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Abstract:-In this article a Lassa fever dynamics control that 

incorporates quarantine class is proposed. The population is sub-

divided into two sub population namely the human and rodent 

class. The human population was sub-divided into four sub-

classes: susceptible, 𝑺𝑯 𝒕 , infected, 𝑰𝑯 𝒕 , quarantine, 𝑸𝑯 𝒕  

and recovered, 𝑸𝑯 𝒕  humans while the rodent class is sub-

divided into susceptible, 𝑺𝑹 𝒕  and infected, 𝑰𝑹 𝒕 rodents. The 

Disease Free Equilibrium (DFE) was analysed and investigated 

using stability theory of differential equations. The sufficient 

condition for disease free equilibrium was checked using 

Jacobian matrix approach. It wasshown that the introduced 

quarantine parameter helps in controlling and eradication of 

Lassa fever virus in the population with respect to 

time.Numerical simulations were also carried out to investigate 

the influence of key parameters on the spread of the disease, 

especially the quarantine parameter to support the analytical 

conclusion and illustrate possible behavioural scenario of the 

model. 

Keywords: Lassa Fever, Quarantine Rate, Local Stability, Disease 

Free Equilibrium, Disease Endemic Equilibrium 

I. INTRODUCTION 

assa fever is a zoonotic disease, i.e. it can be transmitted 

from infected animal to a human. The natural Reservoir 

of the Lassa virus is Multi-mammate Rat species known as 

Mastomys Natalencesis [1, 2].  Because certain varieties of 

Mastomys often live in human homes, the virus is easily 

transmitted to humans.  Transmission occurs via direct contact 

with rat urine, faces, and saliva; via contact with excretion- or 

secretion-infected materials; or via ingestion of excretion-

contaminated food. Victims can also become infected via skin 

breaks, and via mucous membranes from aerosol transmission 

from dust-borne particles.  In some areas, the rodents are used 

as a food source, thus providing additional exposure to the 

infected rat blood. 

Okuonghae and Okuonghae [2] developed a Susceptible 

Infected Susceptible (SIS) model for the transmission of Lassa 

fever disease. The model investigated the equilibrium states 

and examined them for endemic and epidemic situations. The 

model further calculated the basic reproductive number and 

gave conditions for disease outbreak.  

In similar vein, a Susceptible Infected Recovered (SIR) model 

for controlling Lassa fever transmission in northern part of 

Edo state, Nigeria was developed. The model advocated for 

health policies that will keep the basic reproductive number, 

𝑅0below 1, thereby keeping the transmission of the disease 

under control [3, 4]. 

The Lassa fever model developed by [5] is a major shift from 

the first two papers cited. The researchers divided the human 

population into susceptible, 𝑆𝐻  and the infected, 𝐼𝐻  humans 

while the reservoir population was divided into infant, 𝑅𝐻and 

adult, 𝐴reservoir. The virus (generated from urine and faeces) 

in the environment was represented by V. The major 

parameters of their model are, 𝐻𝑏per capital birth rate of 

Human, 𝑅𝑏per capital birth rate of the reservoir, 𝑅 per capital 

natural death rate of Human, H per capital death rate of the 

reservoir, H Lassa fever induced death rate, 𝑅 mortality death 

of the reservoir due to hunting, effective contact rate for 

human, and effective contact rate between reservoir and 

human, recovery rate of infected human and progression rate 

from infant to adult reservoir. The model recommended that 

efforts should be made to keep the basic reproductive number 

below unity to ensure that the virus is contained [5, 6, 7]. 

It is against this framework that this research is aimed at 

modelling Lassa fever dynamics control incorporating 

quarantine. In this research, we introduce new variable called 

the quarantine class. By introducing the quarantine class, we 

succeeded in making the basic reproductive number below 

unity suggested by [5].  

II. MODEL FORMULATION 

Lassa fever models usually encompassed individuals who 

have not come into contact with the virus known as 

susceptible humans𝑆𝐻 𝑡 . The susceptible rodents 

𝑆𝑅 𝑡 become at the rate 𝜙 and infectious rodent infects 

human at the rate 𝜌 when they come into direct contact with 

the infected rodent, their urine, excreta or eating food 

contaminated by the infectious rodent’s saliva. The infected 

human are treated at the rate 𝛿 and some moved to the 

quarantine human class 𝑄𝐻 𝑡 at the rate 𝛼2. Those who are 

not aware of the treatment will be removed from the 

population through death at the rate 𝛼3. While the quarantine 

human class return to the susceptible human class at the rate 

𝛾1. The existence of region where the model is 

epidemiologically feasible is established. Stability analysis of 

the disease free equilibrium is investigated through the 

L 
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reproduction number obtained using the next generation 

operator approach.  

In this model, individuals are recruited into the susceptible 

population of human at the rate 𝜋and susceptible population 

of rodent at the rate 𝜂. The infection spread at the rate 𝑘, 

where  

𝑘 and is the probability of getting Lassa fever, 𝑐 is the contact 

rate. Both human and rodent die naturally at the rate 𝜇1 and 

𝜇2respectively. The total population of human and Rodent are 

given by 𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐼𝐻(𝑡) + 𝑄𝑅(𝑡) + 𝑅𝐻(𝑡) and 

𝑁𝑅(𝑡) = 𝑆𝑅(𝑡) + 𝐼𝑅(𝑡) respectively.  

𝑁 𝑡 = 𝑁𝑅 𝑡 + 𝑁𝑅 𝑡 = Total population size at time 𝑡. 

The table below shows the variables and parameters used in 

the new model. 

Table1: Model variables and parameters 
 

Variable Description 

𝑆𝐻 𝑡  Number of susceptible human at time 𝑡 

𝑆𝑅 𝑡  Number of susceptible rodent at time 𝑡 

𝐼𝐻 𝑡  Number of infected human at time 𝑡  

𝐼𝑅 𝑡  Number of infected rodent at time 𝑡 

𝑅𝐻 𝑡  Number of Recovered human at time 𝑡 

𝑄𝐻 𝑡  Number of quarantine at time 𝑡 

 

Parameter Description 

𝛽 Probability of getting Lassa fever infection 

𝜋 Recruitment rate into susceptible humans 

𝜇1 Natural death rate human 

𝜇2 Natural death rate rodent 

𝛼1 Progression rate to active Lassa fever 

𝛼2 Quarantine rate 

𝛼3 Treatment rate 

𝜔 Disease induced death rate of infected humans rate 

𝜌 Rate at which rodent infect humans 

𝜙 Rate at which susceptible rodents become infected 

𝜂 Recruitment rate into susceptible rodent 

𝑐 Contact rate 

𝛾1 
The rate at which susceptible removed humans 

become susceptible again 

 

The following diagram describes the dynamics of infection, 

and will be useful in the formulation of model equations. 

 

 

 

 

Figure 1: Flow diagram of the dynamics Lassa Fever 

III. ASSUMPTIONS OF THE MODEL 

The model assumptions include the following: 

1. Assume that some people are not aware of the 

presence of Lassa fever. 

2. We assume that treatment is given to only infected 

individuals. 

3. That all individuals have equal chance of being 

infected if they come in contact with infectious 

rodents. 

4. We assume that some infected humans move to the 

quarantine class before moving to the recovered 

class, this is due to the fact that disease is contagious. 

5. That all the recruits are neither immune nor infected. 
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6. Assume that Lassa fever can be contacted through 

urine, saliva and excreta from the infectious rodents. 

7. That despite the public health education campaigns, 

some people are still ignorant of the disease. 

8. We assume that the quarantine humans recovered. 

IV. THE MODEL EQUATIONS 

From the assumptions and the flow diagram above, the 

following model equations are derived. 

For the Human Populations:  

𝑑𝑆𝐻

𝑑𝑡
= 𝜋 + 𝜌𝐼𝑅 + 𝛾1𝑅𝐻 − 𝑘𝛼1𝑆𝐻 − 𝜇1𝑆𝐻   (1) 

𝑑𝐼𝐻

𝑑𝑡
= 𝑘𝛼1𝑆𝐻 − (𝜇1+𝛼2 + 𝜔)𝐼𝐻    (2) 

𝑑𝑄𝐻

𝑑𝑡
= 𝛼2𝐼𝐻 − (𝜇1+𝛼3)𝑄𝐻     (3) 

𝑑𝑅𝐻

𝑑𝑡
= 𝛼3𝑄𝐻 − (𝜇1+𝛾1)𝑅𝐻    (4) 

For the Rodent Populations: 

𝑑𝑆𝑅

𝑑𝑡
= 𝜂 − (𝜇2+𝜙)𝑆𝐻     (5) 

𝑑𝐼𝑅

𝑑𝑡
= 𝜙𝑆𝑅 − (𝜇2+𝜌)𝐼𝐻     (6) 

With initial conditions  

𝑆𝐻 𝑡 > 0, 𝐼𝐻 𝑡 > 0, 𝑄𝑅 𝑡 > 0, 𝑅𝐻 𝑡 = 0, 𝑆𝑅 𝑡 >

0, 𝐼𝑅 𝑡 > 0. The force of the infection 𝑘 =
𝛽𝑐𝐼

𝑁
 

 𝑁𝐻(𝑡) = 𝑆𝐻(𝑡) + 𝐼𝐻(𝑡) + 𝑄𝑅(𝑡) + 𝑅𝐻(𝑡)
𝑁𝐻(𝑡) = 𝑆𝑅(𝑡) + 𝐼𝑅(𝑡)

   (7)

 
𝑁(𝑡) = 𝑁𝐻(𝑡) + 𝑁𝑅(𝑡)    (8) 

V. MATHEMATICAL ANALYSIS OF THE MODEL 

Existence of the Disease Free Equilibrium (DFE), 𝐸𝑓  

In the absence of the disease, it implies that 𝐼𝐻 𝑡 =
0, 𝑄𝑅 𝑡 = 0, 𝑅𝐻 𝑡 = 0, 𝐼𝑅 𝑡 = 0.  

Therefore the above system of equations is reduced to   

𝑑𝑆𝐻

𝑑𝑡
= 𝜋 + 𝜇1𝑆𝐻      (9) 

𝑑𝑆𝑅

𝑑𝑡
= 𝜂 − (𝜇2+𝜙)𝑆𝐻     (10) 

hence letting equation (9) and (10) to zero and solving them 

simultaneously, we get   

𝑆𝐻 =
𝜋

𝜇1

, 𝑆𝑅 =
𝜋

𝜇2 + 𝜙
,  

hence,  

𝐸𝑓 =  𝑆𝐻 , 𝐼𝐻 , 𝑄𝐻 , 𝑅𝑅 , 𝑆𝑅 , 𝐼𝑅 =  
𝜋

𝜇1
, 0, 0, 0,

𝜋

𝜇2+𝜙
, 0  (11) 

Existence of the Endemic Equilibrium (EE) State 

Solving the system (1) – (7) simultaneously, we get 

𝑆𝐻
∗ =

𝑁 𝜇1+𝛼2+𝜔 

𝛽 𝜇2+𝜙 𝛼1
     (12) 

𝐼𝐻
∗ =

−1

 𝜇1 + 𝛼2 + 𝜔  𝜇2 + 𝜙  𝜌 + 𝜇2 𝛽𝑐𝛼1𝛼3

 

 

−𝜋 𝜇2 + 𝜙  𝜌 + 𝜇2 𝛽𝑐𝛼1𝛼3 −

𝜌𝛼3𝜙𝛽𝑐𝛼1 𝜇1 + 𝛼2 + 𝜔  𝜇2 + 𝜙  𝜌 + 𝜇2 𝛽𝑐𝛼1𝛼3𝜇1

+ 𝜇2 + 𝜙  𝜌 + 𝜇2  𝜇1 + 𝛾1 𝛽𝑐𝛼1𝛾1

  

                                                                                (13) 

𝐼𝐻
∗ = 0      (14) 

𝑄𝐻
∗ =

−1

 𝜇1 + 𝛼2 + 𝜔  𝜇2 + 𝜙  𝜌 + 𝜇2 𝛽𝑐𝛼1𝛼3

 

𝛼2  

−𝜋 𝜇2 + 𝜙  𝜌 + 𝜇2 𝛽𝑐𝛼1𝛼3 − 𝜌𝛼3𝜙𝛽𝑐𝛼1 + 

 𝜇1 + 𝛼2 + 𝜔  𝜇2 + 𝜙  𝜌 + 𝜇2 𝛽𝑐𝛼1𝛼3𝜇1

+ 𝜇2 + 𝜙  𝜌 + 𝜇2  𝜇1 + 𝛾1 𝛽𝑐𝛼1𝛾1

  

                                                            (15) 

𝑄𝐻
∗ = 0                                               (16) 

𝑅𝐻
∗ =

 𝜇1+𝛾1 

𝛼3
     (17) 

𝑆𝑅
∗ =

𝜂

 𝜇2+𝜙 
     (18) 

𝐼𝑅
∗ =

𝜂𝜙

 𝜇2+𝜙  𝜌+𝜇2 
     (19) 

VI. COMPUTATION OF THE BASIC REPRODUCTIVE 

NUMBER  𝑅0  OF THE MODEL 

The Basic Reproductive number  𝑅0  is define as the number 

of secondary infections that one infectious individual would 

create over the duration of the infectious period, provided that 

everyone else is susceptible. 𝑅0 = 1 is a threshold below 

which the generation of secondary cases is insufficient to 

maintain the infection in human community. If 𝑅0 < 1, the 

number of infected individuals will decrease from generation 

to next and the disease dies out and if 𝑅0 > 1 the number of 

infectedindividuals will increase from generation to the next 

and the disease will persist [10] 

We first rearranged the model equations (1) – (7) beginning 

with the infective classes to obtain the following equations 

below: 

𝑑𝐼𝐻

𝑑𝑡
= 𝑘𝛼1𝑆𝐻 − (𝜇1+𝛼2 + 𝜔)𝐼𝐻    (20) 

𝑑𝐼𝑅

𝑑𝑡
= 𝜙𝑆𝑅 − (𝜇2+𝜌)𝐼𝐻     (21) 

𝑑𝑄𝐻

𝑑𝑡
= 𝛼2𝐼𝐻 − (𝜇1+𝛼3)𝑄𝐻     (22) 

𝑑𝑅𝐻

𝑑𝑡
= 𝛼3𝑄𝐻 − (𝜇1+𝛾1)𝑅𝐻    (23) 

𝑑𝑆𝑅

𝑑𝑡
= 𝜂 − (𝜇2+𝜙)𝑆𝐻     (24) 

𝑑𝑆𝐻

𝑑𝑡
= 𝜋 + 𝜌𝐼𝑅 + 𝛾1𝑅𝐻 − 𝑘𝛼1𝑆𝐻 − 𝜇1𝑆𝐻   (25) 
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To compute the basic reproductive number  𝑅0  of the model 

(1) – (7), we employ the next generation method as applied in 

Diekmann et al. [10] .From equations (1) – (7), using their 

approached we have that 

ℱ𝑖 =

 

  
 

𝑘𝛼1𝑆𝐻

0
0
0
0
0  

  
 

     (26) 

and 

𝒱𝑖 =

 

 
 
 
 

(𝜇1+𝛼2 + 𝜔)𝐼𝐻
−𝜙𝑆𝑅 + 𝜇2+𝜌)𝐼𝐻

−𝛼2𝐼𝐻 + (𝜇1+𝛼3)𝑄𝐻

−𝛼3𝑄𝐻 + (𝜇1+𝛾1)𝑅𝐻

– 𝜂 + (𝜇2+𝜙)𝑆𝐻

−𝜋 − 𝜌𝐼𝑅 − 𝛾1𝑅𝐻 + 𝑘𝛼1𝑆𝐻 + 𝜇1𝑆𝐻 

 
 
 
 

 ` (27) 

where, ℱ𝑖  and 𝒱𝑖  are the rate of appearances of new infections 

in compartment 𝑖 and the transfer of individuals into and out 

of compartment 𝑖 by all other means respectively. Using the 

linearization method, the associated matrices at disease-free 

equilibrium (𝐸0) and after taking partial derivatives as defined 

by  

𝒟ℱ𝑖 𝐸0 =  
𝐹 0
0 0

 and 𝒟𝒱𝑖 𝐸0 =  
𝑉 0
𝐽3 𝐽4

  

where𝐹 is nonnegative and 𝑉 is a non-singular matrix, in 

which both are the 𝑚 ×  𝑚 matrices defined by 

𝐹 =  
𝜕ℱ𝑖

𝜕𝑥 𝑗
 𝐸𝑓  and 𝑉 =  

𝜕𝒱𝑖

𝜕𝑥 𝑗
 𝐸𝑓  , with 1 ≤ 𝑖, 𝑗 ≤ 𝑚and 𝑚 is 

the number of infected classes. In particular 𝑚 = 3, we have 

𝐹𝑉−1 =  

𝛽𝑐𝛼1𝜋

𝜇1𝑁(𝜇1+𝛼2+𝜔)
0 0

0 0 0
0 0 0

    (28) 

 𝐹𝑉−1 − 𝜆 =  

𝛽𝑐𝛼1𝜋

𝜇1𝑁(𝜇1+𝛼2+𝜔)
− 𝜆 0 0

0 −𝜆 0
0 0 −𝜆

 = 0 (29) 

And characteristics polynomial of equation (29) is given as  

𝜆3 +
𝛽𝑐 𝛼1𝜋

𝜇1𝑁(𝜇1+𝛼2+𝜔)
𝜆2 = 0    (30)

      

and the eigenvalues is given by 

𝜆1 = 0, 𝜆2 = 0, 𝜆3 =
𝛽𝑐𝛼1𝜋

𝜇1𝑁(𝜇1+𝛼2+𝜔)
   (31) 

The most positive eigenvalues being the   𝜆2 is the Basic 

Reproduction Number (𝑅0) 

Hence, we have          

𝑅0 =
𝛽𝑐 𝛼1𝜋

𝜇1𝑁(𝜇1+𝛼2+𝜔)
    (32) 

VII. STABILITY ANALYSIS OF DISEASE FREE 

EQUILIBRIUM STATE 𝐸0  

To study the behaviour of the system (1) – (7) around the 

disease-free equilibrium state 

𝐸𝑓 =  
𝜋

𝜇1
, 0, 0, 0,

𝜋

𝜇2+𝜙
, 0 , we resort to the linearized stability 

approach.  

Let   

𝑓1 = 𝜋 + 𝜌𝐼𝑅 + 𝛾1𝑅𝐻 − 𝑘𝛼1𝑆𝐻 − 𝜇1𝑆𝐻   (33) 

𝑓2 = 𝑘𝛼1𝑆𝐻 − (𝜇1+𝛼2 + 𝜔)𝐼𝐻    (34) 

𝑓3 = 𝛼2𝐼𝐻 − (𝜇1+𝛼3)𝑄𝐻     (35) 

𝑓4 = 𝛼3𝑄𝐻 − (𝜇1+𝛾1)𝑅𝐻     (36) 

𝑓5 = 𝜂 − (𝜇2+𝜙)𝑆𝐻     (37) 

𝑓6 = 𝜙𝑆𝑅 − (𝜇2+𝜌)𝐼𝐻     (38) 

The Jacobian(𝐽𝐸𝑓
) is given by  

(𝐽𝐸𝑓
) =

 

 
 
 
 
 

−𝜇1 𝜌 −
𝛽𝑐𝛼1𝜋

𝜇1𝑁
0 0 0 𝛾1

0 − 𝜇1 + 𝛼2 + 𝜔 +
𝛽𝑐𝛼1𝜋

𝜇1𝑁
0 0 0 0

0 𝛼2 − 𝜇1 + 𝛼3 0 0 0

0 0 0 − 𝜇2 + 𝜙 0 0

0 0 0 𝜙 − 𝜇2 + 𝜌 0

0 0 𝛼3 0 0 − 𝜇1 + 𝛾1  

 
 
 
 
 

                                                                          (39) 

Rewriting the matrix (39), we get 

 

(𝐽𝐸𝑓
) =

 

 
 
 
 
 

−𝜇1 𝜌 −
𝛽𝑐𝛼1𝜋

𝜇1𝑁
0 0 0 𝛾1

0 −𝐴 +
𝛽𝑐𝛼1𝜋

𝜇1𝑁
0 0 0 0

0 𝛼2 −𝐵 0 0 0
0 0 0 −𝐷 0 0
0 0 0 𝜙 −𝐸 0
0 0 𝛼3 0 0 −𝐹 

 
 
 
 
 

    (40) 

The determinant and the trace of matrix  𝐽𝐸𝑓
 represented by 

equation (40) above is given 

 

𝐷𝑒𝑡  𝐽𝐸𝑓
 =

 𝐴𝑁−𝛽𝑐𝜋 𝛼1 𝐷𝐹𝜇1𝐵𝐸

𝑁
   (41) 

𝑇𝑟𝑎𝑐𝑒  𝐽𝐸𝑓
 = − 𝜇1 + 𝐴 −

𝛽𝑐 𝛼1𝜋

𝜇1𝑁
+ 𝐵 + 𝐷 + 𝐸 + 𝐹   (42) 

 

where, 

 
𝐴 =  𝜇1 + 𝛼2 + 𝜔 , 𝐵 =  𝜇1 + 𝛼3 

  𝐷 =  𝜇2 + 𝜙 , 𝐸 =  𝜇2 + 𝜌 , 𝐹 =  𝜇1 + 𝛾1 
  (43) 
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Theorem 1 

The disease free equilibrium state  𝐸𝑓 =  
𝜋

𝜇1
, 0, 0, 0,

𝜋

𝜇2+𝜙
, 0  

of the model (33) – (38) is locally asymptotically stable if 

𝑅0 < 1 otherwise 𝐸𝑓  is unstable. 

Proof: 

The Jacobian matrix of the system (33) – (38) is given by 

equation (40) above. If the Jacobian matrix is evaluated at the 

disease-free equilibrium state, then the required criteria for 

stable equilibrium are that the Determinant of the 

Jacobian 𝐽𝐸𝑓
 is positive and the Trace of the Jacobian 𝐽𝐸𝑓

 is 

negative.  

From the determinant of the Jacobian matrix above given in 

equation (41) we have that  

 

𝐷𝑒𝑡  𝐽𝐸𝑓
 =

 𝐴𝑁−𝛽𝑐𝜋 𝛼1 𝐷𝐹𝜇1𝐵𝐸

𝑁
   (44) 

𝐷𝑒𝑡  𝐽𝐸𝑓
 =

   𝜇1+𝛼2+𝜔 𝑁−𝛽𝑐𝜋 𝛼1  𝜇2+𝜙  𝜇1+𝛾1  𝜇2+𝜌  𝜇1

𝑁

  

or     

𝐷𝑒𝑡  𝐽𝐸𝑓
 =

  𝜇1+𝛼2+𝜔 𝑁𝜇1−𝛽𝑐𝜋 𝛼1𝜇1   𝜇2+𝜙  𝜇1+𝛾1  𝜇2+𝜌 𝜇1 

𝑁

                                              (45) 

Expressing the determinant in terms of R0, notice that  

𝜇1𝑁(𝜇1 + 𝛼2 + 𝜔) =
𝛽𝑐𝛼1𝜋

𝑅0
   (46) 

using equation (46) into (45) we get 

𝐷𝑒𝑡  𝐽𝐸𝑓
 =

 
𝛽𝑐 𝛼1𝜋

𝑅0
−𝛽𝑐𝜋 𝛼1𝜇1   𝜇2+𝜙  𝜇1+𝛾1  𝜇2+𝜌 𝜇1 

𝑁
> 0, if 

𝑅0 < 1  

                                                                                      (47) 

Similarly, the Trace of the Jacobian Matrix (𝑱𝑬𝒇
)is given by  

 

𝑇𝑟𝑎𝑐𝑒  𝐽𝐸𝑓
 = − 

𝜇1 +  𝜇1 + 𝛼2 + 𝜔 

−
𝛽𝑐𝛼1𝜋

𝜇1𝑁
+  𝜇1 + 𝛼3 +  𝜇2 + 𝜙 

+ 𝜇2 + 𝜌 +  𝜇1 + 𝛾1 

 

                                (48) 

Expressing the trace in terms of R0 and substituting into (48) 

we get 

𝑇𝑟𝑎𝑐𝑒  𝑱𝑬𝒇
 = − 

𝜇1 +  𝜇1 + 𝛼2 + 𝜔 

−𝜇1𝑁 𝜇1 + 𝛼2 + 𝜔 𝑅0 +  𝜇1 + 𝛼3 

+ 𝜇2 + 𝜙 +  𝜇2 + 𝜌 +  𝜇1 + 𝛾1 
 <

0,  if𝑅0 < 0                                                          (49) 

Since 𝑑𝑒𝑡 𝑱𝑬𝟎
 > 0 and 𝑇𝑟𝑎𝑐𝑒 𝑱𝑬𝟎

 < 0 under the prescribed 

threshold conditions, then the disease free equilibrium  𝑬𝟎 is 

locally asymptotically stable. 

VIII. RESULTS 

Numerical Experiments of the Model 

The age-structured deterministic model (1)–(6) was solved 

numerically using Runge-Kutta-Fehllberg 4-5th order method 

and implemented using Maple 17 Software (Maplesoft, 

Waterloo Maple Inc, 2012). The model equations were first 

transformed into proportions, thus reducing the model 

equations to six differential equations. The parameters used in 

the implementation of the model are shown in Table 2 below. 

Parameters were chosen in consonance with the threshold 

values obtained in the stability analysis of the disease free 

equilibrium state of the model. We used the estimated values 

of the parameters used by [5, 7, 8] in the numerical 

experiments. 

List of Numerical Experiments 

(1) The effect of treatment when on the infected 

population when the quarantine rate is constant 

(2) The effect of quarantine rate on the infected 

population when contact rate is constant. 

(3) The effect of quarantine rate on the infected 

population with treatment rate when contact rate is 

constant 

(4) The effect of quarantine rate on the recovered 

population contact rate is constant 

Graphical Presentation of Results 

Experiment 1: The effect of treatment when on the infected 

population when the contact rate is constant 

 

Figure 2Graph showing the effect treatment when on the infected population 

at low and high (𝜶𝟏 = 𝟎. 𝟎𝟑, 𝜶𝟏 = 𝟎. 𝟎, 𝒄 = 𝟎. 𝟎𝟎𝟎𝟏𝟖)when the contact rate 
is constant 
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Experiment 2: The effect of quarantine rate on the infected 

population when contact rate is constant 

 

Figure 3Graph showing the effect quarantine on the infected population when 

the quarantine rate is constant (𝜶𝟐 = 𝟎. 𝟏. 𝟎, 𝜶𝟐 = 𝟎. 𝟎𝟎𝟖, 𝒄 = 𝟎. 𝟎𝟎𝟎𝟏𝟖) 

Experiment 3: The effect of quarantine rate and treatment 

rate on the infected population when contact rate is constant 

 

Figure 4Graph showing the effect quarantine and treatment rate when the 

quarantine rate is constant (𝜶𝟐 = 𝟎. 𝟎𝟎𝟎𝟓, 𝜶𝟐 = 𝟎. 𝟓, 𝒄 = 𝟎. 𝟎𝟎𝟎𝟏𝟖) 

Experiment 4: The effect of quarantine rate on the recovered 

population contact rate is constant 

 
Figure 5: Graph showing the effect quarantine rate on recovered population 

when the quarantine rate is constant (𝜶𝟑 = 𝟎. 𝟎𝟎𝟎𝟓, 𝜶𝟑 = 𝟎. 𝟓, 𝒄 =
𝟎. 𝟎𝟎𝟎𝟏𝟖) 

IX. DISCUSSION OF RESULTS 

Figure 2 shows that, infected human population decreased 

initially due to quarantine rate and it shows more impact when 

the quarantine rate is increased despite the increased in the 

contact rate, but the infected population increase with respect 

to time when less people are treated and quarantined and more 

people get infected. Figure 3 shows that, treated human 

population was zero initially and increased to a certain point 

with respect to time due to the awareness programs and 

treated rate and then drop as treated human recovered which 

lead to the increment in susceptible population of human. 

Figure 4 shows that the infected human population increase 

initially and drop drastically with respect to time due to high 

quarantine rate and death rate due to the disease. Figure 5 

shows the effect of treatment rate on the quarantine 

population, it is observed from the graph that increment in 

treatment rate lead to the increment in the recovered 

population. 

Our results agree with [8, 9] results which asserted that as 

time decreases, infected human increases which decrease the 

rate at which people are susceptible to the disease. But treated 

human increases slightly and decrease as time increases which 

lead to the increase in the susceptible population of human. 

The susceptible rodent decreases as the infected rodent 

increases while removed human increase slightly because 

many people are still ignorant of the treatment. This demand 

for more awareness programs even in the rural areas in order 

to reduce disease induced death rate.  In contrast, the 

introduction of the new compartment called the quarantine 

class plays an important role in the controlling the disease, 

this is as a result of the mode of transmission of the disease.  
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X. CONCLUSION 

In this paper, we developed a new mathematical model which 

incorporated some important factors that plays significant role 

in the control of Lassa fever. These factors are: disease 

induced death rate and the quarantine parameter. The 

introduced quarantine parameter helps in controlling and 

eradication of Lassa fever virus with respect to time. We 

obtained the basic reproduction numbers, 𝑅0. Our analysis 

reveals that the disease can be control if the basic 

reproduction number, 𝑅0is less than one regardless of the 

initial population profile. Thus, every effort must be put in 

place by all concerned to prevent the virus infection by 

reducing 𝑅0strictly less than unity. Finally, there is need for 

further research work on the effects of various control strategy 

such as quarantine, vaccination, personal hygiene dynamics of 

Lassa fever disease as well as stability analysis for endemic 

equilibrium. 
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