(\bmod 24), 11 * 19 \equiv 17(\bmod 24), 17 * 19$ $\equiv 11(\bmod 24)$
\Rightarrow The triple is given by $(11,17,19)$
Fitting the triples into a Fano plane we have:

Figure1:Fano Plane Structurefor \mathbb{Z}_{24}^{*}

Example 28. From the 7 non-unit solutions in Z_{80}, the triples are given by:
i. $\quad 9 * 31 \equiv 39(\bmod 80), 9 * 39 \equiv 31(\bmod 80), 31 * 39 \equiv$ $9(\bmod 80) \Rightarrow$ The triple is given by $(9,31,39)$
ii. $\quad 9 * 41 \equiv 49(\bmod 80), 9 * 49 \equiv 41(\bmod 80), 41 * 49 \equiv$ $9(\bmod 80) \Rightarrow$ The triple is given by $(9,41,49)$
iii. $\quad 9 * 71 \equiv 79(\bmod 80), 9 * 79 \equiv 71(\bmod 80), 71 * 79 \equiv$ $9(\bmod 80) \Rightarrow$ The triple is given by $(9,71,79)$
iv. $\quad 31 * 41 \equiv 71(\bmod 80), 31 * 71 \equiv 41(\bmod 80), 41 * 71$ $\equiv 31(\bmod 80) \Rightarrow$ The triple is given by $(31,41,71)$
V. $\quad 31 * 49 \equiv 79(\bmod 80), 31 * 79 \equiv 49(\bmod 80), 49 * 79$ $\equiv 31(\bmod 80) \Rightarrow$ The triple is given by $(31,49,79)$
vi. $\quad 39 * 41 \equiv 79(\bmod 80), 39 * 79 \equiv 41(\bmod 80), 41 * 79$ $\equiv 39(\bmod 80)$
\Rightarrow The triple is given by $(39,41,79)$
vii. $39 * 49 \equiv 71(\bmod 80), 39 * 71 \equiv 49(\bmod 80), 49 * 71$ $\equiv 39(\bmod 80)$
\Rightarrow The triple is given by $(39,49,71)$
Fitting the triples into a Fano plane we have:

Figure2:Fano Plane Structure for $\mathbb{Z}^{*} 80$

IV. CONCLUSION

In this paper, we have successfully proved that there exists no triples in \mathbb{Z}_{n}^{*}, for $n=p_{\text {and }} n=2 p, p \in \mathbb{P}$. Further, we have established the existence of triples in \mathbb{Z}_{n}^{*}, for $n=p q_{\text {and } n}$ $=2^{m} p$, where $m \in \mathbb{N}, p, q$ are odd primes with $p>q$. Finally, we have fitted the triples in $\mathbb{Z}_{n}^{*}, \quad n=2^{m} p$ into Fano Planes.

REFERENCES

[1] Doyen, J., \& Wilson, R. M. (1973). Embeddings of Steiner triple systems. Discrete Mathematics, 5(3), 229-239.
[2] Hung, S. H., \& Mendelsohn, N. S. (1973). Directed triple systems. Journal of Combinatorial Theory, Series A, 14(3), 310318.
[3] Johnson, S. J., \& Weller, S. R. (2001). Construction of lowdensity parity-check codes from Kirkman triple systems. In GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No. 01CH37270) (Vol. 2, pp. 970-974). IEEE.
[4] Lehmer, D. H., \& Lehmer, E. (1974). A new factorization technique using quadratic forms. MATHEMATICS of computation, 28(126), 625-635.
[5] Lu, J. X. (1983). On Large Sets of Disjoint Steiner Triple Systems I. J. Comb. Theory, Ser. A, 34(2), 140-146.
[6] Ramo, J. M. (2011). On structural aspects of finite simple groups of Lie type (Doctoral dissertation).
[7] Skolem, T. (1959). Some Remarks On The Triple Systems Of Steiner. Mathematica Scandinavica, 6(2), 273-280.

