
International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue V, May 2020|ISSN 2454-6194 

www.rsisinternational.org Page 18 
 

Analytical Expression of Surface Wave Elevation 

Using Homotopy Analysis Method 
Ejinkonye I.O. 

Department of Mathematics and Computer Science, Western Delta University, Oghara, Nigeria 

Abstract---This work focuses on the study of water wave 

equations which were solved by means of an analytic technique, 

namely the Homotopy Analysis Method (HAM).  HAM is a 

capable and straight forward analytic tool for solving nonlinear 

differential equations and does not require small/large 

parameters in the governing equations unlike other well-known 

analytic approach such as the perturbation method. Using HAM, 

we obtain an approximate solution to the governing Rogue wave 

equations. The free surface displacement  tx, and velocity 

potential,  tzx ,,  obtained are compared with similar results 

using higher order Stokes approximations. 
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I. INTRODUCTION 

1.   Rogue Wave Event  

Rogue waves (also known as freak waves, giant waves, killer 

waves, monster waves, and extreme waves) are large water 

waves with large amplitude that often surprisingly appear and 

disappear from nowhere, on the sea surface sometime 

unexpected. These large waves are often associated with 

ocean wave current, energy focusing [1]. These giant waves 

are thus, threat to ships, ocean liners and onshore engineering 

structures. As stated in [2], the rogue waves have been 

noticeable part of marine problem for centuries.  

[3-5] showed that the second order analytical models for the 

prediction of extreme event can also be derived by mean of 

the theory of quasi-determinism. The authors began from the 

general second order Stokes expansion (using perturbation 

method) of the surface displacement for long-crested waves, 

and should that the crest of the non-linear crest (trough) 

depends upon the initial crest (trough) amplitude.  

[6] showed that the number of rogue waves and their cause 

differs spatially and note that each location is likely to have its 

own unique sensitivities which increase in the coastal seas and 

they concluded that forecast able predictors of rogue wave 

occurrence will need to be location specific, reflecting their 

cause. 

[7] investigated the steady condition for the nonlinear 

interaction of two trains of propagating wave in deep water 

and obtained the solution for both resonant and non-resonant 

cases. By means of the analytical method called homotopy 

analysis method (HAM) developed in [7-11] a powerful 

analytic method for highly nonlinear problems. [12] 

considered the Hirota equation with fractional and integer-

order time derivatives respectively, and derived their exact or 

approximate analytic rogue wave solution using homotopy 

analysis method (HAM).  

In this work, we apply the homotopy analysis method (HAM) 

to the basic equations governing the dynamics of water waves 

to derive the mechanism for rogue wave generation.  

II.BASIC IDEA OF HOMOTOPY ANALYSIS METHOD 

(HAM) 

In this work, we use the homotopy analysis method (HAM) to 

solve the nonlinear partial differential equations. This method 

was proposed by a Chinese mathematician [Liao 1992]. We 

apply Liao’s basic ideas to the nonlinear differential equation. 

Here, the nonlinear boundary-value problem governed by the 

PDEs (1-4) is solved by means of the homotopy analysis 

method.  

To overcome the restrictions of perturbation methods and 

some additional non-perturbation techniques [7-11] developed 

an analytic technique for highly nonlinear problem, namely 

the homotopy analysis method (HAM). HAM gives us great 

freedom in the choice of the initial guess, the equation type of 

linear sub problems and basic functions of solution. 

III. THE MATHEMATICAL DESCRIPTION 

3.1 The Basic Equations Governing The Dynamics Of Water 

Waves  

 We first introduce the basic equations governing the 

dynamics of water waves. If we consider the nonlinear 

interaction of a train of progressive gravity waves of finite 

depth and assume that the fluid is inviscid and incompressible, 

the flow is irrotational and the surface tension is neglected. 

The x-axis positive in the direction of wave propagation and 

the z-axis points vertically upward from the still- water level, 

the problem is steady and is periodic in the x- variable. Let the 

vertical free surface displacement be  tx,  and the velocity 

potential  tzx ,, .
Both the velocity potential  tzx ,, and free 

surface displacement  tx,  have to satisfy the Laplace 

equation.  

  0,,2  tzx  txz ,                                       (1) 

The velocity potential is subject to the unknown  tx,  

free-surface boundary conditions. 
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 The solid boundary condition at the horizontal bottom is 

given as 

 
0

,,






z

tzx at dz                                         (4)   

where g is the acceleration of gravity. Although the governing 

equation (1) and the bottom boundary condition (4) are linear, 

the two nonlinear boundary conditions (2) and (3) are satisfied 

on the unknown free surface  tx, . Such nonlinear partial 

differential equations (PDEs) are difficult to solve in general, 

often with rather complicated solutions. In this work we apply 

the homotopy analysis method (HAM) to solve this boundary-

value problem with the nonlinear conditions with an unknown 

free surface displacement  tx, . 

3.3 Continuous Deformation 

To solve the nonlinear boundary-value problem governed by 

the PDEs equations (1-4) by means of HAM, we start with the 

following initial approximations.  Let  ,,,0 tzx  tx,0

denote the initial guesses of the velocity potential  tzx ,,  

and free surface displacement  tx,  respectively. Let 

 1,0p  denote an embedding parameter and let h  be the so-

called convergence-control parameter. Here, both p and h  are 

auxiliary parameter without physical meaning. Instead of 

solving the nonlinear PDEs in equation  (1-4) directly, we first 

construct a family (with respect to p) of PDEs about two 

continuous deformations  tzx ,, and  tx,  governed by 

the so-called zero-order deformation equations,  

   ptxzdptzx ;,0;,2            (5) 

subject to the two boundary conditions on the unknown free 

surface    ptxz :,  

         ptzxphNtzxxptzxLp ;,,,,;,,1 0  

                               (6)
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And the bottom condition  
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Where h is an auxiliary parameter and it is important to know 

that one has great freedom to choose auxiliary parameter h , L

is an auxiliary linear operator with the property

   andNL ,00  are nonlinear differential operators. If we 

choose our nonlinear operator to be  
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We choose the auxiliary linear operations as  
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Note that, the definitions of ,N  and L are based on the two 

boundary conditions equations (2) and (3) respectively.  

So when ,0p  the zeroth-order deformation equations (5-8) 

have the solution  

   tzxtzx ,,0;,, 0                                                     (12) 

   txtx ,00;, 0                                                     (13) 

 And when ,1p the zeroth–order deformation equations (5-

8) are equivalent to the original PDEs  

   tzxtzx ,,1;,,                                                      (14)
 

   txtx ,1;,                                    (15) 

 Therefore, as the embedding parameter  1,0p  increases 

from 0 to 1, );,,( ptzx  and  ptx ;,  very continuously 

from their initial guess solution  tzx ,,0  and   0,0 tx  to 

the exact velocity potential  tzx ,,  and the free surface 

displacement  tx,  respectively. So, the zero-order 

deformation equations (5-8) indeed construct two continuous 

deformation are called homotopy, expressed by  

     tzxtzxptzx ,,,,:;,, 0                     (16) 

     txtxptzx ,,:;,, 0                             
 (17) 

But the above two continuous deformation are also dependent 

upon the convergence-control parameter h , which has no 

physical meaning but provides a convenient way to guarantee 

the convergence of approximations. It is important to know 

that one has great freedom to choose auxiliary parameter h . 

Infact, it is the so-called convergence- control parameter h  

that differentiates, the HAM from all other analytic techniques 

as pointed by (Liao 2012). 
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Using Taylors theorem in equations (12) and (13), we expand 

 ptzx ;,,  and  ptzx ;,,  in the power series of p  as 

follows  
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 Using equation (14) and (15) and assuming that the 

convergence-control parameter h  is properly chosen so that 

the above series are convergent at ,1p  from (14) and (15) 

we have  
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 The unknown term    tzxn

o ,,  is governed by a linear 

PDE, and it is straight forward to obtain   txn ,0  as long as 

  tzxn ,,1

0

 is known. In this way, the original nonlinear 

PDEs (2-3) are transformed into an infinite number of linear 

PDEs. However, unlike perturbation techniques, such 

transformation in the context of the HAM does not need any 

small physical parameters.  

3.5 High Order Deformation Equation  

 Differentiating the zero-order deformation equations (5-8) m 

times with respect to p, them dividing them by m! and setting 

0p  we have the m
th

-order deformation equation  

002  zdm                       
 (24) 

Subject to the two boundary condition at 0z  
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and the bottom condition 
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Moreover, differentiating equations (6) and (7) m times with 

respect to the embedding parameter at 0p  we obtain the 

respective free-surface boundary conditions defined at 

 txz ,0 as  
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 Therefore substituting equations (31) and (32) into (29) we 

have  
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The boundary value problem at the m
th

-order approximation is 

defined by the governing equation (24) and the boundary 

conditions (27), (34) and (35). So  tzxn ,,  velocity 

potential and  txn ,  free surface displacement can be easily 

symbolically solved by the computer software 

MATHEMATICA and directly calculated from equations (34) 

and (35). From equation (35) we now successfully obtain the 

equations of  txn ,  free surface displacement from zero order 

to higher order as 

00                                                                       (36) 
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Therefore the summation free surface displacement i.e. 
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Where k is the wave number and in deep water  
,

2

g
k




  is 

the frequency. The coefficient a  is amplitude of the wave 

component.We should remember that both  tzx ,,  

velocity potential and  tx,  free surface displacement are 

dependent of  an auxiliary parameter which no physical 

meaning but it is convergence-control parameter. 

The necessary condition for the series to be convergent is 

11  h   i.e., 02  h  

It is interesting that the convergence region of the solution 

series depends upon the value of h. The closer the value of h  

( 02  h ) to zero, the larger the convergence region of the 

series. 

Physically, we found that, the higher order deformation 

equations of wave elevation satisfied the definition and 

characteristic of Rogue wave, for a fully developed Rogue 

wave system. 

 

Fig 1 surface wave elevation plot at 1h  

 

Fig 2 Comparison of the surface wave elevation 

2 2 4
t

30

20

10

10

20

30

40

x

2 2 4
t

30

20

10

10

20

30

40

x



International Journal of Research and Innovation in Applied Science (IJRIAS) | Volume V, Issue V, May 2020|ISSN 2454-6194 

www.rsisinternational.org Page 23 
 

Figure 2 is the Comparison between the analytic method, 

numerical result based on second order QD and the laboratory 

generated New Year Wave (Draupner wave). Red colour; 

analytic method, Green colour; Numerical result and Black 

colour; New Year Wave.  

The space-time evolution of the analytic surface wave has 

been studied and compared with the Draupner wave generated 

in a wave tank and second-order predictions of the QD (quasi 

determinism) theory [13]. It has been shown in fig.1 that the 

higher order deformation equation in equation (42) of wave 

profile predicts a Rogue wave, showing a wall of water 

appearing from nowhere. The analytic solution of the 

nonlinear wave group in time domain at different point close 

to x=0 has been carried out using equation (42). It shows that 

x=0 designates the location where the largest wave occurs, 

and symmetrical profile is obtained. Fig 2 demonstrates the 

comparison between the analytic methods, laboratory 

generated Draupner New Year Wave and second order free 

surface QD theory (Petrova et al. 2011). From the plot of the 

surface wave we concluded that the real Draupner wave 

cannot be the largest wave during the actual sea. We have 

shown that the analytic method can be used in describing the 

wave groups either in the space domain at any fixed time or in 

the time domain at any fixed point. The illustrative examples 

suggest that HAM is an efficient and exact method for 

nonlinear problems in many areas of science and engineering. 

V.  CONCLUSION 

Our interest in this investigation is to extend this expansion to 

higher order and observe the behaviour of surface profile. 

Firstly we start with zero order term of this solution of 

expression to the high order using HAM. Our aim is to study 

it’s effects in relation to observed wave height for rogue wave 

event. The deduction of higher order terms are not the 

interesting part of it, but it’s geophysical impart it will made 

on the development of rogue wave phenomenon.  

The usual appearance of waves with extreme high crest and 

deep trough can be initiated by the local intercrossing of a 

large number of quasi-monochromatic wave group with 

differing phases, wave numbers and the wave current 

interaction are effective mechanism capable of initiating 

rogue wave event. In this consideration and at the initial state 

of wave development in deep water short wave group are at 

the front of long wave group (wave packet). As time involves, 

the longer wave components with higher group velocity will 

overtake the shorter one. Consequently, the longer wave 

components will extract energy from the shorter components, 

thus it will grow in size. This study will eventually lead to 

significant understanding of the Evolution of this rogue wave 

event. 
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