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ABSTRACT 

Two finite difference schemes, FTBSCS (forward time backward space and centered space) and FTCS 

(forward time centered space) have been studied for solving convection-diffusion equation (CDE) with 

appropriate initial condition and boundary conditions. The convection velocity u(t, x) of CDE is computed by 

solving viscous Burger’s equation using the same schemes. Stability conditions of the schemes are determined 

and it is analytically shown that FTCS scheme is superior to FTBSCS scheme in terms of t ime step selection. 

The conditions of stability are also numerically verified. Some numerical simulation results are presented for 

various parameters. Error comparisons of both the schemes are presented to estimate accuracy of solutions. 

Keywords: Convection-Diffusion Equation, Burger’s Equation, Finite Difference Schemes, Stability 

Conditions. 

INTRODUCTION 

Historically, Burger’s equation was first introduced by Bateman [2] who gave its steady solutions. It was later 

treated Burger’s [4] as a mathematical model for turbulence and after whom such an equation is widely 

referred to as Burger’s equation. Many problems can be modeled by Burger’s equation [8]. For example, the 

Burger’s equation can be considered as an approach to the Navier-Stokes equations [1] since both contain 

nonlinear terms of the type: unknown functions multiplied by a first derivative and both contain higher-order 

terms multiplied by a small parameter. It is a nonlinear equation for which exact solutions are known and is 

therefore important as a benchmark problem for numerical methods. The study of the general properties of the 

Burger’s equation has motivated considerable attention due to its applications in field as diverse as number 

theory, gas dynamics, heat conduction, elasticity, etc. The exact solutions of the one-dimensional Burger’s 

equation have been surveyed by Benton and Platzman [3]. Many other authors [5-8] have used a variety of 

numerical techniques based on finite-difference, finite-element and boundary element methods in attempting to 

solve the equation particularly for small values of the kinematic viscosity  which corresponds to steep fronts 

in the propagation of dynamic waveforms. 

Convection-Diffusion Equation (CDE) is one of the most important partial differential equation and observed 

in a wide range of engineering and industrial applications. This equation reflects physical phenomena where in 

the diffusion process particles are moving with certain velocity from higher concentration to lower 

concentration. The analytical/numerical solutions along with an initial condition and two boundary conditions 

help to understand the contaminant or pollutant concentration distribution behavior through an open medium 

like air, rivers, lakes and porous medium like aquifer. CDE benefits from wide applications in such different 

disciplines as environmental engineering, mechanical engineering, heat transfer, soil science and as well in 

biology. It has wide applications in other disciplines too, like soil physics, petroleum engineering, chemical 

engineering and biosciences.  

Analytical solutions are as useful tools in many areas- 

Formerly, the analytical solutions of ADE were obtained by reducing the original ADE into a diffusion 

equation by omitting the advective term(s). It was done either by introducing moving co-ordinates (Ogata and 
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Banks, 1961[26]; Harleman and Rumer 1963[30]; Bear 1972[14]; Guvanasen and Volker 1983[29]; Aral and 

Liao, 1996 [11]; Marshal et al. 1996[22]; or by introducing another dependent variable (Banks and Ali, 

1964[13]; Ogata and Banks 1961[26]; Lai and Jurinak 1971[20] and Al-Niami and Rushton, 1977[9]). In more 

recent works, analytical solutions of ADE have been obtained using such integral transform techniques as 

either Laplace or Fourier transform ( Lai and Jurinak 1971[20]; Marino 1974 [21] and Kumar et al. 2009[12]). 

In [10; 15 – 19; 23 – 25; 27; 28; 34] analytical and numerical solutions have been obtained by applying 

different method.  

In (Azad et al., [32]; Azad and Andallah [33]) finite difference schemes are presented for solving the advection 

diffusion equation (ADE). Numerical solution of the ADE is obtained by using FTBSCS and FTCS techniques 

for prescribed initial and boundary data. Numerical results for both the schemes are compared in terms of 

accuracy by error estimation with respect to exact solution of the ADE and also, the numerical features of the 

rate of convergence are presented graphically.  

With the above discussion in view, one-dimensional convection-diffusion equation is solved by using two 

finite difference schemes FTBSCS and FTCS. The convection velocity u(t, x) is computed by solving viscous 

Burger’s equation using the same schemes. Stability conditions for the schemes studied and the condition of 

stability is also numerically verified. 

GOVERNING EQUATION AND NUMERICAL SCHEMES 

Governing Equation 

In this paper, we consider variable advection velocity u(t, x), so that the PDE reads as convection-diffusion 

equation (CDE) 
𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
= 𝐷

𝜕2𝑐

𝜕𝑥2 where we have two unknowns     c(t, x) and u(t, x). Therefore we have to 

solve another equation and we select the viscous Burger’s equation 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 

𝜕2𝑢

𝜕𝑥2 to compute the variable 

velocity u(t, x). Our problem is thus to solve the following system of PDE’s simultaneously as an IBVP 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 

𝜕2𝑢

𝜕𝑥2 ,           𝑎 < 𝑥 < 𝑏,     𝑡 > 0,    (1) 

 
𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
= 𝐷

𝜕2𝑐

𝜕𝑥2 ,          𝑎 < 𝑥 < 𝑏,     𝑡 > 0,    (2) 

where c(t, x) represents the solute concentration [ML-3] at x, along longitudinal direction at time t, and  > 0 is 

the coefficient of kinematic viscosity, D is the solute dispersion, if it is independent of position and time, is 

called dispersion coefficient [L2T-1], t = time[T]; x = distance[L] and, u(t, x) is the solutions of (1). 

Appended with initial condition 

𝑢(𝑥, 0) = 𝑓(𝑥);         𝑐(𝑥, 0) = 𝑓(𝑥)                 𝑎 ≤ 𝑥 < 𝑏 

and Neumann boundary conditions 

𝜕

𝜕𝑥
𝑢(𝑡, 𝑎) = 𝑢𝑎(𝑡) ;         

𝜕

𝜕𝑥
𝑢(𝑡, 𝑏) = 𝑢𝑏(𝑡)                 𝑡0 ≤ 𝑡 ≤ 𝑇 

𝜕

𝜕𝑥
𝑐(𝑡, 𝑎) = 𝑐𝑎(𝑡) ;           

𝜕

𝜕𝑥
𝑐(𝑡, 𝑏) = 𝑐𝑏(𝑡)                 𝑡0 ≤ 𝑡 ≤ 𝑇 

where ca, cb,  ua, ub are constant concentration values. 

Analytic solution 

The exact solution of the advection-diffusion equation as IVP with initial condition 
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 c(x, 0) = f(x) is given [31] 

𝑐(𝑥, 𝑡) =
𝑀

𝐴√4𝜋𝐷t
𝑒𝑥𝑝 (−

(𝑥 –  (𝑥0  +  𝑢𝑡))2

4𝐷t
)                                     (3) 

where M = mass of tracer 

A = uniformly cross section area at the point x = 0, at time t = 0. 

Finite Difference Scheme 

We consider the one–dimensional CDE as an initial and boundary value problem. 

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
= 𝐷

𝜕2𝑐

𝜕𝑥2, 

with initial condition      𝑐(𝑡0, 𝑥) = 𝑐0(𝑥);                   𝑎 ≤ 𝑥 ≤ 𝑏 

and Neumann boundary conditions 

𝜕

𝜕𝑥
𝑐(𝑡, 𝑎) = 𝑐𝑎(𝑡) ;                  𝑡0 ≤ 𝑡 ≤ 𝑇 

𝜕

𝜕𝑥
𝑐(𝑡, 𝑏) = 𝑐𝑏(𝑡) ;                   𝑡0 ≤ 𝑡 ≤ 𝑇 

FDMs are the efficient approach to numerical solutions of partial differential equations. A finite difference 

method proceeds by replacing the derivatives in the differential equation by the finite difference 

approximations. This gives a large algebraic system of equation to be developing a computer programming 

code.  

Explicit Finite Difference Scheme 

For the numerical solution of the one –dimensional linear convection- diffusion equation, we consider the 

IBVP 

𝜕𝑐

𝜕𝑡
+ 𝑢

𝜕𝑐

𝜕𝑥
= 𝐷

𝜕2𝑐

𝜕𝑥2
, 

with initial condition  𝑐(𝑥, 0) = 0.02 × 𝑒−10𝑥 ,                  0 ≤ 𝑥 < 𝑙 

and Neumann boundary conditions 

𝜕

𝜕𝑥
𝑐(𝑡, 𝑥 = 0) = 0,                 0 < 𝑡 ≤ 𝑇 

𝜕

𝜕𝑥
𝑐(𝑡, 𝑥 = 𝑙) = 0                     0 < 𝑡 ≤ 𝑇 

In order to develop the schemes, we discretize the x-t plane by choosing a spatial grid size   h  x and 

temporal grid size k  t. Then we can define the discrete grid points 

𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = 0, 1, 2, 3, … … … , 𝑀 and 𝑡𝑛 = 𝑛𝑘, 𝑛 = 0, 1, 2, … … … , 𝑁 where M = (b - a)/h and N =T/k. Now 

we present two finite difference schemes as follows- 
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FINITE DIFFERENCE FORMULAE 

Derivatives in the convection- diffusion equation are approximated by truncated Taylor Series expansions, 

which are follows- 

𝜕𝑐

𝜕𝑡
=

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
 (1st order forward difference in time)                              (4) 

𝜕𝑐

𝜕𝑥
=

𝑐𝑖
𝑛 − 𝑐𝑖−1

𝑛

∆𝑥
(1st order backward space difference formula)             (5) 

𝜕𝑐

𝜕𝑥
=

𝑐𝑖+1
𝑛 − 𝑐𝑖−1

𝑛

2∆𝑥
 (1st order centered space difference formula)           (6)  

and 

𝜕2𝑐

𝜕𝑥2
=

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

∆𝑥2
 (2nd order centered space difference formula)  (7) 

Finite Difference (FTBSCS) Scheme 

Substituting equations (4), (5), (7) into equation (1), (2) and rearranging according the time level, 

(1) tends to  

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+ 𝑢𝑖

𝑛
𝑢𝑖

𝑛 − 𝑢𝑖−1
𝑛

∆𝑥
= 

𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛

∆𝑥2
, 

 𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 −
𝑡

𝑥
𝑢𝑖

𝑛(𝑢𝑖
𝑛 − 𝑢𝑖−1

𝑛 ) +
∆𝑡

∆𝑥2 (𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 ), 

  𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 − 𝛾(𝑢𝑖
𝑛 − 𝑢𝑖−1

𝑛 ) + 𝑟(𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 ) 

𝑊𝑒 𝑔𝑒𝑡, 𝑢𝑖
𝑛+1 = (γ + 𝑟)𝑢𝑖−1

𝑛 + (1 − 𝛾 − 2r)𝑢𝑖
𝑛 + 𝑟𝑢𝑖+1

𝑛 ,                        (8) 

𝑤ℎ𝑒𝑟𝑒,          𝛾 =
∆𝑡

∆𝑥
𝑢𝑖

𝑛 , 𝑟 =
∆𝑡

∆𝑥2
 

(2) tends to 

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
+ 𝑢𝑖

𝑛
𝑐𝑖

𝑛 − 𝑐𝑖−1
𝑛

∆𝑥
= 𝐷

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

∆𝑥2
, 

  𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑡

𝑥
𝑢𝑖

𝑛(𝑐𝑖
𝑛 − 𝑐𝑖−1

𝑛 ) +
𝐷∆𝑡

∆𝑥2 (𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛 ), 

  𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 − 𝛾(𝑐𝑖
𝑛 − 𝑐𝑖−1

𝑛 ) +
𝐷∆𝑡

∆𝑥2
(𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛 ) 

𝑊𝑒 𝑔𝑒𝑡, 𝑐𝑖
𝑛+1 = (𝛾 + )𝑐𝑖−1

𝑛 + (1 − 𝛾 − 2)𝑐𝑖
𝑛 + 𝑐𝑖+1

𝑛 ,                 (9) 

𝑤ℎ𝑒𝑟𝑒,    𝛾 =
∆𝑡

∆𝑥
𝑢𝑖

𝑛 ,  =
𝐷∆𝑡

∆𝑥2
 

Finite Difference (FTCS) Scheme 

Substituting equations (4), (6), (7) into equation (1), (2) and rearranging according the time level, 
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(1) tends to 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

∆𝑡
+ 𝑢𝑖

𝑛
𝑢𝑖+1

𝑛 − 𝑢𝑖−1
𝑛

2∆𝑥
= 

𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛

∆𝑥2
, 

    𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 −
∆𝑡

2∆𝑥
𝑢𝑖

𝑛(𝑢𝑖+1
𝑛 − 𝑢𝑖−1

𝑛 ) +
∆𝑡

∆𝑥2 (𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛 ), 

    𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 −
𝛾

2
(𝑢𝑖+1

𝑛 − 𝑢𝑖−1
𝑛 ) + 𝑟(𝑢𝑖+1

𝑛 − 2𝑢𝑖
𝑛 + 𝑢𝑖−1

𝑛 ), 

 𝑊𝑒 𝑔𝑒𝑡,   𝑢𝑖
𝑛+1 = (𝑟 +

𝛾

2
) 𝑢𝑖−1

𝑛 + (1 − 2𝑟)𝑢𝑖
𝑛 + (r −

𝛾

2
) 𝑢𝑖+1

𝑛 ,           (10) 

𝑤ℎ𝑒𝑟𝑒,      𝛾 =
∆𝑡

∆𝑥
𝑢𝑖

𝑛 , 𝑟 =
∆𝑡

∆𝑥2
 

(2) tends to 

𝑐𝑖
𝑛+1 − 𝑐𝑖

𝑛

∆𝑡
+ 𝑢𝑖

𝑛
𝑐𝑖+1

𝑛 − 𝑐𝑖−1
𝑛

2∆𝑥
= 𝐷

𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛

∆𝑥2
, 

  𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝑡

2𝑥
𝑢𝑖

𝑛(𝑐𝑖+1
𝑛 − 𝑐𝑖−1

𝑛 ) +
𝐷∆𝑡

∆𝑥2 (𝑐𝑖+1
𝑛 − 2𝑐𝑖

𝑛 + 𝑐𝑖−1
𝑛 ), 

  𝑐𝑖
𝑛+1 = 𝑐𝑖

𝑛 −
𝛾

2
(𝑐𝑖+1

𝑛 − 𝑐𝑖−1
𝑛 ) + (𝑐𝑖+1

𝑛 − 2𝑐𝑖
𝑛 + 𝑐𝑖−1

𝑛 ) 

𝑊𝑒 𝑔𝑒𝑡,     𝑐𝑖
𝑛+1 = (+

𝛾

2
) 𝑐𝑖−1

𝑛 + (1 − 2)𝑐𝑖
𝑛 + (−

𝛾

2
𝑢𝑖

𝑛) 𝑐𝑖+1
𝑛 ,           (11) 

𝑤ℎ𝑒𝑟𝑒,     𝛾 =
∆𝑡

∆𝑥
𝑢𝑖

𝑛 ,  =
𝐷∆𝑡

∆𝑥2
 

It is seen that the truncation errors for the forward and backward differences are of first order; whereas the 

centered difference yields a second order truncation error (using by Taylor Series expansions). Therefore, both 

the schemes outlined above are consistent. 

STABILITY ANALYSIS 

After surveying the relevant literature on the subject, we discover that no practical stability criterion exists for 

the schemes. We have developed stability conditions for both the schemes in the following two propositions 

and maintaining the criteria we verify the results of the schemes numerically in the next sections. 

proposition 1 

Statement: The stability conditions for the FTBSCS scheme are 

0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷∆𝑡

∆𝑥2 ≤
∆𝑡

∆𝑥
𝑢𝑖

𝑛 ≤ 1 − 2
𝐷∆𝑡

∆𝑥2 

This is guaranteed by the simultaneous inequalities 

0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤
∆𝑥

∆𝑡
− 2

𝐷

∆𝑥
 

Proof: 

The explicit centered difference scheme using by FTBSCS for CDE (2) is given by 
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𝑐𝑖
𝑛+1 = (𝛾 + )𝑐𝑖−1

𝑛 + (1 − 𝛾 − 2)𝑐𝑖
𝑛 + 𝑐𝑖+1

𝑛 ,                  (12) 

where                 𝛾 =
∆𝑡

∆𝑥
𝑢𝑖

𝑛 ,  =
𝐷∆𝑡

∆𝑥2 

The equation (12) implies that if 

0 ≤ 𝛾 +  ≤ 1   (i) 

0 ≤ 1 − 𝛾 − 2 ≤ 1   (ii) 

0 ≤  ≤ 1    (iii) 

 then the new solution is a convex combination of the two previous solutions. That is the solution at new time-

step (n+1) at a spatial node i is an average of the solutions at the previous time-step at the spatial-nodes i-1, i 

and i+1. This means that the extreme value of the new solution is the average of the extreme values of the 

previous two solutions at the three consecutive nodes. Therefore, the new solution continuously depends on the 

initial value 𝑐𝑖
0, 𝑖 = 1, 2, 3, … … … , 𝑀. 

(ii) implies 𝛾 ≤ 1 − 2 ≤ 1 + 𝛾   (iv) 

(i) implies − ≤ 𝛾 ≤ 1 −  

∴ − ≤ 𝛾 ≤ 1 − 2 by (iv) 

Therefore, the conditions are 0 ≤  ≤ 1 and − ≤ 𝛾 ≤ 1 − 2 

That is  0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷∆𝑡

∆𝑥2 ≤
∆𝑡

∆𝑥
𝑢𝑖

𝑛 ≤ 1 − 2
𝐷∆𝑡

∆𝑥2 

 

This is guaranteed by the simultaneous inequality 

0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤
∆𝑥

∆𝑡
− 2

𝐷

∆𝑥
 

Proposition 2 

Statement: The stability conditions for the FTCS scheme are 

 0 ≤
𝐷∆𝑡

∆𝑥2 ≤
1

2
 and −2

𝐷∆𝑡

∆𝑥2 ≤
∆𝑡

∆𝑥
𝑢𝑖

𝑛 ≤ 2 (1 −
𝐷∆𝑡

∆𝑥2).  

This is guaranteed by the conditions 0 ≤
𝐷∆𝑡

∆𝑥2 ≤
1

2
 and −

2𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤ 2 (
∆𝑥

∆𝑡
−

𝐷

∆𝑥
). 

Proof: 

The explicit centered difference scheme using by FTCS for CDE (2) is given by 

𝑐𝑖
𝑛+1 = (+

𝛾

2
) 𝑐𝑖−1

𝑛 + (1 − 2)𝑐𝑖
𝑛 + (−

𝛾

2
𝑢𝑖

𝑛) 𝑐𝑖+1
𝑛 ,    (13) 

where                 𝛾 =
∆𝑡

∆𝑥
𝑢𝑖

𝑛 ,  =
𝐷∆𝑡

∆𝑥2 

The equation (13) implies that if 

0 ≤ +
𝛾

2
≤ 1   (i) 
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0 ≤ 1 − 2 ≤ 1   (ii) 

0 ≤ −
𝛾

2
≤ 1   (iii) 

then the new solution is a convex combination of the two previous solutions. That is, the solution at new time-

step (n+1) at a spatial node i is an average of the solutions at the previous time-step at the spatial-nodes i-1, i 

and i+1. This means that the extreme value of the new solution is the average of the extreme values of the 

previous two solutions at the three consecutive nodes. Therefore, the new solution continuously depends on the 

initial value 𝑐𝑖
0, 𝑖 = 1, 2, 3, … … … . 𝑀. 

(ii) implies 0 ≤  ≤
1

2
    (iv) 

(iii) implies  − 1 ≤
𝛾

2
    (v) 

(i) implies − ≤
𝛾

2
≤ 1 −    (vi) 

From (v) & (vi), it follows that − ≤
𝛾

2
≤ 1 −  

∴ −2 ≤  ≤ 2(1 − ) 

Therefore, (from (v), (vi)) the conditions are 0 ≤  ≤
1

2
 and −2 ≤  ≤ 2(1 − ) 

That is      0 ≤
𝐷∆𝑡

∆𝑥2 ≤
1

2
 and −2

𝐷∆𝑡

∆𝑥2 ≤
∆𝑡

∆𝑥
𝑢𝑖

𝑛 ≤ 2 (1 −
𝐷∆𝑡

∆𝑥2).  

This is guaranteed by the conditions 0 ≤
𝐷∆𝑡

∆𝑥2 ≤
1

2
 and −

2𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤ 2 (
∆𝑥

∆𝑡
−

𝐷

∆𝑥
) 

NUMERICAL SIMULATION AND RESULTS DISCUSSIONS 

Various finite difference equations were used to represent the parabolic model equation (2). It is extremely 

important to experiment with the application of these numerical techniques. It is hoped that by writing 

computer codes and analyzing the results, additional insights into the solution procedures are gained. 

Therefore, this section proposes an example and presents solutions by the described schemes. 

Numerical verification of Stability Conditions: 

 In this study, we assume that the length of spatial domain, l = 6 meters at all time, t = 1minute to t = 6 minutes 

with viscosity,  = 0.01m2/s=36 m2/h and diffusion coefficient, D = 0.01m2/s=36 m2/h. 

The convection-diffusion equation for this problem is  
𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2𝐶

𝜕𝑥2 . Various values of spatial nodes size 

and time steps are to be used to investigate the numerical schemes and the effect of steps on stability.   

An attempt is made to solve the stated problem subject to the imposed initial and Neumann boundary 

conditions by the following: 

The FTBSCS and FTCS schemes with 

I. Spatial step size, x = 0.05 m Temporal step size, t = 0.033s, Time, T = 602 sec 

II. Spatial step size, x = 0.05 m Temporal step size, t = 0.067s, Time, T = 604 sec 

III. Spatial step size, x = 0.05 m Temporal step size, t = 0.01s, Time, T = 606 sec 
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IV. Spatial step size, x = 0.05 m      Temporal step size, t = 0.1192s, Time,T =607.152 sec 

Solutions: 

Case I. When the step sizes are x = 0.05,  t = 0.033. 

In this case, both the schemes are to be used as stated previously. 

The stability conditions of FTBSCS is determined by equation (12) as 

0 ≤  ≤ 1 and − ≤ 𝛾 ≤ 1 − 2 

This is guaranteed by the simultaneous inequalities 

0 ≤
𝐷∆𝑡

∆𝑥2
≤ 1 𝑎𝑛𝑑 −

𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤
∆𝑥

∆𝑡
− 2

𝐷

∆𝑥
 

The stability conditions of FTCS is determined by equation (13) as 

0 ≤  ≤
1

2
 𝑎𝑛𝑑 − 2 ≤  ≤ 2(1 − ) 

This is guaranteed by the conditions 0 ≤
𝐷∆𝑡

∆𝑥2 ≤
1

2
 𝑎𝑛𝑑 −

2𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤ 2 (
∆𝑥

∆𝑡
−

𝐷

∆𝑥
) 

𝑤ℎ𝑒𝑟𝑒,   𝛾 =
∆𝑡

∆𝑥
max (𝑢𝑖

0) ,  =
𝐷∆𝑡

∆𝑥2
 

For this particular application, 

The value of max(𝑢𝑖
0) = 0.02 which satisfies the guaranteed inequality in both the schemes. 

 𝛾 =
∆𝑡

∆𝑥
max(𝑢𝑖

0) =
0.033

0.05
0.02 = 0.0132 𝑎𝑛𝑑 𝜆 =

𝐷∆𝑡

∆𝑥2 =
0.01×0.033

(0.05)2 = 0.132 

FTBSCS  0 ≤ 0.132   ≤ 1 𝑎𝑛𝑑 − 0.132 ≤ 0.0132 ≤ 1 − 20.132 = 0.736 

and 

 FTCS  0 ≤ 0.132 ≤
1

2
 𝑎𝑛𝑑 − 0.264 ≤ 0.0132 ≤ 1.736 

Therefore, the stability conditions for both the schemes are satisfied and a stable solution is expected. The 

concentration profiles are to be obtained up to t = 2 minutes are shown in figure 5.1. 

 

Figure 5.1: Concentration profiles with x = 0.05, t = 0.033 
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Case II. When the step sizes are x = 0.05, t = 0.067. 

In this case, both the schemes are to be used as stated previously. 

The stability conditions of FTBSCS is determined by equation (12) as 

0 ≤  ≤ 1 and − ≤ 𝛾 ≤ 1 − 2 

This is guaranteed by the simultaneous inequalities 

0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤
∆𝑥

∆𝑡
− 2

𝐷

∆𝑥
 

The stability conditions of FTCS is determined by equation (13) as 

0 ≤  ≤
1

2
 and −2 ≤  ≤ 2(1 − ) 

This is guaranteed by the conditions 0 ≤
𝐷∆𝑡

∆𝑥2 ≤
1

2
 and −

2𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤ 2 (
∆𝑥

∆𝑡
−

𝐷

∆𝑥
) 

where                 𝛾 =
∆𝑡

∆𝑥
max (𝑢𝑖

0) ,  =
𝐷∆𝑡

∆𝑥2 

For this particular application, 

The value of max(𝑢𝑖
0) = 0.02 which satisfies the guaranteed inequality in both the schemes. 

  𝛾 =
∆𝑡

∆𝑥
max (𝑢𝑖

0)  =
0.067

0.05
0.02 = 0.0268 and 𝜆 =

𝐷∆𝑡

∆𝑥2 =
0.01×0.067

(0.05)2 = 0.268 

 FTBSCS  0 ≤ 0.268  ≤ 1 and  −0.268 ≤ 0.0268 ≤ 1 − 20.268 = 0.464 

and 

 FTCS  0 ≤ 0.268 ≤
1

2
  and  −0.536 ≤ 0.0268 ≤ 1.464 

Therefore, the stability conditions for both the schemes are satisfied and a stable solution is expected. The 

concentration profiles are to be obtained up to t = 4 minutes are shown in figure 5.2. 

 

Figure 5.2: Concentration profiles with x = 0.05, t = 0.067 
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Case III. When the step sizes are x = 0.05,  t = 0.1. 

In this case, both the schemes are to be used as stated previously. 

The stability conditions of FTBSCS is determined by equation (12) as 

0 ≤  ≤ 1 and − ≤ 𝛾 ≤ 1 − 2 

This is guaranteed by the simultaneous inequalities 

0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤
∆𝑥

∆𝑡
− 2

𝐷

∆𝑥
 

The stability conditions of FTCS is determined by equation (13) as 

0 ≤  ≤
1

2
 and −2 ≤  ≤ 2(1 − ) 

This is guaranteed by the conditions 0 ≤
𝐷∆𝑡

∆𝑥2 ≤
1

2
 and −

2𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤ 2 (
∆𝑥

∆𝑡
−

𝐷

∆𝑥
) 

where                 𝛾 =
∆𝑡

∆𝑥
max (𝑢𝑖

0) ,  =
𝐷∆𝑡

∆𝑥2 

For this particular application, 

The value of max(𝑢𝑖
0) = 0.02 which satisfies the guaranteed inequality in both the schemes. 

  𝛾 =
∆𝑡

∆𝑥
max (𝑢𝑖

0)  =
0.1

0.05
0.02 = 0.04 and 𝜆 =

𝐷∆𝑡

∆𝑥2 =
0.01×0.1

(0.05)2 = 0.4 

FTBSCS   0 ≤ 0.4  ≤ 1  and  −0.4 ≤ 0.04 ≤ 1 − 20.4 = 0.2 

and 

FTCS  0 ≤ 0.4 ≤
1

2
  and  −0.8 ≤ 0.04 ≤ 1.2 

Therefore, the stability conditions for both the schemes are satisfied and a stable solution is expected. The 

concentration profiles are to be obtained up to t = 6 minutes are shown in figure 5.3. 

 

Figure 5.3: Concentration profiles with x = 0.05, t = 0.1 
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Case IV. When the step sizes are increased to x = 0.05,  t = 0.1192, 

The stability conditions of FTBSCS is determined by equation (12) as 

0 ≤  ≤ 1 and − ≤ 𝛾 ≤ 1 − 2 

This is guaranteed by the simultaneous inequalities 

0 ≤
𝐷∆𝑡

∆𝑥2 ≤ 1 and −
𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤
∆𝑥

∆𝑡
− 2

𝐷

∆𝑥
 

The stability conditions of FTCS is determined by equation (13) as 

0 ≤  ≤
1

2
 and −2 ≤  ≤ 2(1 − ) 

This is guaranteed by the conditions 0 ≤
𝐷∆𝑡

∆𝑥2 ≤
1

2
 and −

2𝐷

∆𝑥
≤ max (𝑢𝑖

0) ≤ 2 (
∆𝑥

∆𝑡
−

𝐷

∆𝑥
) 

where                 𝛾 =
∆𝑡

∆𝑥
max (𝑢𝑖

0) ,  =
𝐷∆𝑡

∆𝑥2 

For this particular application, 

The value of max(𝑢𝑖
0) = 0.02 which satisfies the guaranteed inequality in both the schemes. 

 𝛾 =
∆𝑡

∆𝑥
max (𝑢𝑖

0)  =
0.1192

0.05
0.02 = 0.04768 and 𝜆 =

𝐷∆𝑡

∆𝑥2 =
0.01×0.1192

(0.05)2 = 0.4768 

FTBSCS  0 ≤ 0.4768 ≤ 1 and −0.4768 ≤ 0.04768 ≤  0.0464 which does not satisfy the stability 

condition of FTBSCS scheme, and 

FTCS  0 ≤ 0.4768 ≤
1

2
  and  −0.9536 ≤ 0.04768 ≤ 1.0464 

In this case, FTBSCS of the CDE shows an instability which is shown in the following figure 5.4. 

 

Figure 5.4: Concentration profiles with x = 0.05, t = 0.1192 
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𝑒𝑟𝑟 =
∥ 𝑐𝑒 − 𝑐𝑛 ∥1

∥ 𝑐𝑒 ∥1
                                                                       (14) 

where, ce is the exact solution, and cn is the numerical solution computed by the finite difference schemes for 

time 𝑡 ∈ [0, 6]. The following figure 6.1 shows the convergence of relative error by the scheme FTBSCS. 

 

Figure 6.1 Rate of Numerical feature of Convergence 

The following figure 6.2 shows the convergence of relative error by the scheme FTCS. 

 

Figure 6.2 Rate of Numerical feature of Convergence 

The following figure 6.3 shows the comparison of relative errors for the both schemes. 

 

Figure 6.3 Comparison of relative errors for the both schemes 
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CONCLUSION 

We have developed stability conditions and numerical solutions by using FTBSCS and FTCS schemes for 

convection diffusion equation with an initial condition and Neumann boundary conditions. The solution of 

Burger’s equation is used as convection term in the CDE. Some numerical experiment is presented graphically.  

In the Figure 5.1, 5.2, 5.3, it has been found that FTCS scheme gives better pointwise solution than FTBSCS 

scheme. In figure 5.4, an unstable solution is appeared by using FTBSCS scheme however, the solutions by 

using FTCS scheme is stable at the increased time step size t = 0.1192 and it is numerically shown that FTCS 

scheme is superior to FTBSCS scheme interms of time step selection.  

The analytical result is used for code validation and for error comparison of both schemes. In addition, it is 

used to study the effect of step size on the accuracy of solutions. The results shown in Figure 6.1 – 6.3 are the 

error terms as defined above at time level [1, 6]. Two points to emphasize with regard to Figure 6.1-6.3 are: (1) 

for this application, the FTCS scheme has minimum error in comparison with FTBSCS scheme, and the 

amount of error is decreased for the both schemes as the solution is marched in time. This error reduction is 

due to a decrease in the influence of the initial data. 
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