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Abstract:- In this research work, we modeled Tuberculosis (TB) 

with conditional latent period using Delay Differential Equation. 

The model variables were divided into six compartments – 

susceptible, vaccinated latent (low and high), infected and 

recovered humans. We investigate the Disease Free Equilibrium 

(DFE) of the model and find the conditions that guarantee the 

asymptotic stability of corresponding steady states using stability 

theory of differential equations. The numerical simulations were 

carried out to test the effect of influence of key parameters on the 

spread of the TB epidemic, in particular the treatment and 

vaccination parameters to support the analytical solution and the 

stability theorem. It was shown that the introduced vaccination, 

high latent period and treatment parameter helps in controlling 

and eradication of TB epidemic in the population with respect to 

time. It is good to conclude that high effective treatment should 

be administered as well as high vaccination as this helps a long 

way in controlling the TB epidemic. 

Keywords: Tuberculosis, Conditional Latent Period, Vaccination, 
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I. INTRODUCTION 

uberculosis (TB) is a bacterial infection caused by 

mycobacterium tuberculosis referred to as tubercle bacilli. 

It most commonly affects the lungs producing pulmonary TB, 

and it is transmitted by blood or lymphatic system. Extra-

pulmonary IB is common in children while pulmonary TB is 

common in adults pulmonary TB is the most common and 

potentially most contagious type of active TB. Usually within 

2-10 weeks, the immune responses limits further 

multiplication and spread of the bacilli. TB is spread when an 

infections person coughs, sneezes, talks or signs, releasing 

droplets containing the bacilli into the air [1, 2]. 

Tuberculosis is mostly transmitted through the air by persons 

coughing with pulmonary tuberculosis. The probability of 

transmission per contact, per relevant unit of time is in general 

quite low [3, 4, 5]. Individuals at high risk of infection include 

those who are frequently exposed for long period of times to 

infectious individuals. Infected individuals may remain 

asymptomatic over their entire lives (latent TB). Active-TB 

(the clinical disease) can develop into pulmonary and 

extrapulmonary forms. Extrapulmonary TB is common in 

children while pulmonary TB is frequent in adults. 

Mycobacterium tuberculosis, the causal agent of the disease, 

is transmitted almost exclusively via pulmonary cases 

(exceptions could include laryngeal TB). The number of new 

cases of active TB decline almost exponentially when views 

as a function of age of infection [6]. In a ten year study, 

Styblo [6] noted that nearly 60% of the new cases arose 

during the first year following infection while the cumulative 

number of cases generated over the first five years after 

infection accounted for nearly 95% of the total cases 

observed. If this exponential decline in progression risk were 

to be maintained over the life time of individuals in the 

population then the contribution of endogenous reactivation to 

progression would be small, less than the 5%. However, 

increases in the risk of endogenous reactivation in the elderly 

have been observed. 

Fathalla and Naim [7] investigate the qualitative analysis of 

delayed sir epidemic model with a saturated incidence rate. 

They used delayed SIR epidemic model in which the 

susceptibles were assumed to satisfy the logistic equation and 

the incidence term is of saturated form with the susceptible. In 

the same vein [11], did a comparative analysis of four 

deterministic compartmental mathematical models for 

controlling the spread of tuberculosis in Nigeria. The model 

considered high coverage of antiretroviral treatment as a 

means of boosting the immune system of people living with 

HIV and vary the contraction rate and latent TB treatments of 

progressors. 

Despite numerous management control strategies on 

tuberculosis, currently TB continue to cause health effect in a 

number of studies over the past two decades. However, this 

work intends to investigate the role of the vaccination and the 

impact of the time delayed of the latent class to become 

infectious. 

II. MODEL FORMULATION 

We propose a simple Tuberculosis model with slow latent, 

𝐿𝑆 𝑡  and fast latent, 𝐿𝐹 𝑡 rate progression that incorporates 

vaccination using time delay differential equation. The 

population is divided into six (6) different classes: The 

susceptible Human𝑆(𝑡), the Latent Humans with slow 

progression rate to infections 𝐿𝑆 𝑡 , the Latent Humans with 

fast progression rate to infections 𝐿𝐹 𝑡 , the infections 

Humans 𝐼(𝑡), the Vaccinated Humans 𝑉(𝑡), and the 

Recovered Humans 𝑅(𝑡). A susceptible is an individual that is 

yet to be infected, but open to infection as he or she interacts 

T 
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with members of the infected class. While the latent is an 

individual that is infected but cannot spread the disease, an 

infected individual is one who has contracted the Tuberculosis 

and is capable of transmitting the disease, and we assumed 

that recruitment into the recovered-class from the infected-

class depends on the effectiveness of treatment given to the 

infected-class, and this is done at a rate𝛾, the purpose of this 

model is to study the role of delay model and a latent period 

of infected persons. 

Table 1: Model Variables and Parameters 

Variable Description 

𝑆(𝑡) Number of susceptible human at time 𝑡 

𝐿𝑆 𝑡  
Number of humans in latent period at slow rate of 

incubation at time 𝑡 

𝐿𝐻 𝑡  
Number of humans in latent period at high rate of 

incubation at time 𝑡 

𝐼 𝑡  Number of infected humans at time 𝑡 

𝑅 𝑡  Number of recovered humans at time 𝑡 

𝑉 𝑡  Number of vaccinated humans at time 𝑡 

Parameters Description 

𝜌 human birth rate 

𝛽 incidence rate per susceptible 

𝜃 
 proportion of infections instantaneous incidence with 

slow progression rate 

𝜀 recovery rate  of 𝐿𝑆 𝑡  to susceptible 

𝜓 recovery rate  of 𝐿𝐹 𝑡  to susceptible 

µ natural death rate 

𝛿1 progression from 𝐿𝑆 𝑡  to 𝐼 𝑡  

𝛿2 progression from 𝐿𝐹 𝑡  to 𝐼 𝑡  

𝛼 vaccination rate  

𝛿 disease induced death rate 

𝜂 rate at which individual from 𝑅 𝑡  return to 𝑆 𝑡  class 

𝜋 progression  rate of 𝐿𝑆 𝑡  to 𝐿𝐹 𝑡  

The following diagram describes the dynamics of infection, 

and will be useful in the formulation of model equations.

 

 

Figure 1: The flow chart of the model 

III. ASSUMPTION OF THE MODEL 

1. In the model, we assumed that the latent-class is 

divided into two (2) subgroup called the latent-class 

with slow progression rate to infection-class and 

latent-class with fast progression rate to the 

infection-class, denoted by 𝐿𝑆 𝑡  and 

𝐿𝐹 𝑡 respectively. 

2. We also assumed that both the 𝐿𝑆 𝑡  𝑎𝑛𝑑 𝐿𝐹 𝑡  

progress to infection-class at different rate 𝛿1 𝑎𝑛𝑑 𝛿2 

3. We assumed that the susceptible receive vaccine and 

therefore are prevented from the disease at the rate𝛼. 

4. We also assumed that the 𝐿𝑆 𝑡  and𝐿𝐹 𝑡  returns 

back to the susceptible-class at the rate 𝜀 𝑎𝑛𝑑 𝜓 

respectively when treated early. 

5. We assumed that the Recovered-class returned back 

to the susceptible at the rate 𝜂. 

6. We assumed that some individuals in the infected-

class died as a result of the Tuberculosis at the rate𝛿. 
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7. We also assumed that the saturated contact is given 

by the Holling type functional response term 
𝛽𝑆𝐼

1+𝛿𝑆
 

IV. MODEL EQUATIONS 

In view of the above flow chart the spread of the disease will 

be governed by thefollowing system of differential equations: 

𝑑𝑆

𝑑𝑡
= 𝜌 − 𝛽𝑆𝐼 +  𝜀𝐿𝑠 + 𝜂𝑅 + 𝐿𝐹𝜓 −  𝛼 + 𝜇 𝑆                 (1) 

𝑑𝐿𝑆

𝑑𝑡
= 𝜃𝛽𝑆𝐼 −  𝜇 + 𝜋 + 𝛿1 + 𝜀 𝐿𝑆                                  (2) 

𝑑𝐿𝐹

𝑑𝑡
=  1 − 𝜃 𝛽𝑆𝐼 + 𝜋𝐿𝑠 −  𝜇 + 𝛿2 + 𝜓 𝐿𝐹       (3) 

𝑑𝐼

𝑑𝑡
= 𝛿1𝐿𝐹 + 𝛿2𝐿𝑆 −  𝜇 + 𝛿 + 𝛾 𝐼                                 (4) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 −  𝜂 + 𝜇 𝑅                                               (5) 

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − 𝜇𝑉                                                (6) 

If a disease is not of short duration, then several changes need 

to be made to the model above [8].Saturating contact rate of 

individual contacts is very important in an epidemiology 

model, for more convenience and a practical point of view the 

bilinear transmission incidence rate 𝛽𝑆𝐼 is replaced by 

Holling type functional response term, which is saturated with 

the susceptible[8], the model (1) – (6) takes the form: 

𝑑𝑆

𝑑𝑡
= 𝜌 −

𝛽𝑆𝐼

1+𝜍𝑆
+ 𝜀𝐿𝑆 + 𝐿𝐹𝜓 − 𝜂𝑅 −  𝛼 + 𝜇 𝑆                   (7) 

𝑑𝐿𝑆

𝑑𝑡
=

𝜃𝛽𝑆𝐼

1+𝜍𝑆
+  𝜇 + 𝜋 + 𝛿1 + 𝜖 𝐿𝑆                      (8) 

𝑑𝐿𝐹

𝑑𝑡
=

 1−𝜃 𝛽𝑆𝐼

1+𝜍𝑆
+ 𝜋𝐿𝑆 −  𝜇 + 𝛿2 + 𝜓 𝐿𝐹                     (9) 

𝑑𝐼

𝑑𝑡
= 𝛿1𝐿𝐹 + 𝛿2𝐿𝑆 −  𝜇 + 𝛿 + 𝜓 𝐼                    (10) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 −  𝜂 + 𝜇 𝑅                                              (11) 

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − 𝜇𝑉                                                (12) 

where𝛿 is the saturation factor that measure the inhibitory 

effect. 

The model in (7) – (12) representing the transfer rate between 

exposed and infected-classes can be rigorously be derived 

using an age-structured modeling approach as in [10]. Let 

𝐼(𝑡, 𝛼) denotes the density of cells at time 𝑡 that were infected 

𝜏 times units before 𝑡 (i.e. cells of disease age𝜏). 

Because𝐼 𝑡, 𝜏  is the rate at which cells move from exposed to 

the infection-class, since it takes 𝜏 time units for an infection 

to “mature” in a given cell. Since per-capital death rate for 

exposed class is constant 𝜇 , it is appropriate to assume that 

𝐼 𝑡, 𝜏  satisfies the MC Kendoick Von-Foerster age-structured 

model, and 𝐼 𝑡, 𝜏  is given explicitly as [10]. 

𝐼 𝑡, 𝜏 =
𝛽𝑒−𝜇𝜏 𝑆 𝑡−𝜏 𝐼 𝑡−𝜏 

1+𝜍𝑆 𝑡−𝜏 
                                                  (13) 

Hence, our model equations (7) – (12) now takes the new 

form. 

𝑑𝑆

𝑑𝑡
= 𝜌 −

𝛽𝑒−𝜇𝜏 𝑆 𝑡−𝜏 𝐼 𝑡−𝜏 

1+𝜍𝑆 𝑡−𝜏 
+ 𝜀𝐿𝑆 + 𝐿𝐹𝜓 − 𝜂𝑅 −  𝛼 + 𝜇 𝑆

                                                                (14) 

𝑑𝐿𝑆

𝑑𝑡
= 𝜃𝛽𝑒−𝜇𝜏𝑆 𝑡 − 𝜏 𝐼 𝑡 − 𝜏 −  𝜀 + 𝜋 + 𝜇 + 𝛿1 𝐿𝑠

                                     (15) 

𝑑𝐿𝐹

𝑑𝑡
=

 1−𝜃 𝛽𝑒−𝜇𝜏 𝑆 𝑡−𝜏 𝐼 𝑡−𝜏 

1+𝜍𝑆 𝑡−𝜏 
+ 𝜋𝐿𝑆 −  𝜇 + 𝛿2 + 𝜓 𝐿𝐹  

                                                  (16) 

𝑑𝐼

𝑑𝑡
= 𝛿1𝐿𝐹 + 𝛿2𝐿𝑆 −  𝜇 + 𝛿 + 𝜓 𝐼                                  (17) 

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − 𝜇𝑉                                      (18) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 −  𝜂 + 𝜇 𝑅                                                 (19) 

V. MATHEMATICAL ANALYSIS OF THE MODEL 

Disease Free Equilibrium (DFE) - 𝐸𝜏  

The model (14) – (19) has non negative equilibrium points, 

which is the Disease Free Equilibrium (Eτ). At equilibrium 

point 
𝑑𝑆

𝑑𝑡
=

𝑑𝐿𝑆

𝑑𝑡
=

𝑑𝐿𝐹

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑉

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 

Hence the systems of equations (14) – (19) is solved 

simultaneously for equilibrium points to get  

The Disease Free Equilibrium (𝐸𝜏 ) 

𝐸𝜏 =  
𝜌

𝛼+𝜇
, 0,0,0,0,0                                         (20) 

VI. COMPUTATION OF THE BASIC REPRODUCTION 

NUMBER, 𝑅0 

The basic reproduction number 𝑅0is defined as the effective 

number of secondaryinfectious caused by typical infected 

individual during his interred periods of infectiousness [8, 9]. 

It is obtaining by taking the largest (dominant) Eigen value 

(spectral radius) of 

𝑅0 =  
𝜕ℱ𝑖

𝜕𝑥𝑗
 𝐸𝜏  ×  

𝜕𝒱𝑖

𝜕𝑥𝑗
 𝐸𝜏  

−1

 

where, 𝐹 =  
𝜕ℱ𝑖

𝜕𝑥 𝑗
 𝐸𝜏  and 𝑉 =  

𝜕𝒱𝑖

𝜕𝑥 𝑗
 𝐸𝜏  ,with 1 ≤ 𝑖, 𝑗 ≤

𝑚and 𝑚 is the number of infected classes.In particular 𝑚 = 3, 
we have 

𝐹𝑉−1 =

 

 

0 0 0
 1−𝜃 𝛽𝑒−𝜇𝜏

𝐻4𝐻1

 1−𝜃 𝛽𝑒−𝜇𝜏 𝛿1

𝐻1𝐻2𝐻4

𝛽 1−𝜃 𝑒−𝜇𝜏  𝐻2𝛿2+𝜋𝛿1 

𝐻1𝐻2𝐻3𝐻4

𝜃𝛽 𝑒−𝜇𝜏

𝐻1𝐻4

𝜃𝛽 𝑒−𝜇𝜏 𝛿1

𝐻1𝐻2𝐻4

𝜃𝛽 𝑒−𝜇𝜏  𝐻2𝛿2+𝜋𝛿1 

𝐻1𝐻2𝐻3𝐻4  

 

                                                    (21) 

Then eigenvalues of equation (21) is given explicitly as 

𝜆1 = 𝜆2 = 0 
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𝜆3

=
𝛽𝑒−𝜇𝜏𝛿1𝐻3𝜃 + 𝐻2𝜃𝛽𝑒−𝜇𝜏𝛿2 + 𝛽𝑒−𝜇𝜏𝛿1𝐻3 + 𝜃𝛽𝑒−𝜇𝜏𝜋𝛿1

𝐻1𝐻2𝐻3𝐻4

 

Hence the Basic Reproduction Number, 𝑅0 being the most 

positive eigenvalues is given by 𝜆3 which is 

𝑅0 =
𝛽𝑒−𝜇𝜏 (𝛿1𝐻3𝜃+𝐻2𝜃𝛿2+𝛿1𝐻3+𝜃𝜋𝛿1)

𝐻1𝐻2𝐻3𝐻4
                     (22) 

From the solution, it is noted that with an increase in 𝑅0which 

can be viewed as a function of c. Thus in order to keep the 

spread of the disease at minimum, the number of saturated 

incidence rate should be restricted. 

VII. LOCAL STABILITY OF THE EQUILIBRIA 

Theorem 1: The disease free equilibrium of the system is 

locally asymptotically stable if  

𝑅0 < 1and unstable 𝑅0 > 1 

Proof: Now to determine the local stability of 𝐸𝜏 the following 

variational matrix is computed corresponding to equilibrium 

point 𝐸𝜏 : 

𝑀1 = 𝜌 −
𝛽𝑒−𝜇𝜏 𝑆 𝑡−𝜏 𝐼 𝑡−𝜏 

1+𝜍𝑆 𝑡−𝜏 
+ 𝜀𝐿𝑆 + 𝐿𝐹𝜓 − 𝜂𝑅 −  𝛼 + 𝜇 𝑆

                                                     (23) 

𝑀2 = 𝜃𝛽𝑒−𝜇𝜏𝑆 𝑡 − 𝜏 𝐼 𝑡 − 𝜏 −  𝜀 + 𝜋 + 𝜇 + 𝛿1 𝐿𝑠        (24) 

𝑀3 =
 1−𝜃 𝛽𝑒−𝜇𝜏 𝑆 𝑡−𝜏 𝐼 𝑡−𝜏 

1+𝜍𝑆 𝑡−𝜏 
+ 𝜋𝐿𝑆 −  𝜇 + 𝛿2 + 𝜓 𝐿𝐹         (25) 

𝑀4 = 𝛿1𝐿𝐹 + 𝛿2𝐿𝑆 −  𝜇 + 𝛿 + 𝜓 𝐼          (26) 

𝑀5 = 𝛼𝑆 − 𝜇𝑉                                                    (27) 

𝑀7 = 𝛾𝐼 −  𝜂 + 𝜇 𝑅                                                   (28) 

The Jacobian(𝐽𝐸𝜏
) is given by 

(𝐽𝐸𝜏
) =

 

 
 
 
 
 
 

𝛽𝑒−𝜇𝜏

(𝜇+𝛼+𝛿𝜌 )
− (𝜇 + 𝛼) 𝜀 𝜓

𝛽𝑒−𝜇𝜏

(𝜇+𝛼+𝛿𝜌 )
0 𝜂

𝜃𝛽 𝑒−𝜇𝜏

(𝜇 +𝛼+𝛿𝜌 )
− 𝜀 + 𝜋 + 𝜇 + 𝛿1 0

𝜃𝛽 𝑒−𝜇𝜏

(𝜇+𝛼+𝛿𝜌 )
0 0

 1−𝜃 𝛽𝑒−𝜇𝜏

(𝜇 +𝛼+𝛿𝜌 )
𝜋 − 𝜇 + 𝛿2 + 𝜓 

 1−𝜃 𝛽𝑒−𝜇𝜏

(𝜇+𝛼+𝛿𝜌 )
0 0

0 𝛿2 𝛿1 − 𝜇 + 𝛿 + 𝜓 0 0
𝛼 0 0 𝜙 −𝜇 0

0 0 𝛼3 0 0 − 𝜂 + 𝜇  

 
 
 
 
 
 

                                                                               (29) 

Equation (29) can rewritten as  

(𝐽𝐸𝜏
) =

 

 
 
 
 
 
 

𝛽𝑒−𝜇𝜏

𝐻4
− 𝐻5 𝜀 𝜓

𝛽𝑒−𝜇𝜏

𝐻4
0 𝜂

𝜃𝛽 𝑒−𝜇𝜏

𝐻4
−𝐻3 0

𝜃𝛽 𝑒−𝜇𝜏

𝐻4
0 0

 1−𝜃 𝛽𝑒−𝜇𝜏

𝐻4
𝜋 −𝐻2

 1−𝜃 𝛽𝑒−𝜇𝜏

𝐻4
0 0

0 𝛿2 𝛿1 −𝐻1 0 0
𝛼 0 0 𝜙 −𝜇 0
0 0 𝛼3 0 0 −𝐻6 

 
 
 
 
 
 

                                                   (30) 

where,

  
𝐻1 =  𝜇 + 𝛿 + 𝜓 , 𝐻2 =  𝜇 + 𝛿2 + 𝜓 ,

𝐻3 =  𝜀 + 𝜋 + 𝜇 + 𝛿1 , 𝐻4 =  𝜇 + 𝛼 + 𝛿𝜌 , 𝐻5 =  𝜇 + 𝛼 , 𝐻6 = (𝜇 + 𝜂)
  

(31) 

Hence the determinant and trace of the equation (30) is given 

as 

𝐷𝑒𝑡 𝐽𝐸𝜏
 =

 −
1

𝐻4
 𝜇 𝐻6𝜌𝛽𝑒−𝜇𝜏𝜙𝐻3𝐻5𝛿1 + 𝐻6𝜋𝛽𝑒−𝜇𝜏𝜃𝐻1𝛿1𝜓 −

𝐻1𝐻2𝐻3𝐻4𝐻5𝐻6+𝐻1𝐻2𝐻3𝐻6𝛽𝑒−𝜇𝜏+𝐻1𝐻2𝐻6𝛽𝑒−𝜇𝜏𝜀+
𝐻1𝜃𝜂𝜋𝛽𝑒−𝜇𝜏𝛾+𝐻1𝐻3𝜙𝜂𝛽𝑒−𝜇𝜏𝛾+𝐻5𝐻6𝜃𝜋𝜌𝛽𝑒−𝜇𝜏𝛿1+𝐻
2𝐻5𝐻6𝜃𝜌𝛽𝑒−𝜇𝜏𝛿2+𝐻1𝐻3𝐻6𝜙𝜓𝛽𝑒−𝜇𝜏  
           (32) 

𝑇𝑟𝑎𝑐𝑒 𝐽𝐸𝜏
 =

𝛽𝑒−𝜇𝜏

𝐻4
− 𝐻5 − 𝐻3 − 𝐻2 − 𝐻1 − 𝜇 − 𝐻6

                                      (33) 

Expressing 𝐻1 in terms of 𝑅0, we get 

𝐻1 =
𝛽𝑒−𝜇𝜏 (𝛿1𝐻3𝜃+𝐻2𝜃𝛿2+𝛿1𝐻3+𝜃𝜋𝛿1)

𝐻2𝐻3𝐻4𝑅0
                     (34) 

Substituting equation (34) into equation (32) we get 

𝐷𝑒𝑡 𝐽𝐸𝜏
 =  −

1

𝐻4
 𝜇  𝐻6𝜌𝛽𝑒−𝜇𝜏𝜙𝐻3𝐻5𝛿1 +

𝐻6𝜋𝜃𝛽𝑒−𝜇𝜏2𝜛𝐻2𝐻3𝐻4𝑅0𝛿1𝜓− 
𝛽𝑒−𝜇𝜏𝜛𝑅0𝐻5𝐻6+𝛽𝑒−𝜇𝜏2𝜛𝐻3𝐻4𝑅0𝐻3𝐻6+𝛽𝑒−𝜇𝜏2𝜛𝐻3
𝐻4𝑅0𝐻6𝜀+ 
𝛽𝑒−𝜇𝜏2𝜛𝐻2𝐻3𝐻4𝑅0𝜃𝜂𝜋𝛾+𝛽𝑒−𝜇𝜏2𝜛𝐻2𝐻4𝑅0𝜙𝜂𝛾+𝐻5𝐻
6𝜃𝜋𝜌𝛽𝑒−𝜇𝜏𝛿1+𝐻2𝐻5𝐻6𝜃𝜌𝛽𝑒−𝜇𝜏𝛿2+𝛽𝑒−𝜇𝜏2𝜛𝐻2𝐻4𝑅0
𝐻6𝜙𝜓>0,                                   (35) 

If and only if 𝐻4 < 0. Otherwise 𝐷𝑒𝑡 𝐽𝐸𝜏
 < 0. 

where, 𝜛 = (𝛿1𝐻3𝜃 + 𝐻2𝜃𝛿2 + 𝛿1𝐻3 + 𝜃𝜋𝛿1) 

Similarly,  

𝑇𝑟𝑎𝑐𝑒 𝐽𝐸𝜏
 =

𝛽𝑒−𝜇𝜏

𝐻4
− 𝐻5 − 𝐻3 − 𝐻2 − 𝐻1 − 𝜇 − 𝐻6 <

0,since𝑒−𝜇𝜏 < 0                                                             (36) 

provided that 𝐻4 > 0. 

VIII. RESULTS 

Numerical Experiments of the Model 

The age-structured deterministic model (3.1)–(3.6) was solved 

numerically using Runge-Kutta-Fehllberg 4-5th order method 

and implemented using Maple 17 Software (Maplesoft, 

Waterloo Maple Inc, 2012). Parameters were chosen in 

consonance with the 𝑅0 values obtained in the stability 

analysis of the disease free equilibrium state of the model. We 

used the estimated values of the parameters by [7, 11] in the 

numerical experiments. 

List of Numerical Experiments 

(1) The graph of Susceptible Humans when the 

instantaneous contact rate is low with high 

𝜓, 𝜀 𝑎𝑛𝑑 𝜂. 
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(2) The graph of Infectious Humans when 𝜓 𝑎𝑛𝑑 𝜀 is 

constant with low treatment rates 

(3) The graph of Infectious Humans when 𝜓 𝑎𝑛𝑑 𝜀 is 

high with low treatment rates. 

 

(4) The graph of Infectious Humans when 𝜓 𝑎𝑛𝑑 𝜀 is 

high with high treatment rates. 

(5) The graph of Recovered Humans when 𝛾 = 0 is high 

with rate returning back to susceptible humans. 

(6) The graph of Recovered Humans when 𝛾 is low and 

high with low rate of returning to susceptible 

humans. 

Experiment 1: The graph of Susceptible Humans when the 

instantaneous contact rate is low with high 𝜓, 𝜀 𝑎𝑛𝑑 𝜂. 

 

Figure 1: Showing the effect of when the instantaneous on susceptible 

humans when contact rate is low with high  𝜓 = 0.6, 𝜀 = 0.5 𝑎𝑛𝑑 𝜂 = 0.8  

Experiment 2: The graph of Infectious Humans when 

𝜓 𝑎𝑛𝑑 𝜀 is constantwith low treatment rates. 

 

Figure 2: Showing the effect of low treatment rates when 𝜓 𝑎𝑛𝑑 𝜀 is 

constant. 

Experiment 3: The graph of Infectious Humans when 

𝜓 𝑎𝑛𝑑 𝜀 is high with low treatment rates. 

 

Figure 3: Showing the effect of low treatment rates with high  𝜓 = 0.6, 𝜀 =
0.5 𝑎𝑛𝑑 𝛾=0.8 

Experiment 4: The graph of Infectious Humans when 

𝜓 𝑎𝑛𝑑 𝜀 is high with high treatment rates. 

 

Figure 4: Showing the effect of high treatment rates when the contact rate 

high  𝜓 = 0.6, 𝜀 = 0.5 𝑎𝑛𝑑 𝜂 = 0.8  

Experiment 5: The graph of Recovered Humans when 

𝛾 = 0.8 is high with rate returning back to susceptible 

humans. 
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Figure 5: Showing the effect of hightreatment rates when the contact rate 

high   𝜂 = 0.8  

Experiment 6: The graph of Recovered Humans when 𝛾 is 

low and high with low rate of returning to susceptible humans. 

 

Figure 6: Showing the effect of low treatment rates on the recovered humans 

when 𝛾 low and high 

IX. DISCUSSION OF RESULTS 

Figure 1 shows the graphical representation of susceptible 

humans when the instantaneous constant rate 𝛽 = 0.01with 

(𝜓 = 0.5, 𝜀 = 0.3 𝑎𝑛𝑑 𝜂 = 0.8). It was observed that there is 

a drastic full in the population of the susceptible due to the 

number of individuals leaving the population and at 𝑡 = 20, 

the population would begin raise due to an increase in 

𝜓, 𝜀 𝑎𝑛𝑑 𝜂). 

Figure 2 depicts the graphical representation of infectious 

humans when(𝜓 = 0.02 𝑎𝑛𝑑 𝜀 = 0.01) is low. The figure 

shows raising in the population of infectious humans due to 

low treatment rate (𝛾 = 0.0125), but as a result of natural 

death and induced death due to the TB disease the population 

falls drastically. This further suggests that when the treatment 

rate is high the population of infectious humans would totally 

be eradication of TB. 

Figure 3 describes the graphical representation infectious 

humans when the treatment rate is low with high (𝜓 =
0.5, 𝜀 = 0.3 𝑎𝑛𝑑 𝜂 = 0.8). The graph is almost similar with 

figure 2 above, only difference is that more individuals would 

leave the infectious population which lead to the eradication 

of the people with TB. 

Figure 4 shows the graphical representation of infectious 

humans when the high as well as high (𝜓 = 0.5, 𝜀 =
0.3 𝑎𝑛𝑑 𝜂 = 0.8). It is observed that the TB disease will wipe 

out entirely in show time compare to experiments 2 and 3 

above. This is as a result of high treatment and more 

individuals leaving the population. 

Figure 5 shows the pictorial representation of recovered 

humans when (𝛾 = 0.8) and ( 𝜂 = 0.8) is high. It is observe 

that because the treatment is high the recovered population 

increased drastically but would later begin to full as a result 

high 𝜂 and natural death rate. This is why vaccination is very 

important to individual that recovered completely from the TB 

disease will not return back to the susceptible to contact the 

disease the again. 

Figure 6 shows the graphical representation of recovered 

humans when 𝛾 = 0 and 𝛾 = 0.0125 is zero and low with 

low 𝜂. The graph shows decrease in the population of 

recovered due to no treatment as well as high 𝜂.  

The results suggest that when the treatment and vaccination 

rate is high the population of infectious humans would totally 

be eradicated. The result further suggests that at low latent 

rate the TB epidemic persist, while high latent rate indicates 

eradication of the disease. This result corroborate with [7, 11] 

which suggest that model with immunization and infectious 

TB treatment) would lead to eradication of TB epidemic. 

X. CONCLUSION 

In this article, we developed a new mathematical model which 

incorporated some essential parameters that plays crucial role 

in the eradication of TB epidemic. These factors include low 

and high latent parameters,TB vaccination and treatment 

parameters. The introduced vaccination, high latent and 

treatment parameters help in controlling and eradication of TB 

epidemic with respect to time. We also computed the basic 

reproduction numbers, 𝑅0. Our analysis shows that the disease 

can be control if the basic reproduction number, 𝑅0is less than 

one regardless of the initial population profile. Thus, every 

effort must be put in place by all concerned to prevent the 

epidemic by reducing 𝑅0strictly less than unity. Finally, there 

is need for further research work on the effects of various 
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control strategy such as quarantine, vaccination, personal 

hygiene dynamics of TB epidemic as well as stability analysis 

for endemic equilibrium. 
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