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Abstract: Integral equations are playing an increasingly 
important role in obtaining the solution of many scientific and 
engineering problems such as determination of potentials, 
seismic travel time, optical fibers and system identification. In 
this paper, authors have solved linear second kind non-
homogeneous Volterra integral equations (V.I.E.) using Taylor 
series method. Authors have been considered three numerical 
examples for explaining the complete methodology. Results of 
numerical examples show that Taylor series method is very 
useful and effective numerical method for handling the problem 
of obtaining the primitives of linear second kind non-
homogeneous V.I.E. 
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I. INTRODUCTION 

ith the remarkable advancement in engineering, 
science, and technology, today more than ever before, 

the study of integral equations has become essential. For, to 
have an exhaustive understanding of subjects like waves and 
electromagnetic, chemistry, fluid dynamics, physics, statistics, 
mechanics, heat transfer, chemical science, mathematical 
biology, aerodynamics, electricity the knowledge of 
determining the solution to integral equations is absolutely 
necessary. These integral equations may be linear or 
nonlinear. Finding and interpreting the solutions of these 
integral equations is therefore a central part of applied 
mathematics and a thorough understanding of integral 
equations is essential for any scholars. Aggarwal with others 
[1-5] used different integral transformations for obtaining the 
solutions of V.I.E. of second kind. The primitives of first kind 
V.I.E. were obtained by Aggarwal et al. [6-11] by applying 
Laplace; Kamal; Mahgoub; Aboodh; Elzaki; Shehu integral 
transformations on them. Aggarwal and others scholars [12-
18] determined the exact solution of famous problem of 
mechanics (Abel’s problem) by applying Laplace; Kamal; 
Mohand; Aboodh; Sumudu; Shehu; Sadik integral 
transformations on it. This problem was a special case of 
V.I.E. 

The goal of this paper is to determine the solutions of linear 
second kind non-homogeneous V.I.E. by applying Taylor 
series method on them. 

II. POWER SERIES (TAYLOR SERIES) OF 
FREQUENTLY USED FUNCTIONS IN ENGINEERING 

AND MATHEMATICAL SCIENCE 
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III. METHOD OF TAYLOR’S SERIES FOR THE 
PRIMITIVE OF LINEAR SECOND KIND NON-

HOMOGENEOUS V.I.E. 

The linear second kind non-homogeneous V.I.E. is given by 
[19-21] 

𝜑(𝜏) = 𝑓(𝜏) + 𝛿 ∫ 𝐾(𝜏, 𝑡)𝜑(𝑡)𝑑𝑡
ఛ

଴
    (1) 

where 

 

𝜑(𝑡) = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑓(𝜏) = 𝑘𝑛𝑜𝑤𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)
𝛿 = 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝐾(𝜏, 𝑡) =  𝑘𝑒𝑟𝑛𝑒𝑙 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 ⎭
⎬

⎫
 

Suppose the solution 𝜑(𝜏) of equation (1) is analytic so it can 
be represent in the form of Taylor’s series as  

𝜑(𝜏) = ∑ 𝛽௡𝜏௡∞
௡ୀ଴       (2) 

Use equation (2) in equation (1), we have 

∑ 𝛽௡𝜏௡∞
௡ୀ଴ = 𝑇(𝑓(𝜏)) + 𝛿 ∫ 𝐾(𝜏, 𝑡)(∑ 𝛽௡𝑡௡∞

௡ୀ଴ )𝑑𝑡
ఛ

଴
    (3) 

where 𝑇(𝑓(𝜏)) is the Taylor series expansion of the function 
𝑓(𝜏).  

Equation (3) can be written as 

⎣
⎢
⎢
⎢
⎢
⎡
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+𝛽ଷ𝜏ଷ + ⋯ … … . .
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ఛ
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⎥
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⎤

    (4) 

On simplification, (4) gives a system of algebraic equations in 
terms of (𝛽଴, 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, … … … … ) . After solving this system, 
we get a chain of coefficients 
namely (𝛽଴, 𝛽ଵ, 𝛽ଶ, 𝛽ଷ, … … … … ) . The required solution of 
equation (1) may be obtained by using these coefficients in 
equation (2).  

Example: 3.1 Consider the following linear second kind non-
homogeneous V.I.E. 

𝜑(𝜏) = 1 + 𝜏 + ∫ (𝜏 − 𝑡)𝜑(𝑡)𝑑𝑡
ఛ

଴
    (5) 

Suppose the solution 𝜑(𝜏) of equation (5) is analytic so it can 
be represent in the form of Taylor’s series as  

𝜑(𝜏) = ∑ 𝛽௡𝜏௡∞
௡ୀ଴      (6) 

Use equation (6) in equation (5), we have 

∑ 𝛽௡𝜏௡∞
௡ୀ଴ = 1 + 𝜏 + ∫ (𝜏 − 𝑡)(∑ 𝛽௡𝑡௡∞

௡ୀ଴ )𝑑𝑡
ఛ

଴
  (7) 

 

Equation (7) can be written as 

቎

𝛽଴ + 𝛽ଵ𝜏 + 𝛽ଶ𝜏ଶ + 𝛽ଷ𝜏ଷ + ⋯ … … . .
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Now on simplification, (8) gives a system of following 
algebraic equations 

 

𝛽଴ = 1
𝛽ଵ = 1

𝛽ଶ = 𝛽଴ −
ఉబ

ଶ

𝛽ଷ =
ఉభ

ଶ
−

ఉభ

ଷ

𝛽ସ =
ఉమ

ଷ
−

ఉమ

ସ

𝛽ହ =
ఉయ

ସ
−

ఉయ

ହ ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

      (9) 

After solving the system (9), we get 

 

𝛽଴ = 1
𝛽ଵ = 1

𝛽ଶ =
ଵ

ଶ

𝛽ଷ =
ଵ

଺

𝛽ସ =
ଵ

ଶସ

𝛽ହ =
ଵ

ଵଶ଴⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

      (10) 

Using equation (10) in equation (6), we get the required 
solution of equation (5) given by 

𝜑(𝜏) = 1 + 𝜏 +
𝜏ଶ

2
+

𝜏ଷ

6
+

𝜏ସ

24
+

𝜏ହ

120
+ ⋯ … … = 𝑒ఛ. 

Example: 3.2 Consider the following linear second kind non-
homogeneous V.I.E. 

𝜑(𝜏) = 𝜏 − ∫ (𝜏 − 𝑡)𝜑(𝑡)𝑑𝑡
ఛ

଴
    (11) 

Suppose the solution 𝜑(𝜏) of equation (11) is analytic so it 
can be represent in the form of Taylor’s series as  

𝜑(𝜏) = ∑ 𝛽௡𝜏௡∞
௡ୀ଴      (12) 

Use equation (12) in equation (11), we have 

∑ 𝛽௡𝜏௡∞
௡ୀ଴ = 𝜏 − ∫ (𝜏 − 𝑡)(∑ 𝛽௡𝑡௡∞

௡ୀ଴ )𝑑𝑡
ఛ

଴
   (13) 
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Equation (13) can be written as 

቎

𝛽଴ + 𝛽ଵ𝜏 + 𝛽ଶ𝜏ଶ + 𝛽ଷ𝜏ଷ + ⋯ … … . .

= 𝜏 − ∫ (𝜏 − 𝑡) ൬
𝛽଴ + 𝛽ଵ𝑡

+𝛽ଶ𝑡ଶ + 𝛽ଷ𝑡ଷ + ⋯ … … . .
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ఛ

଴

቏  

⇒

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝛽଴ + 𝛽ଵ𝜏 + 𝛽ଶ𝜏ଶ + 𝛽ଷ𝜏ଷ + ⋯ … … . .

= 𝜏 − ቎𝜏 ቌ
𝛽଴𝜏 + 𝛽ଵ

ఛమ

ଶ

+𝛽ଶ
ఛయ

ଷ
+ 𝛽ଷ

ఛర

ସ
+ ⋯ … … . .

ቍ቏

+ ቎
𝛽଴

ఛమ

ଶ
+ 𝛽ଵ

ఛయ

ଷ

+𝛽ଶ
ఛర

ସ
+ 𝛽ଷ

ఛఱ

ହ
+ ⋯ … … .

቏

⎭
⎪
⎪
⎬

⎪
⎪
⎫

  (14) 

Now on simplification, (14) gives a system of following 
algebraic equations 

 

𝛽଴ = 0
𝛽ଵ = 1

𝛽ଶ = −𝛽଴ +
ఉబ

ଶ

𝛽ଷ = −
ఉభ

ଶ
+

ఉభ

ଷ

𝛽ସ = −
ఉమ

ଷ
+

ఉమ

ସ

𝛽ହ = −
ఉయ

ସ
+

ఉయ

ହ ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

      (15) 

After solving the system (15), we get 

 

𝛽଴ = 0
𝛽ଵ = 1
𝛽ଶ = 0

𝛽ଷ = −
ଵ

଺

𝛽ସ = 0

𝛽ହ =
ଵ

ଵଶ଴⎭
⎪
⎪
⎬

⎪
⎪
⎫

      (16) 

Using equation (16) in equation (2), we get the required 
solution of equation (11) given by 

𝜑(𝜏) = 0 + 1. 𝜏 + 0. 𝜏ଶ −
𝜏ଷ

6
+ 0. 𝜏ସ +

𝜏ହ

120
− ⋯ … …. 

= 𝜏 −
ఛయ

଺
+

ఛఱ

ଵଶ଴
− ⋯ … … … = 𝑠𝑖𝑛𝜏. 

Example: 3.3 Consider the following linear second kind non-
homogeneous V.I.E. 

𝜑(𝜏) = 2 + 2𝜏 − ∫ 𝜑(𝑡)𝑑𝑡
ఛ

଴
    (17) 

Suppose the solution 𝜑(𝜏) of equation (17) is analytic so it 
can be represent in the form of Taylor’s series as  

𝜑(𝜏) = ∑ 𝛽௡𝜏௡∞
௡ୀ଴      (18) 

Use equation (18) in equation (17), we have 

∑ 𝛽௡𝜏௡∞
௡ୀ଴ = 2 + 2𝜏 − ∫ (∑ 𝛽௡𝑡௡∞

௡ୀ଴ )𝑑𝑡
ఛ

଴
   (19) 

Equation (19) can be written as 

቎

𝛽଴ + 𝛽ଵ𝜏 + 𝛽ଶ𝜏ଶ + 𝛽ଷ𝜏ଷ + ⋯ … … . .

= 2 + 2𝜏 − ∫ ൬
𝛽଴ + 𝛽ଵ𝑡

+𝛽ଶ𝑡ଶ + 𝛽ଷ𝑡ଷ + ⋯ … … . .
൰ 𝑑𝑡

ఛ

଴

቏   

 ⇒

⎩
⎪
⎨

⎪
⎧ 𝛽଴ + 𝛽ଵ𝜏 + 𝛽ଶ𝜏ଶ + 𝛽ଷ𝜏ଷ + ⋯ … … . .

= 2 + 2𝜏 − ቎ቌ
𝛽଴𝜏 + 𝛽ଵ

ఛమ

ଶ

+𝛽ଶ
ఛయ

ଷ
+ 𝛽ଷ

ఛర

ସ
+ ⋯ … … . .

ቍ቏

⎭
⎪
⎬

⎪
⎫

  (20) 

Now on simplification, (20) gives a system of following 
algebraic equations 

 

𝛽଴ = 2
𝛽ଵ = 2 − 𝛽଴

𝛽ଶ = −
ఉభ

ଶ

𝛽ଷ = −
ఉమ

ଷ

𝛽ସ = −
ఉయ

ସ

𝛽ହ = −
ఉర

ହ ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

      (21) 

After solving the system (21), we get 

 

𝛽଴ = 2
𝛽ଵ = 0
𝛽ଶ = 0
𝛽ଷ = 0
𝛽ସ = 0
𝛽ହ = 0⎭

⎪
⎬

⎪
⎫

      (22) 

Using equation (22) in equation (18), we get the required 
solution of equation (17) given by 

𝜑(𝜏) = ൤ 2 + 0. 𝜏 + 0. 𝜏ଶ

+0. 𝜏ଷ + 0. 𝜏ସ + 0. 𝜏ହ + ⋯ … … . .
൨ = 2. 

IV. CONCLUSIONS 

In the present paper, authors fruitfully discussed the Taylor 
series method for determining the primitives of linear second 
kind non-homogeneous V.I.E. The complete methodology 
explained by taking numerical examples. Results of numerical 
examples depict that Taylor series method is very effective 
method for determining the primitives of linear second kind 
non-homogeneous V.I.E. without large computational work. 
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