
International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194 

www.rsisinternational.org Page 23 

 

Triple System and Fano Plane Structure in  

Dennis Kinoti Gikunda, Benard Kivunge 

Kenyatta University, Kenya

Abstract: - A triple system is an absolutely fascinating concept in 

projective geometry. This paper is an extension of previously 

done work on triple systems, specifically the triples that fit into a 

Fano plane and the (i, j, k) triples of the quaternion group. Here, 

we have explored and determined the existence of triple systems 

in  for n = p, n = pq and n = 2mp with m εN, p, qεℙ, and p > q, 

where N is the set of natural numbers, ℙ is the set of primes and 

 is the set of units in Zn. A triple system in  has been 

denoted by (k1,k2,k3) where there exists ki > 1, i = 1,2,3, such that 

ki
2 ≡ 1(mod n) with k1k2 ≡ k3(mod n), k1k3 ≡ k2 (mod n) and k2k3 ≡ 

k1 (mod n). We have also investigated the number of triples in  

and determined the general formula for getting the triples. 

Further, we have fitted the triples into Fano planes and 

established the projective geometry structure for the above 

defined . 
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I. INTRODUCTION 

ny natural number n can be expressed as a product of 

primes, for n ≠ 0,1. This implies that prime factors are 

the „building blocks‟ for any n ∈ N. Mathematician find 

delight in understanding the composition properties of the 

primes and try to figure out the structure of their sequence (if 

any exists). The nature of their existence makes them useful in 

puzzles, cryptography and generation of security codes. Any 

discovery of their nature is always a lead to new application. 

In recent years, mathematicians have made a considerably 

great progress in a sub-branch of mathematics that concern 

finite geometries. Herein, we find the concept of triple 

systems referring to a vector space V over a field K together 

with K- trilinear mapping V ⊗ V ⊗ V → V. Girard Desargues 

(1591 − 1661) discovered the projective geometry derived 

from Euclidean geometry, which involved 3- dimension finite 

geometry. An Italian mathematician, Gino Fano (1871 − 

1952) later discussed the 3-dimension finite geometry with 3 

points in each line and 7 points on each plane. The total 

number of points was 15, with 35 lines and 15 planes. The 3 

points on each line form unique triple systems. 

Another interesting triple is the (i,j,k) triples of the quaternion 

group, denoted by H = {±1,±i,±j,±k}. The discovery of H is 

quite a famous story in mathematics. William Rowen 

Hamilton, an Irish mathematician spent much of his life 

seeking a 3-dimension number system. On 16
th 

Oct 1843, he 

discovered the fundamental formula for quaternion (action on 

3D); 

i
2 
= j

2 
= k

2 
= ijk = −1, 

where i,j,k are imaginary points and 1 ∈ R. The equation 

above, satisfactorily linked the imaginary part to the 

commonly known real part. A very useful relationship of the 

i,j,k triples in H is also given by:  

ij = k = −ji, jk = i = −kj, ki = j = −ik. 

The main aspect of this research is the question, “how does 

the ring Z
*
n, n=p (prime), n = pq, n = 2

m
p, p > q for p,q ∈ ℙ, 

m ∈ N, connect to the concept of the triple systems in 

projective geometry?” 

II. PRELIMINARIES 

Definition 1. A geometry can be defined by a set G = (P,I), 

where P is the set of points and lines and I the incidence 

relation that is both reflective and symmetric. We say a point 

is incident to the line it lies on and two lines are incident only 

when they have all points in common. A relation R on a set A 

is called reflexive if (a,a) ∈ R holds for every element a ∈ A 

while a relation R on a set A is called symmetric if (b,a) ∈ R 

holds when (a,b) ∈ R. 

Definition 2. Let a triple G = (P,L,I) be a rank 2 geometry 

with P = set of points and L = set of lines. Any geometry 

satisfying the following axioms is a type of projective 

geometry. 

G1 : Any 2 distinct points are incident to a unique line. 

G2 : Any 2 lines on the plane meet. 

G3 : Any line is incident with at least 3 points. 

G4 : There are at least 2 lines. 

Definition 3. A projective space is a projection of a 2 - 

dimensional space to a 3 - dimensional space by adding a 

point at infinity so that there exists no parallel lines. A 

projective space with at least 2 lines, such that any 2 distinct 

lines are incident to a unique point is called a projective 

plane 

Definition 4. The order of a finite projective space is given 

by the number of points that are incident to each line, minus 

one. Any finite projective plane of order n contains n
2 

+ n + 1 

points. A Fano plane is the smallest finite projective plane. It 

is of order n = 2. the total number of points is 7. 

Definition 5. A Steiner system, denoted by S(t,k,v), is a set X 

of v points, and a collection of subsets of X of size k (called 

blocks), such that any t points of X are in exactly one of the 

A 
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blocks. The special case t = 2 and k = 3 corresponds to a so-

called Steiner triple system. 

Definition 6. Let n be any positive whole number, if 1 and n ≠ 

1 are the only factors of n, n is said to be a prime number, 

denoted by p. We will denote the set of prime numbers by ℙ. 

If n has more than 2 distinct factors, it is called a composite 

number. 

Definition 7. The expression x ≡ y (mod n) implies that n|(x-y) 

and is read as „x is congruent to y modulo n‟. In other words, x 

and y have the same remainders when divided by n. 

Definition 8. A ring is a non-empty set R with 2 binary 

operations + (addition) and · (multiplication) such that the 

following axioms are satisfied. 

R1 : (R,+) is an abelian group. i.e it satisfies the following 

axioms (G1 to G4). 

G1 : closure; ∀ a,b ∈ R : a + b = b + a ∈ R. 

G2 :  associativity; ∀ a,b,c ∈ R : (a + b) + c = a + (b + c). 

G3 : identity; ∃ 0R ∈ R : 0R + a = a = a + 0R. 

G4 : inverse; ∀ a ∈ R,∃ − a ∈ R : a + (−a) = 0R = (−a) + a 

R2 : multiplication is associative i.e. (a · b) · c = a · (b · c) ∀ 

a,b,c ∈ R. 

R3 : multiplication is distributive over addition i.e ∀ a,b,c ∈ R;  

a · (b + c) = a · b + a · c → left distributive law and  

(a + b) · c = a · c + b · c → right distributive law. 

Definition 9. Let (R,+,·) be a ring. Then the set of units for 

this ring is denoted by R∗; where the units are elements in R 

with multiplicative inverse. 

Definition 10. Let k ∈ Z
+
. Then Euler’s phi function ϕ(k) 

denotes the number of positive integers ≤ k and relatively 

prime to k. 

Theorem 11. (Euler’s Theorem) Given k ∈ N with (k, n) = 1, 

k
ϕ(n) 

≡ 1 (mod n). 

Theorem 12. Let gcd (p, q) = 1. Given a,b ∈ Z, the system of 

equations x ≡ a(mod p) and x ≡ b(mod q) has a unique 

solution for x ≡ (mod pq) 

Corollary 13. Let n1,n2,···,n3 be pairwise co-prime positive 

integers and x1,x2,···,xk be arbitrary integers. The system of 

simultaneous congruence a ≡ x1(mod n1), a ≡ x2(mod n2), ···, a 

≡ xk(mod nk) has a unique solution modulo n = n1n2 ...nk 

Theorem 14. If n is an odd number with 

 where p1, p2, ......., pr are distinct odd 

primes and ki > 0 for 1 ≤ i ≤ r, then the equation x
2 

≡ 1 (mod 

n) has exactly 2
r 
distinct solutions (mod n) 

Proof.  

Suppose , then 

. But since  are distinct 

primes,   only happens iff 

for all i, where 1 ≤ i ≤ r.  

But each of the congruences only has two solutions i.e. 

 

For each i, 1 ≤ i ≤ r, choose yi = ±1 and utilize the linear 

congruences system. 

 

By Theorem 12, the above system has a unique solution (

. 

Since we have 2 choices for each yi (namely ±1), and we have 

r congruences, then, the possible choices for y1 ... ,yr are 2
r 

Assuming that the 2
r 
choices of x are not distinct (mod n), i.e. 

x1 ≡ x2(mod n), then ) for all i. However, 

any 2 values of x are not congruent  for at 

least one i. Therefore, the above system of linear congruences 

has 2
r 

distinct solutions x(mod n). Any of the 2
r 

choices 

satisfies ) for 1 ≤ i ≤ r. Hence, there are 2
r 

distinct solutions to x ≡ 1(mod n).    

III. MAIN RESULTS 

Proposition 15. If p is prime, 1 and p − 1 are the only integers 

satisfying k
2
≡ 1(mod p) in the set  

Proof.  

BWOC, assume that 1 and p − 1 are not the only integers 

satisfying k
2 

≡ 1(mod p). Consider  with 

. Say ∃ another distinct element m 

with m ∈ {2, 3, ..., p − 2} such that m
2 
≡ 1(mod p). 

Now, m
2 
= ap + 1, (where a is a natural number). 

⇒ m
2 
− 1 = ap ⇒ p/(m

2 
− 1) ⇒ p/(m − 1)(m + 1) 

Since p is a prime, p/(m − 1) or p/(m + 1). But 1 ≤ m − 1 ≤ p − 

3 and 3 ≤ m+1 ≤ p−1. Hence p does not divide (m−1) or 

(m+1). Therefore, other than 1 and p − 1, ∄ integer satisfying 

k
2 
≡ 1(mod p). 

Proposition 16. Let n = 2p, p (prime), 1 and 2p − 1 are the 

only integers satisfying k
2 
≡ 1(mod 2p) in the set . 

Proof.  

BWOC, assume that 1 and 2p − 1 are not the only integers 

satisfying

. Suppose ∃ m ∈ {2, 3, ..., 2p − 2} such that m
2 

≡ 1(mod 2p) ⇒ 

m
2 

= (2p−1)
2 

= 4p
2 

−4p+1 = 1(mod 2p). We have, 2p/(4p
2 

−4p) 
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resulting to 2p − 2. Now, m
2 

= a(2p) + 1, where a is a natural 

number scalar. 

m
2 
− 1 = a(2p) ⇒ 2p/(m

2 
− 1) ⇒ 2p/(m − 1)(m + 1) 

Since p is prime, p must divide (m − 1) or (m + 1), which 

means that m ≡ ±1(mod p). Which is a contradiction, since, 

other than 1 and p − 1, there exists no other number with m ≡ 

±1(mod p). 

Proposition 17. If n = 3p, p (prime) with  has 2 

possible cases of triple system; 

Case 1 If p = 3k + 1, the triple system is given by (p + 1,2p − 

1,3p − 1) 

Proof. 

 First, we show that (p + 1)(2p − 1) ≡ (3p − 1)(mod n) 

(p + 1)(2p − 1) ≡ (3k + 2)(6k + 1) (mod n) 

= 18k
2 
+ 15k + 2 (mod 3p) since n = 3p 

= 18k
2 
+ 15k + 2 (mod 9k + 3) since p = 3k + 1 

but 

 

 

i.e. 18k
2 
+ 15k + 2 ≡ −1 (mod 3p) 

= 3p − 1 

Now we show that (p + 1)(3p − 1) ≡ (2p − 1)(mod n) 

We already have: 

(3p − 1) ≡ −1 (mod 3p) 

Hence, 

(p + 1)(3p − 1) ≡ (p + 1)(−1) (mod 3p) 

= (−p − 1) (mod 3p) 

= 3p − p − 1 

= 2p − 1 

Finally, we show that (2p − 1)(3p − 1) ≡ (p + 1)(mod n).  

We have (3p − 1) ≡ −1 (mod 3p) 

Hence, 

(2p − 1)(3p − 1) ≡ (2p − 1)(−1) (mod 3p) 

= (−2p + 1) (mod 3p) 

= 3p − 2p + 1 

= p + 1 

Example 18. For p = 7, n = 3p = 21 and the triple is given 

by (8,13,20). 

8 ∗ 13 = 104 ≡ 20 mod (21) 

8 ∗ 20 = 160 ≡ 13 mod (21) 13 ∗ 20 = 260 ≡ 8 mod (21) 

8
2 
≡ 13

2 
≡ 20

2 
≡ 1(mod 21)  

Case 2: If p = 3k + 2, the triples are given by (p − 1,2p + 1,3p 

− 1) 

Proof.  

First, we show that (p − 1)(2p + 1) = (3p − 1)(mod n). 

(p − 1)(2p = 1) ≡ (3k + 1)(6k + 5) (mod n) 

= 18k
2 
+ 21k + 5 (mod 3p) since n = 3p 

= 18k
2 
+ 21k + 5 (mod 9k + 6) since p = 3k + 1 

But 

 

i.e. 

18k
2 
+ 21k + 5 ≡ −1 (mod 3p) 

= 3p − 1 

Now we show that (p − 1)(3p − 1) = (2p + 1)(mod n) 

We already have (3p − 1) ≡ −1 (mod 3p). 

Hence, 

(p − 1)(3p − 1) ≡ (p − 1)(−1) (mod 3p) 

= (−p + 1) (mod 3p) 

= 3p − p + 1 

= 2p + 1 

Finally, we show that (2p + 1)(3p − 1) = (p − 1)(mod n)  

 

We have (3p − 1) ≡ −1 (mod 3p). 

Hence, 

(2p + 1)(3p − 1) ≡ (2p + 1)(−1) (mod 3p) 

= (−2p − 1) (mod 3p) 

= 3p − 2p − 1 

= p − 1 

Example 19. For p = 5, n = pq = 5 ∗ 3 = 15 and the triple is 

given by (4,11,14) 

4 ∗ 11 = 44 ≡ 14 mod (15) 

4 ∗ 14 = 56 ≡ 11 mod (15) 

11 ∗ 14 = 154 ≡ 4 mod (15) 

4
2 
≡ 11

2 
≡ 14

2 
≡ 1(mod 15) 

Proposition 20. If n = 5p, p (prime) with p > 5, for some 

 has 4 possible cases of triple system; 
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Case 1. if p = 5k + 1 the triple is (2p − 1, 3p + 1, 5p − 1) e.g. 

for p = 11, the triple is given by (21,34,54), n = 55; 21
2 
≡ 34

2 
≡ 

54
2 
≡ 1(mod 55). 

Case 2. if p = 5k +2 the triple is (p−1, 4p+1, 5p−1) e.g. for p = 

7, the triple is given by (6,29,34), n = 35; 6
2 

≡ 29
2 

≡ 34
2 

≡ 

1(mod 35). 

Case 3. if p = 5k + 3 the triple is (p + 1, 4p − 1, 5p − 1) e.g. 

for p = 13, the triple is given by (14,51,64), n = 65; 14
2 
≡ 51

2 
≡ 

64
2 
≡ 1(mod 65). 

Case 4. if p = 5k + 4 the triple is (2p + 1, 3p − 1, 5p − 1) e.g. 

for p = 19, the triple is given by (39,56,94), n = 95; 39
2 
≡ 56

2 
≡ 

94
2 
≡ 1(mod 95). 

Proof. Similar to the proof of Proposition 17.  

Proposition 21. If n = 7p, p(prime) with p > 7 for some 

 has 6 possible cases of triple system; 

Case 1. if p = 7k + 1 the triple is (2p − 1, 5p + 1, 7p − 1) e.g. 

for p = 29, the triple is given by (57,146,202), n = 203; 57
2 

≡ 

146
2 
≡ 202

2 
≡ 1(mod 203). 

Case 2. if p = 7k + 2 the triple is (p − 1, 6p + 1, 7p − 1) e.g. 

for p = 23, the triple is given by (22,139,160), n = 161; 22
2 

≡ 

139
2 
≡ 160

2 
≡ 1(mod 161). 

Case 3. if p = 7k + 3 the triple is (3p − 1, 4p + 1, 7p − 1) e.g. 

for p = 17, the triple is given by (50,69,118), n = 119; 50
2 

≡ 

69
2 
≡ 118

2 
≡ 1(mod 119). 

Case 4. if p = 7k + 4 the triple is (3p + 1, 4p − 1, 7p − 1) e.g. 

for p = 11, the triple is given by (34,43,76), n = 77; 34
2 
≡ 43

2 
≡ 

76
2 
≡ 1(mod 77). 

Case 5. if p = 7k + 5 the triple is (p + 1, 6p − 1, 7p − 1) e.g. 

for p = 19, the triple is given by (20,113,132), n = 133; 20
2 

≡ 

113
2 
≡ 132

2 
≡ 1(mod 133). 

Case 6. if p = 7k + 6 the triple is (2p + 1, 5p − 1, 7p − 1) e.g. 

for p = 13, the triple is given by (27,64,90), n = 91; 27
2 
≡ 64

2 
≡ 

90
2 
≡ 1(mod 91). 

Proof. Similar to proof of Proposition 17.  

Proposition 22. If n = 11p, p(prime) with p > 11 for some

 has 10 possible cases of triple system; 

Case 1. if p = 11k + 1 the triple is (2p − 1, 9p + 1, 11p − 1) 

e.g. for p = 23, the triple is given by (45,208,252), n = 253; 

45
2 
≡ 208

2 
≡ 252

2 
≡ 1(mod 253). 

Case 2. if p = 11k + 2 the triple is (p − 1, 10p + 1, 11p − 1) 

e.g. for p = 13, the triple is given by (12,131,142), n = 143; 

12
2 
≡ 131

2 
≡ 142

2 
≡ 1(mod 143). 

Case 3. if p = 11k + 3 the triple is (3p + 1, 8p − 1, 11p − 1) 

e.g. for p = 47, the triple is given by (142,375,516), n = 517; 

142
2 
≡ 375

2 
≡ 516

2 
≡ 1(mod 517). 

Case 4. if p = 11k + 4 the triple is (5p + 1, 6p − 1, 11p − 1) 

e.g. for p = 37, the triple is given by (186,221,406), n = 407; 

186
2 
≡ 221

2 
≡ 406

2 
≡ 1(mod 407). 

Case 5. if p = 11k + 5 the triple is (4p + 1, 7p − 1, 11p − 1) 

e.g. for p = 71, the triple is given by (285,496,780), n = 781; 

285
2 
≡ 496

2 
≡ 780

2 
≡ 1(mod 781). 

Case 6. if p = 11k + 6 the triple is (4p − 1, 7p + 1, 11p − 1) 

e.g. for p = 17, the triple is given by (67,120,186), n = 187; 

67
2 
≡ 120

2 
≡ 186

2 
≡ 1(mod 187). 

Case 7. if p = 11k + 7 the triple is (5p − 1, 6p + 1, 11p − 1) 

e.g. for p = 29, the triple is given by (144,175,318), n = 319; 

144
2 
≡ 175

2 
≡ 318

2 
≡ 1(mod 319). 

Case 8. if p = 11k + 8 the triple is (3p − 1, 8p + 1, 11p − 1) 

e.g. for p = 19, the triple is given by (56,153,208), n = 209; 

56
2 
≡ 153

2 
≡ 208

2 
≡ 1(mod 209). 

Case 9. if p = 11k + 9 the triple is (p + 1, 10p − 1, 11p − 1) 

e.g. for p = 31, the triple is given by (32,309,340), n = 341; 

32
2 
≡ 309

2 
≡ 340

2 
≡ 1(mod 341). 

Case 10. if p = 11k + 10 the triple is (2p + 1, 9p − 1, 11p − 1) 

e.g. for p = 43, the triple is given by (87,386,472), n = 473; 

87
2 
≡ 386

2 
≡ 472

2 
≡ 1(mod 473). 

Proof. Similar to proof of Proposition 17.  

Proposition 23. If n = 13p, p(prime) with p > 13 for some 

 has 12 possible cases of triple system; 

Case 1. if p = 13k + 1 the triple is (2p − 1, 11p + 1, 13p − 1) 

e.g. for p = 53, the triple is given by (105,584,688), n = 689; 

105
2 
≡ 584

2 
≡ 688

2 
≡ 1(mod 689). 

Case 2. if p = 13k + 2 the triple is (p − 1, 12p + 1, 13p − 1) 

e.g. for p = 41, the triple is given by (40,493,532), n = 533; 

40
2 
≡ 493

2 
≡ 532

2 
≡ 1(mod 533). 

Case 3. if p = 13k + 3 the triple is (5p − 1, 8p + 1, 13p − 1) 

e.g. for p = 29, the triple is given by (144,233,376), n = 377; 

144
2 
≡ 233

2 
≡ 376

2 
≡ 1(mod 377). 

Case 4. if p = 13k + 4 the triple is (6p + 1, 7p − 1, 13p − 1) 

e.g. for p = 17, the triple is given by (103,118,220), n = 221; 

103
2 
≡ 118

2 
≡ 220

2 
≡ 1(mod 221). 

Case 5. if p = 13k + 5 the triple is (3p − 1, 10p + 1, 13p − 1) 

e.g. for p = 31, the triple is given by (92,311,402), n = 403; 

92
2 
≡ 311

2 
≡ 402

2 
≡ 1(mod 403). 

Case 6. if p = 13k + 6 the triple is (4p + 1, 9p − 1, 13p − 1) 

e.g. for p = 19, the triple is given by (77,170,246), n = 247; 

77
2 
≡ 170

2 
≡ 246

2 
≡ 1(mod 247). 

Case 7. if p = 13k + 7 the triple is (4p − 1, 9p + 1, 13p − 1) 

e.g. for p = 59, the triple is given by (235,532,766), n = 767; 

235
2 
≡ 532

2 
≡ 766

2 
≡ 1(mod 767). 

Case 8. if p = 13k + 8 the triple is (3p + 1, 10p − 1, 13p − 1) 

e.g. for p = 47, the triple is given by (142,469,610), n = 611; 

142
2 
≡ 469

2 
≡ 610

2 
≡ 1(mod 611). 



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194 

www.rsisinternational.org Page 27 

 

Case 9. if p = 13k + 9 the triple is (6p − 1, 7p + 1, 13p − 1) 

e.g. for p = 61, the triple is given by (365,428,792), n = 793; 

365
2 
≡ 428

2 
≡ 792

2 
≡ 1(mod 793). 

Case 10. if p = 13k + 10 the triple is (5p + 1,8p − 1, 13p − 1) 

e.g. for p = 23, the triple is given by (116,183,298), n = 299; 

116
2 
≡ 183

2 
≡ 298

2 
≡ 1(mod 299). 

Case 11. if p = 13k + 11 the triple is (p + 1, 12p − 1, 13p − 1) 

e.g. for p = 37, the triple is given by (38,443,480), n = 481; 

38
2 
≡ 443

2 
≡ 480

2 
≡ 1(mod 481). 

Case 12. if p = 13k + 12 the triple is (2p + 1, 11p − 1, 13p − 

1) e.g. for p = 103, the triple is given by (207,1132,1338), n = 

1339; 207
2 
≡ 1132

2 
≡ 1338

2 
≡ 1(mod 1339). 

Proof. Similar to proof of Proposition 17  

Proposition 24. In the ring  for n = pq, where p, q ∈ ℙ, 

with p > q, the unit elements in  form q − 1 triple systems 

for every q ≥ 3. The triple system is of the form (sp + 1, [q − 

s]p − 1, qp − 1), with 1 ≤ s ≤ q − 1 

The general form of the triples is given by; 

(p + 1, [q – 1]p − 1, pq − 1) 

(2p + 1, [q – 2]p − 1, pq − 1) 

(3p + 1, [q – 3]p − 1, pq − 1) 

. 

. 

. 

([q− 1]p + 1, p − 1, pq − 1) 

Theorem 25. Consider the set 

, with p > q > 2. We have 4 

integer solutions satisfying x
2 

≡ 1(mod n), with 3 of the 

solutions forming a triple for each case of q. 

Proof.  

By Theorem 14, there are 2
2
=4 distinct solutions to the 

equation x
2 
≡ 1(mod n), for n = pq, with p,q ∈ ℙ where p > q > 

2.
 

By Theorem 12, the solutions are of the form: 

Case A: We have two trivial solutions that correspond to 

items (i) and (ii) 

i. x ≡ 1(mod p) ≡ 1(mod q) ⇒ x ≡ 1(mod pq) 

{(i) represents the unit solution. The remaining 3 are non-unit 

solutions, which form the triple system} 

ii. x ≡ −1(mod p) ≡ −1(mod q) ⇒ x ≡ pq − 1(mod pq) 

Case B: The non-trivial solutions correspond to items (iii) to 

(viii) iii. x ≡ −1(mod p) ≡ 1(mod q) iv. x ≡ 1(mod p) ≡ −1(mod 

q) 

 ⇒ There is exactly one triple system for each case of q.  

Theorem 26. Consider the set  for n = 2
m
p, where p is an 

odd prime and m ∈ ℕ with m ≥ 3. The equation x
2 

≡ 1(mod n) 

has 8 distinct solutions. 

Proof.  

x
2 
≡ 1(mod 2

m
p) ⇒ x

2 
≡ 1(mod 2

m
) and x

2 
≡ 1(mod p)  

We note that: 

i. x
2 
≡ 1(mod 2

3
) has 4 solutions, namely x ≡ 

±1,±3(mod 2
3
).  

ii. x
2 
≡ 1(mod 2

4
) has 4 solutions, namely x ≡ 

±1,±7(mod 2
4
).  

iii. x
2 
≡ 1(mod 2

5
) has 4 solutions, namely x ≡ 

±1,±15(mod 2
5
). 

iv. x
2 
≡ 1(mod 2

6
) has 4 solutions, namely x ≡ 

±1,±31(mod 2
6
). 

By deductive reasoning, if m ≥ 3 then, x
2 

≡ 1(mod 2
m
) has 

exactly 2
2 
= 4 solutions  

i.e. x ≡ ±1,±(2
m−1 

− 1)(mod 2
m
).  

If x ≡ ±1(mod 2
m
), x

2 
≡ 1(mod 2

m
). 

If x ≡ ±(2
m−1 

− 1)(mod 2
m
), x

2 
≡ 2

2m−2
(2

m−1
) + 1(mod 2

m
)  

≡ 2
m
(2

m−2
) − 2

m 
+ 1(mod 2

m
) 

≡ 1(mod 2
m
), since m ≥ 3. 

By Theorem 14, there are 2
1 

distinct solutions to the equation 

x
2 

≡ 1(mod p), with p ∈ ℙ where p ≥ 3. Combining with the 

results above, x
2 
≡ 1(mod 2

m
p) has exactly 2

2+1 
= 8 solutions. 

Table 1: Triple systems in n = 2
m
p 

2m p 
n = 

2mp 
values of x satisfying x2 ≡ 1(mod n) 

23 3 24 5 7 11 13 17 19 23 

23 5 40 9 11 19 21 29 31 39 

23 7 56 13 15 27 29 41 43 55 

23 11 88 21 23 43 45 65 67 87 

23 13 104 25 27 51 53 77 79 103 

          

24 3 48 7 17 23 25 31 41 47 

24 5 80 9 31 39 41 49 71 79 

24 7 112 15 41 55 57 71 97 111 

24 11 176 23 65 87 89 111 153 175 

24 13 208 25 79 103 105 129 183 207 

          

25 3 96 17 31 47 49 65 79 95 

25 5 160 31 49 79 81 111 129 159 

25 7 224 15 97 111 113 127 209 223 

25 11 352 65 111 175 177 241 287 351 

25 13 416 79 129 207 209 287 337 415 
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26 3 192 31 65 95 97 127 161 191 

26 5 320 31 129 159 161 191 289 319 

26 7 448 97 127 223 225 321 351 447 

26 11 704 65 287 351 353 417 639 703 

26 13 832 
12

9 
287 415 417 545 703 831 

 

From the table above, we pick 2 examples, from which we 

illustrate computational analysis for the triples of n = 2
m
p for 

an odd prime p and m ∈ N where m ≥ 3 and fit the triples into 

Fano Planes. 

Example 27. From the 7 non-unit solutions in Z24, the triples 

are given by: 

i. 5 ∗ 7 ≡ 11(mod 24), 5 ∗ 11 ≡ 7(mod 24), 7 ∗ 11 ≡ 

5(mod 24) ⇒ The triple is given by (5,7,11) 

ii. 5 ∗ 13 ≡ 17(mod 24), 5 ∗ 17 ≡ 13(mod 24), 13 ∗ 17 ≡ 

5(mod 24) ⇒ The triple is given by (5,13,17) 

iii. 5 ∗ 19 ≡ 23(mod 24), 5 ∗ 23 ≡ 19(mod 24), 19 ∗ 23 ≡ 

5(mod 24) ⇒ The triple is given by (5,19,23) 

iv. 7 ∗ 13 ≡ 19(mod 24), 7 ∗ 19 ≡ 13(mod 24), 13 ∗ 19 ≡ 

7(mod 24) ⇒ The triple is given by (7,13,19) 

v. 7 ∗ 17 ≡ 23(mod 24), 7 ∗ 23 ≡ 17(mod 24), 17 ∗ 23 ≡ 

7(mod 24) ⇒ The triple is given by (7,17,23) 

vi. 11 ∗ 13 ≡ 23(mod 24), 11 ∗ 23 ≡ 13(mod 24), 13 ∗ 23 

≡ 11(mod 24) ⇒ The triple is given by (11,13,23) 

vii. 11 ∗ 17 ≡ 19(mod 24), 11 ∗ 19 ≡ 17(mod 24), 17 ∗ 19 

≡ 11(mod 24) 

⇒ The triple is given by (11,17,19) 

Fitting the triples into a Fano plane we have: 

 

Figure1:Fano Plane Structurefor ℤ*
24 

Example 28. From the 7 non-unit solutions in Z80, the triples 

are given by: 

i. 9 ∗ 31 ≡ 39(mod 80), 9 ∗ 39 ≡ 31(mod 80), 31 ∗ 39 ≡ 

9(mod 80) ⇒ The triple is given by (9,31,39) 

ii. 9 ∗ 41 ≡ 49(mod 80), 9 ∗ 49 ≡ 41(mod 80), 41 ∗ 49 ≡ 

9(mod 80) ⇒ The triple is given by (9,41,49) 

iii. 9 ∗ 71 ≡ 79(mod 80), 9 ∗ 79 ≡ 71(mod 80), 71 ∗ 79 ≡ 

9(mod 80) ⇒ The triple is given by (9,71,79) 

iv. 31 ∗ 41 ≡ 71(mod 80), 31 ∗ 71 ≡ 41(mod 80), 41 ∗ 71 

≡ 31(mod 80) ⇒ The triple is given by (31,41,71) 

v. 31 ∗ 49 ≡ 79(mod 80), 31 ∗ 79 ≡ 49(mod 80), 49 ∗ 79 

≡ 31(mod 80) ⇒ The triple is given by (31,49,79) 

vi. 39 ∗ 41 ≡ 79(mod 80), 39 ∗ 79 ≡ 41(mod 80), 41 ∗ 79 

≡ 39(mod 80) 

⇒ The triple is given by (39,41,79) 

vii. 39 ∗ 49 ≡ 71(mod 80), 39 ∗ 71 ≡ 49(mod 80), 49 ∗ 71 

≡ 39(mod 80) 

⇒ The triple is given by (39,49,71) 

Fitting the triples into a Fano plane we have: 

 

Figure2:Fano Plane Structure for ℤ*80 

IV. CONCLUSION 

In this paper, we have successfully proved that there exists no 

triples in and n = 2p, p ∈ ℙ. Further, we have 

established the existence of triples in and n 

= 2
m
p, where m ∈ ℕ, p,q are odd primes with p > q. Finally, 

we have fitted the triples in  into Fano Planes. 



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue IV, April 2020|ISSN 2454-6194 

www.rsisinternational.org Page 29 

 

REFERENCES 

[1] Doyen, J., & Wilson, R. M. (1973). Embeddings of Steiner triple 

systems. Discrete Mathematics, 5(3), 229-239. 

[2] Hung, S. H., & Mendelsohn, N. S. (1973). Directed triple 
systems. Journal of Combinatorial Theory, Series A, 14(3), 310-

318. 

[3] Johnson, S. J., & Weller, S. R. (2001). Construction of low-
density parity-check codes from Kirkman triple systems. In 

GLOBECOM‟01. IEEE Global Telecommunications Conference 

(Cat. No. 01CH37270) (Vol. 2, pp. 970-974). IEEE. 

[4] Lehmer, D. H., & Lehmer, E. (1974). A new factorization 

technique using quadratic forms. MATHEMATICS of 

computation, 28(126), 625-635. 
[5] Lu, J. X. (1983). On Large Sets of Disjoint Steiner Triple Systems 

I. J. Comb. Theory, Ser. A, 34(2), 140-146. 

[6] Ramo, J. M. (2011). On structural aspects of finite simple groups 
of Lie type (Doctoral dissertation). 

[7] Skolem, T. (1959). Some Remarks On The Triple Systems Of 

Steiner. Mathematica Scandinavica, 6(2), 273-280. 

 


