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Abstract: In recent years, many scholars have paid attention to 

determine the solution of advance problems of engineering and 

sciences by using integral transforms method. In this paper, 

authors determine the solutions of population growth and decay 

problems with the help of Sumudu transform. These problems 

have much importance in the field of economics, chemistry, 

biology, physics, social science and zoology. Authors have 

considered some numerical applications to demonstrate the 

effectiveness of Sumudu transform for determining the solutions 

of population growth and decay problems. Results of numerical 

applications show that Sumudu transform is a very useful 

integral transform for determining the solutions of population 

growth and decay problems. 
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I. INTRODUCTION 

owadays, integral transformations are one of the mostly 

used mathematical techniques to determine the answers 

of advance problems of space, science, technology and 

engineering. The most important feature of these 

transformations is providing the exact (analytical) solution of 

the problem without large calculation work. Aggarwal and 

other scholars [1-8] used different integral transformations 

(Mahgoub, Aboodh, Shehu, Elzaki, Mohand, Kamal) and 

determined the analytical solutions of first and second kind 

Volterra integral equations. Solutions of the problems of 

Volterra integro-differential equations of second kind are 

given by Aggarwal et al. [9-11] with the help of Mahgoub, 

Kamal and Aboodh transformations.  

In the year 2018, Aggarwal with other scholars [12-13] 

determined the solutions of linear partial integro-differential 

equations using Mahgoub and Kamal transformations. 

Aggarwal et al. [14-20] used Sawi; Mohand; Kamal; Shehu; 

Elzaki; Laplace and Mahgoub transformations and determined 

the solutions of advance problems of population growth and 

decay by the help of their mathematical models. Aggarwal et 

al. [21-26] defined dualities relations of many advance 

integral transformations. Comparative studies of Mohand and 

other integral transformations are given by Aggarwal et al. 

[27-31].  

Aggarwal et al. [32-39] defined Elzaki; Aboodh; Shehu; 

Sumudu; Mohand; Kamal; Mahgoub and Laplace 

transformations of error function with applications. The 

solutions of ordinary differential equations with variable 

coefficients are given by Aggarwal et al. [40] using Mahgoub 

transform. Aggarwal et al. [41-45] used different integral 

transformations and determined the solutions of Abel’s 

integral equations. Aggarwal et al. [46-49] worked on 

Bessel’s functions and determined their Mohand; Aboodh; 

Mahgoub and Elzaki transformations.   

Chaudhary et al. [50] gave the connections between Aboodh 

transform and some useful integral transforms. Aggarwal et 

al. [51-52] used Elzaki and Kamal transforms for solving 

linear Volterra integral equations of first kind. Solution of 

population growth and decay problems was given by 

Aggarwal et al. [53-54] by using Aboodh and Sadik 

transformations respectively. Aggarwal and Sharma [55] 

defined Sadik transform of error function. Application of 

Sadik transform for handling linear Volterra integro-

differential equations of second kind was given by Aggarwal 

et al. [56].  

Aggarwal and Bhatnagar [57] gave the solution of Abel’s 

integral equation using Sadik transform. A comparative study 

of Mohand and Mahgoub transforms was given by Aggarwal 

[58]. Aggarwal [59] defined Kamal transform of Bessel’s 

functions. Chauhan and Aggarwal [60] used Laplace 

transform and solved convolution type linear Volterra integral 

equation of second kind. Sharma and Aggarwal [61] applied 

Laplace transform and determined the solution of Abel’s 

integral equation. Laplace transform for the solution of first 

kind linear Volterra integral equation was given by Aggarwal 

and Sharma [62]. Mishra et al. [63] defined the relationship 

between Sumudu and some efficient integral transforms. 

The main aim of this paper is to determine the solutions of 

population growth and decay problems with the help of 

Sumudu transform. 

II. DEFINITION OF SUMUDU TRANSFORM 

Sumudu transform of the function 𝐹 𝑡 , 𝑡 ≥ 0 was proposed 

by Watugula, G.K. [64] as:  

N 
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𝑆 𝐹 𝑡  =
1

𝑣
 𝐹 𝑡 𝑒−  

𝑡
𝑣𝑑𝑡

∞

0

 

= 𝑇 𝑣 , 0 < 𝑘1 ≤ 𝑣 ≤ 𝑘2,  where operator 𝑆  is called the 

Sumudu transform operator. 

Problem of Growth 

The growth of the population (a plant, or a cell, or an organ, 

or a species) is mathematically expressed in terms of a first 

order ordinary linear differential equation [14-20, 53-54] as 

𝑑𝑄

𝑑𝑡
= 𝐾𝑄     (1)                                                                                                                                                     

with initial condition 𝑄 𝑡0 = 𝑄0         (2)                                                                                                  

where 𝐾  is a positive real number, 𝑄  is the amount of 

population at time 𝑡 and 𝑄0  is the initial population at time 

𝑡 = 𝑡0. 

Equation (1) is known as the Malthus law of population 

growth. 

Problem of Decay 

The decay problem of the substance is defined mathematically 

by the following first order ordinary linear differential 

equation [14-20, 53-54] as 

 
𝑑𝑄

𝑑𝑡
= −𝐾𝑄                        (3)                                                                                                                                   

 with initial condition  𝑄 𝑡0 = 𝑄0    (4)                                                                                                                

where 𝑄 is the amount of substance at time 𝑡, 𝐾 is a positive 

real number and 𝑄0 is the initial amount of the substance at 

time 𝑡 = 𝑡0. 

In equation (3), the negative sign in the R.H.S. is taken 

because the mass of the substance is decreasing with time and 

so the derivative  
𝑑𝑄

𝑑𝑡
 must be negative. 

Linearity Property of Sumudu Transforms [29, 35]  

If 𝑆 𝐹 𝑡  = 𝑇1(𝑣) and 𝑆 𝐺 𝑡  = 𝑇2(𝑣) then 

 𝑆 𝑎𝐹 𝑡 + 𝑏𝐺 𝑡  = 𝑎𝑆 𝐹 𝑡  + 𝑏𝑆{𝐺 𝑡 } 

⇒ 𝑆 𝑎𝐹 𝑡 + 𝑏𝐺 𝑡  = 𝑎𝑇1(𝑣) + 𝑏𝑇2(𝑣), where 𝑎, 𝑏  are 

arbitrary constants. 

Table 1 SUMUDU TRANSFORM OF SOME USEFUL FUNCTIONS [29, 

35] 

S.N. 𝐹 𝑡  𝑆 𝐹 𝑡  = 𝑇 𝑣  

1. 1 1 

2. 𝑡 𝑣 

3. 𝑡2 2! 𝑣2 

4. 𝑡𝑛 ,𝑛 ∈ 𝑁 𝑛! 𝑣𝑛  

5. 𝑡𝑛 ,𝑛 > −1 Γ(𝑛 + 1)𝑣𝑛  

6. 𝑒𝑎𝑡  
1

1 − 𝑎𝑣
 

7. 𝑠𝑖𝑛𝑎𝑡 
𝑎𝑣

1 + 𝑎2𝑣2
 

8. 𝑐𝑜𝑠𝑎𝑡 
1

1 + 𝑎2𝑣2
 

9. 𝑠𝑖𝑛ℎ𝑎𝑡 
𝑎𝑣

1 − 𝑎2𝑣2
 

10. 𝑐𝑜𝑠ℎ𝑎𝑡 
1

1 − 𝑎2𝑣2
 

III. INVERSE SUMUDU TRANSFORM [29] 

If 𝑆 𝐹 𝑡  = 𝑇(𝑣)  then 𝐹 𝑡  is called the inverse Sumudu 

transform of 𝑇(𝑣) and mathematically it is defined as 𝐹 𝑡 =
𝑆−1{𝑇 𝑣 } , where the operator 𝑆−1  is called the inverse 

Sumudu transform operator. 

Table 2 INVERSE SUMUDU TRANSFORM OF SOME USEFUL 

FUNCTIONS [29] 

S.N. 𝑇 𝑣  𝐹 𝑡 = 𝑆−1{𝑇 𝑣 } 

1. 1 1 

2. 𝑣 𝑡 

3. 𝑣2 
𝑡2

2!
 

4. 𝑣𝑛 ,𝑛𝜖𝑁 
𝑡𝑛

𝑛!
 

5. 𝑣𝑛 ,𝑛 > −1 
𝑡𝑛

Γ(𝑛 + 1)
 

6. 
1

1 − 𝑎𝑣
 𝑒𝑎𝑡  

7. 
𝑣

1 + 𝑎2𝑣2
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

8. 
1

1 + 𝑎2𝑣2
 𝑐𝑜𝑠𝑎𝑡 

9. 
𝑣

1 − 𝑎2𝑣2
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

10. 
1

1 − 𝑎2𝑣2
 𝑐𝑜𝑠ℎ𝑎𝑡 

Sumudu Transform of the Derivatives of the Function  𝐹 𝑡  

[29, 35] 

If 𝑆 𝐹 𝑡  = 𝑇 𝑣  then  

a) 𝑆 𝐹′ 𝑡  =
𝑇 𝑣 

𝑣
−

𝐹 0 

𝑣
 

b) 𝑆 𝐹′′ 𝑡  =
𝑇 𝑣 

𝑣2 −
𝐹 0 

𝑣2 −
𝐹′  0 

𝑣
 

c) 𝑆 𝐹 𝑛  𝑡  =
𝑇 𝑣 

𝑣𝑛 −
𝐹 0 

𝑣𝑛 −
𝐹′  0 

𝑣𝑛−1 − ⋯…−
𝐹 𝑛−1  0 

𝑣
. 

IV. SOLUTION OF POPULATION GROWTH PROBLEM 

USING SUMUDU TRANSFORMS 

In this section, authors determine the solution of population 

growth problem given by (1) and (2) using Sumudu transform. 

Taking Sumudu transform on both sides of (1), we have 

𝑆  
𝑑𝑄

𝑑𝑡
 = 𝐾𝑆 𝑄 𝑡                (5)                                                                                                                              

Now applying the property, Sumudu transform of derivative 

of function, on (5), we have 

1

𝑣
𝑆 𝑄 𝑡  −

𝑄 0 

𝑣
= 𝐾𝑆 𝑄 𝑡    (6)                                                                                                                          

Using (2) in (6) and on simplification, we have 
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1

𝑣
− 𝐾  𝑆 𝑄 𝑡  =

𝑄0

𝑣
 

⇒ 𝑆 𝑄 𝑡  =
𝑄0

 1−𝐾𝑣 
              (7)                                                                                                                              

Operating inverse Sumudu transform on both sides of (7), we 

have 

𝑄 𝑡 = 𝑆−1  
𝑄0

 1 − 𝐾𝑣 
  

⇒ 𝑄 𝑡 = 𝑄0𝑆
−1  

1

 1 − 𝐾𝑣 
  

⇒ 𝑄 𝑡 = 𝑄0𝑒
𝐾𝑡                 (8)                                                                                                                                  

which is the required amount of the population at time 𝑡. 

V. SOLUTION OF DECAY PROBLEM USING SUMUDU 

TRANSFORMS 

In this section, authors determine the solution of decay 

problem which is mathematically expressed in terms of (3) 

and (4) using Sumudu transform. 

Applying the Sumudu transform on both sides of (3), we have 

𝑆  
𝑑𝑄

𝑑𝑡
 = −𝐾𝑆 𝑄 𝑡          (9)                                                                                                                  

Now applying the property, Sumudu transform of derivative 

of function, on (9), we have 

1

𝑣
𝑆 𝑄 𝑡  −

𝑄 0 

𝑣
= −𝐾𝑆 𝑄 𝑡           (10)                                                                                                                

Using (4) in (10) and on simplification, we have 

 
1

𝑣
+ 𝐾  𝑆 𝑄 𝑡  =

𝑄0

𝑣
 

⇒ 𝑆 𝑄 𝑡  =
𝑄0

 1+𝐾𝑣 
   (11)                                                                                                                                        

Operating inverse Sumudu transform on both sides of (11), we 

have 

 𝑄 𝑡 = 𝑆−1  
𝑄0

 1 + 𝐾𝑣 
  

⇒ 𝑄 𝑡 = 𝑄0𝑆
−1  

1

 1 + 𝐾𝑣 
  

⇒ 𝑄 𝑡 = 𝑄0𝑒
−𝐾𝑡                (12)                                                                                                                                

which is the required amount of substance at time 𝑡.   

VI. APPLICATIONS 

In this section, authors have considered some numerical 

applications to demonstrate the effectiveness of Sumudu 

transform for determining the solutions of population growth 

and decay problems.  

Application: 1 The population of a city grows at a rate 

proportional to the number of people presently living in the 

city. If after four years, the population has tripled, and after 

five years the population is 50,000, estimate the number of 

people initially living in the city. 

This problem can be written in mathematical form as: 

𝑑𝑄 𝑡 

𝑑𝑡
= 𝐾𝑄 𝑡     (13)                                                                                                                                                  

where 𝑄 denote the number of people living in the city at any 

time t and 𝐾 is the constant of proportionality. Consider 𝑄0 is 

the number of people initially living in the city at 𝑡 = 0. 

Applying the Sumudu transform on both sides of (13), we 

have 

𝑆  
𝑑𝑄

𝑑𝑡
 = 𝐾𝑆 𝑄 𝑡            (14)                                                                                                                                    

Now applying the property, Sumudu transform of derivative 

of function, on (14), we have 

1

𝑣
𝑆 𝑄 𝑡  −

𝑄 0 

𝑣
= 𝐾𝑆 𝑄 𝑡                     (15)                                                                                                         

Since at 𝑡 = 0, 𝑄 = 𝑄0, so using this in (15), we have  

 
1

𝑣
− 𝐾  𝑆 𝑄 𝑡  =

𝑄0

𝑣
 

⇒ 𝑆 𝑄 𝑡  =
𝑄0

 1−𝐾𝑣 
           (16)                                                                                                                                 

Operating inverse Sumudu transform on both sides of (16), we 

have 

𝑄 𝑡 = 𝑆−1  
𝑄0

 1 − 𝐾𝑣 
  

⇒ 𝑄 𝑡 = 𝑄0𝑆
−1  

1

 1−𝐾𝑣 
  

⇒ 𝑄 𝑡 = 𝑄0𝑒
𝐾𝑡               (17)                                                                                                                                   

Now at 𝑡 = 4, 𝑄 = 3𝑄0, so using this in (17), we have 

3𝑄0 = 𝑄0𝑒
4𝐾 

⇒ 𝑒4𝐾 = 3 

⇒ 𝐾 =
1

4
𝑙𝑜𝑔𝑒3 = 0.275                       (18)                                                                                                            

Now using the condition at 𝑡 = 5, 𝑄 = 50,000, in (17), we 

have 

50,000 = 𝑄0𝑒
5𝐾                 (19)                                                                                                                                 

Putting the value of 𝐾 from (18) in (19), we have 

50,000 = 𝑄0𝑒
5×0.275  

⇒ 50,000 = 3.955𝑄0 

⇒ 𝑄0 ≃ 12642    (20)                                                                                                                                                

which are the required number of people initially living in the 

city. 

Application: 2 A radioactive substance is known to decay at a 

rate proportional to the amount present. If initially there is 100 

milligrams of the radioactive substance present and after six 

hours it is observed that the radioactive substance has lost 30 
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percent of its original mass, find the half life of the radioactive 

substance. 

This problem can be written in mathematical form as: 

𝑑𝑄 𝑡 

𝑑𝑡
= −𝐾𝑄 𝑡     (21)                                                                                                                                               

where 𝑄 denote the amount of radioactive substance at time 𝑡 

and 𝐾 is the constant of proportionality. Consider 𝑄0  is the 

initial amount of the radioactive substance at time 𝑡 = 0. 

Applying the Sumudu transform on both sides of (21), we 

have 

𝑆  
𝑑𝑄

𝑑𝑡
 = −𝐾𝑆 𝑄 𝑡                  (22)                                                                                                                          

Now applying the property, Sumudu transform of derivative 

of function, on (22), we have 

1

𝑣
𝑆 𝑄 𝑡  −

𝑄 0 

𝑣
= −𝐾𝑆 𝑄 𝑡             (23)                                                                                                              

Since at 𝑡 = 0, 𝑄 = 𝑄0 = 100, so using this in (23), we have  

1

𝑣
𝑆 𝑄 𝑡  −

100

𝑣
= −𝐾𝑆 𝑄 𝑡   

⇒  
1

𝑣
+ 𝐾  𝑆 𝑄 𝑡  =

100

𝑣
 

⇒  𝑆 𝑄 𝑡  =
100

 1+𝐾𝑣 
   (24)                                                                                                                                        

Operating inverse Sumudu transform on both sides of (24), we 

have 

𝑄 𝑡 = 𝑆−1  
100

 1 + 𝐾𝑣 
  

= 100𝑆−1  
1

 1 + 𝐾𝑣 
  

⇒ 𝑄 𝑡 = 100𝑒−𝐾𝑡                     (25)                                                                                                                        

Now at 𝑡 = 6, the radioactive substance has lost 30 percent of 

its original mass 100 mg so 𝑄 = 100 − 30 = 70, using this in 

(25), we have 

70 = 100𝑒−6𝐾  

⇒ 𝑒−6𝐾 = 0.70 

⇒ 𝐾 = −
1

6
𝑙𝑜𝑔𝑒0.70 = 0.059                      (26)                                                                                                     

We required 𝑡 when 𝑄 =
𝑄0

2
=

100

2
= 50  so from (25), we 

have  

50 = 100𝑒−𝐾𝑡     (27)                                                                                                                                                  

Putting the value of 𝐾 from (26) in (27), we have 

50 = 100𝑒−0.059𝑡  

⇒ 𝑒−0.059𝑡 = 0.50 

⇒ 𝑡 = −
1

0.059
𝑙𝑜𝑔𝑒0.50 

⇒ 𝑡 = 11.75 hours            (28)                                                                                                                                 

which is the required half-time of the radioactive substance. 

VII. CONCLUSIONS 

In this paper, authors successfully determined the solutions of 

population growth and decay problems using Sumudu 

transform and complete methodology explained by giving 

some numerical applications in application section. Results of 

numerical applications show that Sumudu transform is a very 

effective integral transform for determining the solutions of 

population growth and decay problems. The scheme defined 

in this paper can be applied for the continuous compound 

interest and heat conduction problems in fututre. 
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