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Abstract - Kernel density estimation over the years has been 
placing more emphasis on the problem of the choice of optimal 
bandwidth. Nonetheless, the kernel function still has some roles 
to perform in the curve smoothing settings. Thus, in this paper, a 
new family of hybrid polynomial kernels is proposed. A 
generalized error scheme of the proposed family of kernels is 
constructed. A Monte Carlo experiment is performed using three 
univariate densities and it was discovered that the proposed 
family of hybrid polynomial kernels have significant low 
asymptotic mean integrated square error as compared with the 
existing family of polynomial kernels in the literature especially 
as the order of the kernels increases. Four real life data sets were 
equally used to show the performance of the proposed new 
family. It was observed that the proposed hybrid kernels 
perform well for the data sets considered. 

Keywords - Kernel density estimation, polynomial kernels, hybrid 
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I. INTRODUCTION 

ne class of smoothing techniques used for data analysis 
and visualizations is the nonparametric kernel density 

estimator (NKDE). This method is essentially the construction 
of an estimate of an underlying probability density function 
from an observed data set. This method has been used vastly 
in many areas such as in random differential equations 
problems [12], insurance [14], archeology, banking, 
climatology, economics, genetics, hydrology and physiology 
[17]. Its vast usability is based mainly on the simpleness of its 
implementation and interpretation of results [18]. It has been 
widely asserted that NKDE method is essentially marred 
majorly by the difficulties that centered around the choice of 
optimal bandwidth and minorly by the kernel functions [19]. 
Nevertheless, this does not undermine the choice and even the 
development of kernel functions [1]. In view of this, a family 
of hybrid polynomial kernels is proposed in this work. 

     Now, suppose 1 2, , , nx x x is an independent and 

identically distributed random data set with the probability 
density function f on a bounded interval [ 1,1] , then the 

univariate NKDE method is given by 
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where ( )K t and h in (1) are respectively the kernel function 

and bandwidth. The kernel function ( )K t is required to satisfy 

the following properties: 
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     Equation (1) surfaced into the mathematical statistics 
community in a technical report of Fix and Hodges [8]. The 
unpublished work of Akaike [4] also contains some of the 
basic ideas presented by [8]. The first notable published paper 
in NKDE is credited to Rosenblatt [15]. However, the major 
landmark of NKDE was achieved through Parzen [13]. Hence, 
the method often referred to as Rosenblatt-Parzen estimators 
or simply Parzen estimators [19]. Ever since this major 
landmark, several teams of tireless academia have contributed 
immensely to the advancement of NKDE. See, for instance, 
the work of [2, 3, 5, 7, 9, 11, 16, 18, 19] and the references 
therein. 

     The family of classical polynomial kernels is given as: 

2 1 1 2 , 0,1, 2,( ) {2 B( 1, 1)} (1 ) , 1p p
c pK t p p t t         

(3) 

where B( , )  and p in (3) are respectively the beta density 
and power of the family [20]. The specific results of 

cK yields Epanechnikove kernel, Biweight kernel, Triweight 

kernel and Quadriweight kernel when 1, 2,3p  and 4 

respectively. Several works have been done on the 
construction of kernels. See for instance, [2, 3]. 

II. FAMILY OF HYBRID CLASSICAL POLYNOMIAL 
KERNELS 

     In this section, a proposed family of hybrid classical 
polynomial kernels is constructed. Consider the simple 
formula 

1 [ 1] 2 [ ]( ) ( ) ( )H p pK t K t K t                                      (4)  

O
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where [ 1]pK   and [ ]pK are respectively the families of 

classical polynomial kernels of order 1p  and p as presented 

in (3) and 1 2 1   . 

Now, let 1 1/10   and then substitute (3) into (4) and apply 

necessary algebraic rules, then the proposed family of hybrid 
polynomial kernels is given by 

2 1 1 2 1

2

( ) {5 2 B( , )} [5(2 1) 10 ( 1) ]

(1 ) , 1, 1, 2,3,...

p
H

p

K t p p p p p t

t t p

      

    
       

(5) 

The kernel functions of the proposed family of hybrid kernels 
in (5) are presented in Table 1 below. Figure 1 shows the 
probability density function (pdf) of the kernel functions (see 
Table 1). The biweight, triweight and quadriweight kernels 
have short support than the Epanechnikov kernel. 

Table 1: Hybrid classical polynomial kernels 

Kernel Definition 

Epanechnikov 
21

(5 3 )
8

x  

Biweight 
2 23

(1 )(9 5 )
32

x x   

Triweight 
2 2 25

(1 ) (13 7 )
64

x x   

Quadriweight 
2 3 235

(1 ) (17 9 )
512

x x   

The shapes of the hybrid symmetric kernels defined in Table 1 
above are presented in Figure 1. 

III. THE ERROR SCHEME OF THE PROPOSED 
KERNELS 

     It is a well-known fact in the NKDE setting that the quality 
of the kernels is determined by the relatively low global error 
and relatively high efficiency [19]. Thus, in this section, the 

global error scheme of the kernel estimators ˆ ( )hf x  of the 

proposed family of hybrid polynomial kernels with respect to 
the mean integrated squared error is herein derived. 
According to [20], the mean integrated squared error (MISE) 

relative to ˆ ( )hf x is given by 

2ˆ ˆ ˆMISE ( ) Var ( ) Bias ( )h h hf x f x dx f x dx                     (6) 

where ˆVar ( )hf x and ˆBias ( )hf x in (6) are respectively given by 

2 2ˆ ˆ ˆVar ( ) ( ) ( )h h hf x Ef x E f x                                          (7) 

 

Figure 1: Shapes of hybrid symmetric kernels in Table 1 

and 

ˆ ˆBias ( ) ( ) ( )h hf x Ef x f x                                                (8) 

Theorem 1: Review of Silverman [19] and Afere and Alih [2] 

Suppose f is a bounded density function. Suppose also that 

the kernel function ( )K t is bounded with the second moment 

∫ 2 ( )t K t dt . If x is a point with ( ) 0f x   such that f is 

continuously differentiable up to the 2nd -order in a 

neighbourhood of x , then the variance and 2bias of (6) are 
given respectively as: 

2 1 11ˆVar ( ) [ ( ) ] ( ) ( )hf x K t dt f x o n h
nh

               (9)  

and 

   
2 22 4 2 41ˆBias ( ) ( ) ( ) ( )

4hf x h t K t dt f x o h            (10) 

Proof: The proof is contained in [2]. 

Remarks 

1. Upon substituting (9) and (10) into (6), neglecting 
higher-order terms and integrated accordingly, the result 
yields the asymptotic mean integrated squared error 
(AMISE) given as: 

   
2 24 2 21 1ˆAMISE ( ) ( ) ( ) ( )

4hf x h t K t dt f x dx K t dt
nh

   
                                                                                              

(11) 

2. Equation (11) provides the basis for determining the 
global error of any kernel. 
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Figure 2: Plot showing the relationship between the proposed hybrid polynomial kernels and the classical polynomial kernels

Theorem 2 

In addition to the conditions given in Theorem 1, let ( )HK t be 

any member of the family of classical polynomial kernels 

defined in (5), bounded with th2m moment and satisfies the 
property 

2 ( )m
Ht K t dt                                                                (12)  

Suppose

(2 ) 2 4 1
24 1

1
( ( )) ( ) , 1,2,3, ,

2
m m

m
f x dx m

 


       is the 

constant of th2m continuously differentiable Gaussian 
distribution with the support ( , )  , then the global error 

scheme of the proposed family of hybrid polynomial kernel is 
given by 

8 1
4 1 2( 1)4 4 41

4 1 4 1 4 1 4 1 4 1
8ˆAMISE ( ) (4 1)

25

m
m mm m m

m m m m mf x m m n  

 

    


        

(13) 

where  

2 4 1 2 21 1 1
2 2 2

23
2

(5 10 5 ) ( ) (2 ) ( )

( )

mp m m m p

p m




        


  
   

(14) 

and  

2 21
2

2 3
2

( 20(4 1)(5 20 ) 75 ) Csc(2 ) ( )

(2 2 ) ( ) (2 )

p p p p p

p p p p




     


    
      

(15) 

Proof: The proof of this theorem is of two parts. To prove the 
first part, we substitute (1) in (8) and simplify, then (8) 
becomes 

ˆBias ( ) ( ){ ( ) ( )}hf x K t f x ht f x dt                              (16) 

On applying the univariate Taylor series expansion in (16), 
and simplifying using the properties in (2), (16) becomes 

2 (2 ) 2 21ˆBias ( ) ( ) ( ) ( )
(2 )!

m m m m
hf x h f x t K t dt o h

m
      (17) 

As in Bias term, plugging (1) into (7), then applying the 
univariate Taylors series expansion with the necessary 
simplifications using the properties in (2), the variance term 
becomes 

 2 11ˆVar ( ) ( ) ( ) 0( )hf x f x K t dt nh
nh

                     (18) 

Now, substituting (16) and (17) into (6), and simplify, the 

expression of ˆMISE ( )hf x becomes 

2
2

4 (2 ) 2 2 2 4 1

1 1ˆMISE ( ) ( )
((2 )!)

( ( )) ( ( ) ) ( ) 0( )

h

m m m m

f x K t dt
nh m

h f x dx t K t dt o h nh 

  

 


 

       

(19) 

Upon neglecting the higher-order terms, then the asymptotic 
mean integrated squared error (AMISE) of the kernel 

estimators ˆ ( )hf x  is given by 
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              (20) 

On optimizing (20) with respect to h , the optimal bandwidth 
h can be obtained as 

1
4 12 2

(2 ) 2 2 2

((2 )!) ( )

(4 ) ( ( )) ( ( ) )

m

opt m m

m K t dt
h

n m f x dx t K t dt

 
    
 


 

             (21) 

Thus, substituting (21) into (20), the expression of the global 

error ( ˆAMISE ( )hf x ) that is completely free from the value of 

h is obtained as: 

 

 
4

4 4 1
4 1

1
4 1

4
4 1

2

2
2

(2 ) 2

ˆAMISE ( ) (4 1)(4 ) ( )

( )
( ( ))

((2 )!)

m
m m

m

m

m
m

h

m

m

f x m m K t dt

t K t dt
f x dx n

m









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  

    
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 
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This completes the first part of the proof. 

     The second part shall be achieved by first computing the 

value of (2 ) 2( ( ))mf x dx  for the constant of 

th2m continuously differentiable Gaussian distribution with 

the support ( , )  , 2 ( )K t dt and 2 ( )mt K t dt for the family 

of hybrid polynomial kernels and substitute in (22). 

Now, consider the univariate normal distribution given in the 
equation below with mean (μ) zero and variance (σ) (i.e. 

2~ (0 , )x N  ). 

2

221
( )

2

x

f x e 

 


                                                          (23) 

Differentiating equation (23) severally, and using the 
properties in (2), the odd derivatives will fizzle out and thus, 
on integrating the square of the even derivatives, we obtain 
the generalized form as: 

(2 ) 2
4 1

4 1
2

1
( ( ))

2

( ) , 1,2,3, ,

m
m

m

f x dx

m

 



 

   




    (24) 

Also, the 2L - norm and 2 thm moment of Equation (5) yields 

respectively 

2

21
2 2

2 3
2
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and 

2

2 21 1 1
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(26) 

Thus, substituting (24), (25) and, (26) into (23) gives 

8 1
4 1 2( 1)4

4 1 4 1

4 41
4 1 4 1 4 1

8ˆAMISE ( ) (4 1)
25

m
m mm

m m
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 
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




  
  where 

 and  are as given in equations (14) and (15) respectively. 

This completes the proof. 

IV. NUMERICAL EXPERIMENT 

     In this section, two simulation experiments were conducted 
to show the performance of the proposed hybrid kernels over 
their classical kernels’ counterparts. Four real life data were 
also used to show the behaviour of the proposed hybrid 
kernels that is akin to their classical kernels’ counterparts. 

A. MONTE CARLO EXPERIMENT 

     To investigate the performance of the proposed hybrid 
kernels, some simulation studies are conducted. A Monte 
Carlo experiment is conducted for sample sizes 10n  , 

25n  , 200n   and 1000n   for standard normal 
distribution (0,1)N . In the second scenario, a Monte Carl 

experiment of sample sizes 10n  , 25n  , 125n   and 
300n   is conducted for three univariate densities,  

(i) Standard normal 1 ~ (0,1)f N  

(ii) Symmetric trimodal 

2
9 7 9 7 1 1

~ ( ,1) ( ,1) (0, )
20 4 20 4 10 25

f N N N    

(iii) Asymmetric trimodal 

3
3 1 3 7 1 2

~ ( 2, ) ( , ) (0,2)
10 4 10 4 5 5

f N N N    

     Figure 3 (a), (b), (c) and (d) shows the AMISE – (which 
shall be henceforth called the global error) of the proposed 
hybrid kernels and their respective classical polynomial 
kernels’ counterparts for (0,1)N of sample sizes 10n  , 

25n  , 200n   and 1000n   respectively. Examination of 
Figure 3 reveals that all the proposed hybrid kernels have a 
reduced global error as compared to their classical kernels’
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                                                  (a)                                                                                                     (b) 

       

                                                 (c)                                                                                                        (d) 

       

Figure 3: Plot showing the comparison of AMISE for the proposed hybrid polynomial kernels and the classical polynomial kernels 

counterparts. It was equally revealed that as sample size 
n increases, the global error become smaller which obeys one 
of the properties of a good and robust estimator.  

     Figure 4 (a), (b), (c) and (d) shows the result of the 
simulation experiment conducted for three univariate mixture 
densities. For each of the mixture densities, the random 
variable X was generated and the standard deviation 
parameters estimated from it. After this, the global error in 
(13) is used by performing the simulation for 1000r   runs 
such that the average of the global error is given as 

2

1

1
Error AMISE , 1, 2,...

r
m

j
j

m
r 

                                (27) 

Equation (27) was computed for hybrid – Epanechnikov, 
Biweight, Triweight and, Quadriweight kernels for all the 
univariate mixture densities as presented in Figure 4. The 
kernels considered have a reduced global error for normal 
density when 10, 25,125n  and 300 . However, when 

10n  , the kernels have a reduced global error for symmetric 
trimodal than in the case of asymmetric trimodal. But, when 

25,125n  and 300 ; the kernels perform better for 

asymmetric trimodal density than the symmetric trimodal 
density. 

B. REAL LIFE DATA 

     In this subsection, the real-life applications of the proposed 
family of hybrid polynomial kernels is demonstrated. 
Equation (27) is used for the four data sets. The first – three 
data sets are: (1) the lifespan of car batteries in years, (2) the 
number of written words without mistakes in every 100 words 
by a set of students in a written essay and (3) the scar length 
of patients randomly selected in millimeters. These data sets 
are from [10]. The fourth data set is the Waiting time between 
eruptions and the duration of the eruption for the Old Faithful 
geyser in Yellowstone National Park, Wyoming, USA [6]. 
The data vizualisations and graphics were done in 
Mathematica 10.3 and R Studio software. The result as 
presented in Figure 5 below shows that as n increases from 
40, 64, 107 to 272, the global error decreases. or rather tends 
to zero for all the proposed hybrid kernels considered. This is 
inherent in the properties of a good estimator which states that 
as the sample sizes increases, the estimator tends to the true 
value. 
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        (a)                                                                                                     (b) 

       
       (c)                                                                                                      (d) 

         

Figure 4: Plot showing the line graphs of global error by densities of the proposed hybrid polynomial kernels 

 

Figure 5: Plot showing the relationship between the proposed hybrid polynomial kernels and the classical polynomial kernels 
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V. SUMMARY AND CONCLUSION 

     In this paper, a new family of classical polynomial kernels 
of the hybrid type is developed. The generalized asymptotic 
mean integrated squared error and its corresponding 
generalized optimal bandwidth for this proposed family of 
kernels were equally obtained. The simulation results show 
that the proposed family of kernels have reduced AMISE as 
compared with the existing kernels. Real life applications via 
four data sets were also examined, the results also reveal that 
the proposed new family of kernels outperform the existing 
kernels. 
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