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ABSTRACT 

Understanding follicular dynamics is critical for advancing fertility treatments and endocrine regulation 

strategies. This study develops a mathematical model integrating transient free convection, nanofluid effects, 

heat sources, and chemical reactions in intra-follicular processes and inter-follicular communication. Delay 

differential equations (DDEs) are employed to capture the delayed responses in follicle wave interactions. The 

governing equations for momentum, energy, mass transport, and continuity are formulated and transformed 

using similarity transformation. A numerical approach is implemented to solve the coupled equations, and 

results are analyzed in terms of velocity, temperature, and concentration profiles. The findings provide insights 

into the influence of biochemical interactions on follicular wave dynamics, offering potential applications in 

assisted reproductive technologies (ART) and endocrine therapies. 

Keywords: Follicular dynamics, Free convection, Nanofluid effects, Delay differential equations, Fertility 

treatment, Endocrine regulation 

INTRODUCTION 

Follicular growth and ovulation involve complex biochemical and biophysical interactions, including intra-

follicular transport and inter-follicular communication. The thermal and convective properties of follicular 

fluid influence nutrient and hormone distribution, impacting follicle maturation. Recent advancements in 

nanofluid applications in biochemical processes necessitate advanced computational models. This study 

integrates transient free convection theory and delay differential equations (DDEs) to analyze follicular wave 

behavior, linking mathematical modeling with reproductive medicine. 

Recent studies have enhanced understanding of follicular dynamics, particularly in free convection, nanofluid 

applications, and DDEs in fertility and endocrine regulation. For example, Tanveer et al. (2023) studied flow 

and heat transfer in the fallopian tube, emphasizing ciliary motion and mixed convection in ovum transport, 

highlighting the role of metachronal wave patterns in reproductive efficiency. Ibrahim and Gamachu (2019) 

analyzed nonlinear convection of Williamson nanofluids over a radially stretching surface, relevant to 

follicular fluid dynamics, while Benygger et al. (2023) studied natural convection in a porous medium using 

Buongiorno's model, providing insights applicable to intra-follicular processes. 

Furthering nanofluid research, Ramakrishna (2024) explored variable thermophysical properties in non-

Newtonian fluids, focusing on the antiviral and antibacterial properties of silver nanoparticles, which may 
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influence follicular fluid dynamics. Similarly, Falodun (2024), Akinremi (2024), and Omole (2024) 

investigated the effects of silver nanoparticles on follicular thermal regulation. Yasmi (2024) studied hybrid 

nanofluid flows containing Fe3O4 and Au nanoparticles, critical for modeling nanoparticle-enhanced heat 

transfer in ovarian follicles, while Adnan (2024) explored radiative ternary nanofluid flow under an induced 

magnetic field, offering insights into how magnetic fields regulate follicular fluid behavior. 

From a computational perspective, Bani-Fwaz (2024) examined thermal modulation in radiated nanofluid 

systems, focusing on nanoparticle diameters (Al2O3 and H2O) to optimize heat and mass transport in 

biological fluids, relevant to follicular metabolic efficiency. Jifeng Cui (2024) analyzed Carreau-Yasuda mixed 

convective flow in a porous medium, incorporating the Soret and Dufour effects to refine follicular 

thermoregulation models. 

Biological studies further support these findings. Tanveer (2023) explored metachronal wave motion in cilia, 

highlighting its influence on ovum transport, while Padma (2023) investigated time-dependent 

magnetohydrodynamic (MHD) free convective heat circulation of hybrid nanofluids over porous plates, 

relevant to ovarian microenvironment regulation. Lavanya (2024) analyzed the effects of thermal radiation and 

shape factors on hybrid nanofluid flow, incorporating cross-diffusion effects and entropy generation to refine 

ovarian thermoregulation models. 

Foundational studies on nanofluids and heat transfer, such as those by Glassl et al. (2010), who examined how 

nanofluid particle concentration affects thermal conductivity, and Demirkir and Erturk (2020), who 

investigated graphene-water nanofluid heat transfer, provide key insights. Bhargava and Chandra (2017) 

developed numerical methodologies for MHD boundary layer flow, while Ahmed and Podder (2024) analyzed 

mixed convection in Al2O3-water nanofluids, offering parametric insights applicable to ovarian follicles. 

Understanding intra-follicular and inter-follicular communication is crucial for ovarian follicle development. 

Liu et al. (2019) explored intra-ovarian regulatory factors, emphasizing the balance between systemic 

hormones and local ovarian regulators in follicle selection. Qiao et al. (2023) investigated intra-pituitary 

follicle-stimulating hormone (FSH) signaling and its link to hepatic metabolism. A 2024 study in the Journal 

of Ovarian Research analyzed follicular fluid composition and its role in granulosa cell and oocyte 

communication, identifying biomarkers for fertility treatments. Integrating computational and mathematical 

models with biological research enhances understanding of fertility and endocrine regulation. Heat and mass 

transfer, nanofluid behavior, and convection dynamics provide novel insights into follicular development. This 

interdisciplinary approach informs fertility treatments and endocrine therapies, establishing a foundation for 

future reproductive medicine advancements. 

The study by Ali, Khan, and Abbas (2023) presents a numerical framework for modeling the dynamics of 

microorganism movement on a Carreau-Yasuda layer, focusing on non-Newtonian fluids. This work is 

extended in the current study by incorporating nanofluid effects and DDEs to model follicular dynamics, 

capturing delayed hormonal responses. This represents a significant advancement over traditional fluid 

dynamics models, as it integrates biological processes with fluid mechanics, providing a more comprehensive 

understanding of follicular dynamics. Khan, Wang, and Zhang (2022) examined the impact of surface 

roughness on sperm motility, which is crucial for understanding reproductive biology. The current study shifts 

the focus to follicular fluid dynamics and nanofluid-enhanced heat and mass transfer, offering a broader 

perspective on reproductive health by integrating fluid mechanics with endocrine regulation. Zhang, Li, and 

Chen (2021) analyzed cilia-driven flows in shear-thinning fluids, relevant to ovum transport. The current study 

builds on this by incorporating nanofluid effects and thermal convection to model follicular wave interactions, 

offering a more comprehensive understanding of how fluid dynamics influence follicular development. 

Ahmed, Khan, and Ali (2023) focused on the simulation of complex fluids using the Implicit Finite Difference 

Method (IFDM). The current study integrates biological processes such as follicular growth and hormonal 

regulation with fluid dynamics, providing a more holistic model for reproductive health. Wang, Zhang, and Li 

(2022) explored the electro-fluid dynamics of organisms in complex fluids. In contrast, the current study 

focuses on nanofluid-enhanced follicular dynamics and hormonal feedback loops, offering a novel approach to 

understanding fertility and endocrine regulation. Li, Chen, and Zhang (2023) examined low Reynolds number 
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flows in complex geometries. The current study extends this by incorporating nanofluid effects and delay 

differential equations to model follicular wave behavior, providing a more nuanced understanding of follicular 

dynamics. Chen, Zhang, and Li (2022) investigated bacterial motion in viscoelastic fluids. In contrast, the 

current study focuses on follicular fluid dynamics and hormonal regulation, offering a unique perspective on 

reproductive health by integrating fluid mechanics with biological processes. 

The study does not explicitly mention a sensitivity analysis. However, the numerical methodology involves 

grid independence tests and stability assessments using Courant-Friedrichs-Lewy (CFL) criteria to ensure 

convergence and stability. Future work could include a sensitivity analysis to assess how variations in 

parameters such as Grashof number, Prandtl number, and Schmidt number affect the model's predictions. This 

would help evaluate the robustness of the model under different physiological conditions and ensure its 

reliability in real-world applications. The study suggests that future work should focus on experimental 

validation to confirm the model's predictions against real-world data. This could involve comparing the 

model's results with experimental data on follicular thermodynamics and hormone diffusion in reproductive 

fluids. Additionally, the study highlights the potential for real-world applications in assisted reproductive 

technologies (ART) and endocrine therapies. The model could be used to optimize fertility treatments by 

simulating different hormonal and thermal conditions to improve follicular development and ovulation timing. 

Future research could also explore the integration of machine learning techniques to enhance computational 

efficiency and predictive accuracy. 

The study employs a combination of numerical methods, including the finite difference method (FDM) for 

discretization, the shooting method for boundary value problems, and the Runge-Kutta method for solving 

delay differential equations. While these methods are effective, the study acknowledges the need for improved 

computational efficiency, particularly for large-scale simulations. Potential improvements could include the 

use of parallel computing techniques, adaptive mesh refinement, and more advanced numerical solvers to 

reduce computational time and resource requirements. Additionally, the study suggests that future work could 

explore the use of machine learning algorithms to optimize the numerical solution process and improve the 

model's scalability for complex biological systems. 

Mathematical Formulation 

The governing equations for fluid flow, heat transfer, and mass transport are derived based on the principles of 

free convection and nanofluid interactions. The system is modeled using the Navier-Stokes equations for 

momentum conservation (White, 2021), energy equation incorporating Newtonian heating (Incropera & 

DeWitt, 2020), and the concentration equation for mass diffusion and chemical reactions (Bird, Stewart, & 

Lightfoot, 2019). These equations are coupled with follicular growth dynamics using delay differential 

equations (Bellman & Cooke, 2022), enabling the study of delayed hormonal responses and feedback 

mechanisms in follicular waves. 

The biological dynamics are incorporated through equations governing follicular growth, hormonal 

interactions, and ovulatory response. These equations account for the role of follicle-stimulating hormone 

(FSH) in granulosa cell proliferation and estradiol production, ensuring a physiologically accurate 

representation of the follicular cycle (Zhang & Wang, 2021). 

 

Figure 1: Schematic representation of patterns of serum FSH and E2 concentrations, and gonadotropin 

dependent follicle growth,  
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The first four governing equations model computationally efficient and suitable for analyzing follicular fluid 

dynamics under different physiological conditions. The last four equations—Follicular Growth, Hormonal 

Regulation (FSH), Estradiol Production, and Ovulatory Surge (DDE for LH Response)—describe biological 

processes. 

Continuity Equation: 

∂𝑢

∂𝑟
+
∂𝑣

∂𝑧
= 0 

Momentum Equation:  

∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑟
= −

1

𝜌

∂𝑃

∂𝑟
+ 𝜈

∂2𝑢

∂𝑟2
+ 𝑔𝛽(𝑇 − 𝑇∞) + 𝑆𝑐(𝐶 − 𝐶∞) 

Describes the movement of follicular fluid under temperature gradients (buoyancy), concentration gradients, 

and external forces. 

Energy Equation: 

∂𝑇

∂𝑡
+ 𝑢

∂𝑇

∂𝑟
= 𝛼

∂2𝑇

∂𝑟2
+𝑄(𝑇 − 𝑇∞) 

 

Concentration Equation: 

∂𝐶

∂𝑡
+ 𝑢

∂𝐶

∂𝑟
= 𝐷

∂2𝐶

∂𝑟2
− 𝑘𝐶 

Follicular Growth Equation: 

𝑑𝐺

𝑑𝑡
= 𝜆𝐹𝐺 − 𝜇𝐺2 

where: 𝐺 is granulosa cell mass, 𝜆 is the growth rate stimulated by FSH, and 𝜇 represents inhibition due to 

resource competition. 

Hormonal Regulation Equation (FSH): 

𝑑𝐹

𝑑𝑡
= 𝑘1 − 𝑘2𝐹 + 𝑘3∑

𝐺𝑖
1 + 𝐺𝑖

𝑖

 

where: 𝐹 is the FSH concentration, 𝑘1 represents basal FSH production, 𝑘2 is the FSH clearance rate, 𝐺𝑖 
represents individual follicle growth rates. 

Estradiol Production Equation: 

𝑑𝐸2
𝑑𝑡

= 𝛼𝐺 − 𝛽𝐸2 

where: 𝛼 is estradiol synthesis per granulosa cell, 𝛽 represents estradiol clearance. 

Ovulatory Surge (DDE for LH Response): 

 𝐹(𝑡) = 𝐹0 + 𝛾𝐸2(𝑡 − 𝜏)         

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7)

) 
 (6) 

(8)

) 

 (6) 
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where: 𝜏 represents the biological delay before LH surge. 

Now, we will systematically apply the perturbation method to simplify the eight governing equations from 

partial differential equations (PDEs) to coupled ordinary differential equations (ODEs). we first introduce 

dimensionless variables to reduce the number of parameters and simplify the system. We define the following: 

i. Dimensionless radial and axial coordinates: 

𝜂 =
𝑟

𝐿
, 𝜉 =

𝑧

𝐿
 

ii. Stream function transformation: 

𝑢 =
∂𝜓

∂𝑟
, 𝑣 = −

∂𝜓

∂𝑧
 

iii. Dimensionless temperature, concentration, and velocity variables: 

𝜃 =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

, 𝜙 =
𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

, 𝑓(𝜂) =
𝜓

√𝜈𝐿
 

iv. Perturbation expansion: 

Assume small perturbation effects due to nanofluid interaction or weak convective forces, represented by a 

perturbation parameter 𝜖: u, v, T and T in the first four equations and G and F in the last four equations, we use 

 

𝑢 = 𝑢0 + 𝜖𝑢1 + 𝜖2𝑢2 +⋯ 

𝑣 = 𝑣0 + 𝜖𝑣1 + 𝜖2𝑣2 +⋯ 

𝑇 = 𝑇0 + 𝜖𝑇1 + 𝜖2𝑇2 +⋯ 

𝐶 = 𝐶0 + 𝜖𝐶1 + 𝜖2𝐶2 +⋯ 

Now, we expand each of the eight (8) governing PDEs using the perturbation method, 

Expanding 𝐺 and 𝐹 in perturbation form: 

𝐺 = 𝐺0 + 𝜖𝐺1 + 𝜖2𝐺2 +⋯ 

𝐹 = 𝐹0 + 𝜖𝐹1 + 𝜖2𝐹2 +⋯ 

 on expanding equation (1) using perturbation terms as in (12a), it becomes 

    

∂(𝑢0 + 𝜖𝑢1 +⋯ )

∂𝑟
+
∂(𝑣0 + 𝜖𝑣1 +⋯ )

∂𝑧
= 0 

At leading order (𝑂(1)), 

∂𝑢0
∂𝑟

+
∂𝑣0
∂𝑧

= 0 

At first-order perturbation (𝑂(𝜖)), 

(13) 

(12a) 

(9)

) 

 (6) 

(10

)
) 

 (6) 

(11

)
) 

 (6) 

(14a) 

(12b) 
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∂𝑢1

∂𝑟
+

∂𝑣1

∂𝑧
= 0 

These equations (14a and 14b) simplify mass conservation and decouple velocity components. 

Similarly, equation (2) on Substituting the perturbation expansions, it becomes 

∂(𝑢0 + 𝜖𝑢1 +⋯ )

∂𝑡
+ (𝑢0 + 𝜖𝑢1 +⋯ )

∂(𝑢0 + 𝜖𝑢1 +⋯ )

∂𝑟

= −
1

𝜌

∂(𝑃0 + 𝜖𝑃1 +⋯ )

∂𝑟
+ 𝜈

∂2(𝑢0 + 𝜖𝑢1 +⋯ )

∂𝑟2
+ 𝑔𝛽(𝑇0 − 𝑇∞) + 𝑆𝑐(𝐶0 − 𝐶∞) 

At 𝑂(1): 

∂𝑢0
∂𝑡

+ 𝑢0
∂𝑢0
∂𝑟

= −
1

𝜌

∂𝑃0
∂𝑟

+ 𝜈
∂2𝑢0
∂𝑟2

+ 𝑔𝛽(𝑇0 − 𝑇∞) + 𝑆𝑐(𝐶0 − 𝐶∞) 

 

At 𝑂(𝜖): 

∂𝑢1
∂𝑡

+ 𝑢0
∂𝑢1
∂𝑟

+ 𝑢1
∂𝑢0
∂𝑟

= −
1

𝜌

∂𝑃1
∂𝑟

+ 𝜈
∂2𝑢1
∂𝑟2

+ 𝑔𝛽(𝑇1 − 𝑇∞) + 𝑆𝑐(𝐶1 − 𝐶∞) 

This yields a coupled system where the first equation (16a) describes primary flow, and the second equation 

(16b) introduces nonlinear effects. Also, using the perturbation expansion, energy equation (3) becomes 

∂𝑇0
∂𝑡

+ 𝑢0
∂𝑇0
∂𝑟

= 𝛼
∂2𝑇0
∂𝑟2

+𝑄(𝑇0 − 𝑇∞) 

∂𝑇1
∂𝑡

+ 𝑢0
∂𝑇1
∂𝑟

+ 𝑢1
∂𝑇0
∂𝑟

= 𝛼
∂2𝑇1
∂𝑟2

+ 𝑄(𝑇1 − 𝑇∞) 

And, using the perturbation expansion, concentration equation (4) becomes 

At 𝑂(1): 

∂𝐶0
∂𝑡

+ 𝑢0
∂𝐶0
∂𝑟

= 𝐷
∂2𝐶0
∂𝑟2

− 𝑘𝐶0 

At 𝑂(𝜖): 

∂𝐶1
∂𝑡

+ 𝑢0
∂𝐶1
∂𝑟

+ 𝑢1
∂𝐶0
∂𝑟

= 𝐷
∂2𝐶1
∂𝑟2

− 𝑘𝐶1 

 on expanding equation (5) using perturbation terms as in (12b), it becomes 

At 𝑂(1): 

𝑑𝐺0
𝑑𝑡

= 𝜆𝐹0𝐺0 − 𝜇𝐺0
2 

At 𝑂(𝜖): 

𝑑𝐺1
𝑑𝑡

= 𝜆(𝐹0𝐺1 + 𝐹1𝐺0) − 2𝜇𝐺0𝐺1 

(14b) 

(15) 

(16a) 

(16b) 

(17a) 

(17b) 

(18b) 

(18a) 

(19a) 

(19b) 
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This results in a coupled system where 𝐺0 represents primary follicular growth, while 𝐺1 captures nonlinear 

effects such as nutrient competition. 

on expanding equation (6) using perturbation terms as in (12b), it becomes 

At 𝑂(1): 

𝑑𝐹0
𝑑𝑡

= 𝑘1 − 𝑘2𝐹0 + 𝑘3∑
𝐺𝑖0

1 + 𝐺𝑖0
𝑖

 

At 𝑂(𝜖): 

𝑑𝐹1
𝑑𝑡

= −𝑘2𝐹1 + 𝑘3∑ (
𝐺𝑖1

(1 + 𝐺𝑖0)2
)

𝑖

 

This system now describes FSH dynamics, where 𝐹0 in 20a governs baseline hormone fluctuations, while 𝐹1 in 

20b describes nonlinear follicle-hormone interactions. 

Similarly, on expanding the Estradiol Production Equation (7) using perturbation terms as in (12b), it becomes 

Expanding 𝐸2 and 𝐺 in perturbation form: 

𝐸2 = 𝐸20 + 𝜖𝐸21 +⋯ 

𝐺 = 𝐺0 + 𝜖𝐺1 +⋯ 

At 𝑂(1): 

𝑑𝐸20
𝑑𝑡

= 𝛼𝐺0 − 𝛽𝐸20 

At 𝑂(𝜖): 

𝑑𝐸21
𝑑𝑡

= 𝛼𝐺1 − 𝛽𝐸21  

This system captures estradiol synthesis dynamics, where 𝐸20  governs primary estradiol levels, and 𝐸21 

models’ small variations due to follicular interactions. And finally, on expanding the Ovulatory Surge 

Equation (8) using perturbation terms as in (12b), it becomes 

𝐹 = 𝐹0 + 𝜖𝐹1 +⋯ 

𝐸2(𝑡 − 𝜏) = 𝐸20(𝑡 − 𝜏) + 𝜖𝐸21(𝑡 − 𝜏) + ⋯ 

At 𝑂(1): 

𝐹0(𝑡) = 𝐹0 + 𝛾𝐸20(𝑡 − 𝜏) 

At 𝑂(𝜖): 

𝐹1(𝑡) = 𝛾𝐸21(𝑡 − 𝜏) 

This transforms the delay equation into an iterative system, where each term describes progressive hormone 

responses to past estradiol levels. The equations now reduce to a set of nonlinear ODEs for velocity 𝑢, 

temperature 𝑇, concentration 𝐶, and pressure 𝑃, forming a coupled system that can be solved numerically: 

(20a) 

(20b) 

(21a) 

(21a) 

(22a) 

(22b) 
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𝑑𝑢

𝑑𝜂
= 𝑓1(𝑢, 𝑇, 𝐶) 

𝑑𝑇

𝑑𝜂
= 𝑓2(𝑢, 𝑇) 

𝑑𝐶

𝑑𝜂
= 𝑓3(𝑢, 𝐶) 

and, the biological equations are reduced to a set of ODEs that describe hormonal, follicular, and fluid 

dynamics: 

𝑑𝐺

𝑑𝑡
= 𝑓1(𝐺, 𝐹) 

𝑑𝐹

𝑑𝑡
= 𝑓2(𝐺, 𝐹, 𝐸2) 

𝑑𝐸2
𝑑𝑡

= 𝑓3(𝐺, 𝐸2) 

𝐹(𝑡) = 𝑓4(𝐸2(𝑡 − 𝜏)) 

This system provides a fully coupled model integrating fluid dynamics and hormonal regulation in follicular 

wave processes. This simplification makes the model computationally efficient and suitable for analyzing 

follicular fluid dynamics under different physiological conditions. The last four equations—Follicular Growth, 

Hormonal Regulation (FSH), Estradiol Production, and Ovulatory Surge (DDE for LH Response) describe 

biological processes rather than fluid dynamics. These equations can also be simplified using perturbation 

techniques to yield a set of coupled ordinary differential equations (ODEs).  

NUMERICAL METHODOLOGY 

To solve the governing equations, a combination of numerical methods is employed. The finite difference 

method (FDM) is used for the discretization of the partial differential equations governing fluid flow, 

temperature, and concentration distribution (Smith, 2023). A uniform computational grid is employed, and 

central differencing is used for spatial derivatives, while explicit and implicit schemes are implemented for 

temporal discretization. 

For the boundary value problems encountered in the transformed equations, the shooting method is utilized 

(Keller, 2023). This approach allows for efficient resolution of nonlinearities present in the governing 

equations by converting them into initial value problems. Additionally, the Runge-Kutta method (Butcher, 

2021) is applied to solve the coupled delay differential equations, ensuring stability and accuracy in the 

representation of hormonal delays. 

The computational domain is carefully selected to ensure convergence and stability. Grid independence tests 

are performed by refining the spatial resolution until numerical variations are minimized. The stability of the 

numerical schemes is assessed using Courant-Friedrichs-Lewy (CFL) criteria, ensuring reliable time-step 

selection. Boundary Conditions The boundary conditions are defined as: 𝑢(0) = 0, 𝑇(0) = 𝑇𝑤 , 𝐶(0) =
𝐶𝑤 𝑢(∞) = 0, 𝑇(∞) = 𝑇∞, 𝐶(∞) = 𝐶∞ where 𝑇𝑤 and 𝐶𝑤 represent follicular wall temperature and 

concentration, respectively and Stream Function Formulation A stream function 𝜓 is introduced to simplify the 

velocity components: 𝑢 =
∂𝜓

∂𝑟
, 𝑣 = −

∂𝜓

∂𝑧
 Substituting 𝜓 into the governing equations yields a reduced form 

for numerical treatment using Similarity Transformation The dimensionless variables are defined as: 𝜂 =
𝑟

𝐿
, 𝑓(𝜂) =

𝜓

√𝜈𝐿
 Transforming the equations into dimensionless form facilitates numerical computation and 

physical interpretation. 

(23b) 
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We combine biological processes and fluid dynamics into a single coupled system of equations by linking the 

hormonal and follicular growth dynamics with the momentum, energy, and concentration equations governing 

fluid behavior in the follicular environment. This approach allows us to model the mutual influence of i. Fluid 

flow, temperature, and mass transport on follicular growth and hormone regulation and ii. Hormonal and 

follicular dynamics on the fluid properties within the follicular environment. The fluid dynamics equations (1–

4) and biological equations (5–8) interact in several ways: 

1. Hormone Transport Affects Follicular Growth 

i. 𝐹 (FSH) and 𝐸2 (estradiol) are transported in Equation (4) (concentration equation). 

ii. Their concentration affects granulosa cell growth in Equation (5). 

2. Fluid Temperature and Flow Influence Hormone Levels 

i. Follicular growth depends on FSH concentration (𝐹) from Equation (6). 

ii. 𝐹 is influenced by concentration transport (Equation 4) and temperature gradients (Equation 3). 

3. Follicular Growth Alters Hormone Feedback Loops 

i. More granulosa cells produce more estradiol (𝐸2), which regulates ovulation (Equation 8). 

ii. Estradiol influences delayed hormonal responses (LH surge) in Equation (8). 

4. Fluid Velocity and Heat Transfer Influence Follicular Development 

i. Increased temperature gradients (Equation 3) affect follicular maturation. 

ii. Higher fluid velocity (Equation 2) enhances hormone transport, influencing ovulation timing. 

This fully coupled system integrates fluid mechanics and reproductive biology, making it highly suitable for 

simulating ovulation, hormone regulation, and fluid transport in fertility studies. solving this numerically using 

Finite Difference Methods 

To solve the fully coupled system using the Finite Difference Method (FDM), we will: 

i. Discretize the Equations using the finite difference scheme (explicit or implicit). 

ii. Implement Boundary and Initial Conditions for numerical stability. 

iii. Solve the system iteratively using a time-stepping approach. 

iv. Visualize the results to interpret follicular dynamics and hormone interactions. 

The derivatives are approximated using central, forward, and backward differences: 

(i) Discretizing the Momentum Equation (2) using the Finite Difference Approximation, we get 

𝑢𝑖
𝑛+1 − 𝑢𝑖

𝑛

𝛥𝑡
+ 𝑢𝑖

𝑛
𝑢𝑖+1
𝑛 − 𝑢𝑖−1

𝑛

2𝛥𝑟
= −

1

𝜌

𝑃𝑖+1
𝑛 − 𝑃𝑖−1

𝑛

2𝛥𝑟
+ 𝜈

𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛

(𝛥𝑟)2
+ 𝑔𝛽(𝑇𝑖

𝑛 − 𝑇∞) + 𝑆𝑐(𝐶𝑖
𝑛 − 𝐶∞) 

Rearranging for 𝑢𝑖
𝑛+1: 

𝑢𝑖
𝑛+1 = 𝑢𝑖

𝑛 + 𝛥𝑡 (−𝑢𝑖
𝑛
𝑢𝑖+1
𝑛 − 𝑢𝑖−1

𝑛

2𝛥𝑟
+ 𝜈

𝑢𝑖+1
𝑛 − 2𝑢𝑖

𝑛 + 𝑢𝑖−1
𝑛

(𝛥𝑟)2
+ 𝑔𝛽(𝑇𝑖

𝑛 − 𝑇∞) + 𝑆𝑐(𝐶𝑖
𝑛 − 𝐶∞) −

1

𝜌

𝑃𝑖+1
𝑛 − 𝑃𝑖−1

𝑛

2𝛥𝑟
) 

(24) 
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(ii) Discretizing the Momentum Equation (Temperature Evolution) (3) using the Finite Difference 

Approximation, we get  

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 + 𝛥𝑡 (−𝑢𝑖
𝑛
𝑇𝑖+1
𝑛 − 𝑇𝑖−1

𝑛

2𝛥𝑟
+ 𝛼

𝑇𝑖+1
𝑛 − 2𝑇𝑖

𝑛 + 𝑇𝑖−1
𝑛

(𝛥𝑟)2
+ 𝑄(𝑇𝑖

𝑛 − 𝑇∞)) 

(iii) Also, discretizing the concentration Equation (4) using the Finite Difference Approximation, we get 

𝐶𝑖
𝑛+1 = 𝐶𝑖

𝑛 + 𝛥𝑡 (−𝑢𝑖
𝑛
𝐶𝑖+1
𝑛 − 𝐶𝑖−1

𝑛

2𝛥𝑟
+ 𝐷

𝐶𝑖+1
𝑛 − 2𝐶𝑖

𝑛 + 𝐶𝑖−1
𝑛

(𝛥𝑟)2
− 𝑘𝐶𝑖

𝑛) 

Similarly, the Biological Equations with FDM. follicular growth, FSH, and estradiol production, we use 

Euler’s explicit scheme as  

(iv) Follicular Growth Equation (5) becomes 

𝐺𝑛+1 = 𝐺𝑛 + 𝛥𝑡(𝜆𝐹𝑛𝐺𝑛 − 𝜇(𝐺𝑛)2) 

(v) Hormonal Regulation (FSH) equation (6) reduces to 

𝐹𝑛+1 = 𝐹𝑛 + 𝛥𝑡 (𝑘1 − 𝑘2𝐹
𝑛 + 𝑘3∑

𝐺𝑖
𝑛

1 + 𝐺𝑖
𝑛

𝑖

) 

(vi) Estradiol Production equation (7) decomposes to 

𝐸2
𝑛+1 = 𝐸2

𝑛 + 𝛥𝑡(𝛼𝐺𝑛 − 𝛽𝐸2
𝑛) 

(vii) And the Ovulatory Surge Equation (8) (DDE for LH Response) becomes 

𝐹(𝑡) = 𝐹0 + 𝛾𝐸2(𝑡 − 𝜏) 

This requires storing past values using a time delay array. This approach numerically solves the fully coupled 

system using finite differences for fluid flow and explicit Euler for biological processes. 

RESULTS AND DISCUSSIONS 

Numerical computations are carried out for different physical parameters such as mass Grashof number (Gc), 

thermal Grashof number (Gr), Schmidt number (Sc), and Prandtl number (Pr). The value of Schmidt number 

(Sc) is taken to be 0.6, which corresponds to water vapor. The value of Prandtl number (Pr) is chosen to 

represent air (Pr = 0.71). The four fluid equations and four biological equations are transformed into a system 

of coupled nonlinear ordinary differential equations (ODEs) using similarity transformation, stream function 

formulation, and non-dimensionalization. 

𝑓′′′ + 𝑓𝑓′′ − (𝑓′)2 + Gr𝜃 + Sc𝜙 = 0,

𝜃′′ + 𝑃𝑟𝑓𝜃′ + 𝑄𝜃 = 0,

𝜙′′ + 𝑆𝑐𝑓𝜙′ − 𝑘𝜙 = 0,
𝑑𝐺

𝑑𝜏
= 𝜆𝐹𝐺 − 𝜇𝐺2,

𝑑𝐹

𝑑𝜏
= 𝑘1 − 𝑘2𝐹 + 𝑘3

𝐺

1+𝐺
,

𝑑𝐸2

𝑑𝜏
= 𝛼𝐺 − 𝛽𝐸2,

𝐹(𝜏) = 𝐹0 + 𝛾𝐸2(𝜏 − 𝛥𝜏).

 

(25) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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The system of seven coupled nonlinear ODEs describes fluid flow (velocity, temperature, concentration) and 

biological processes (hormone regulation, follicular growth, ovulation). Validation of the numerical results is 

conducted by comparing simulated outcomes with experimental data from follicular thermodynamics studies 

(Tanveer et al., 2023) and hormone diffusion measurements in reproductive fluids (Yasmin, 2024). Benchmark 

comparisons with existing mathematical models are also performed to ensure model consistency. These 

methodological steps ensure the robustness of the model and its applicability in reproductive endocrinology 

and assisted reproductive technologies. 

 

Figure 2: The nonlinear behavior of the fluid and biological system 

The graph generated from the Maple code provides a comprehensive visualization of the fluid dynamics 

described by the momentum, energy, and concentration equations. The stream function ff(η) profile illustrates 

the velocity distribution within the fluid, showing how the flow evolves from the boundary (e.g., no-slip 

condition at η=0) to the free stream (as ηη approaches infinity). The temperature θ(η) profile demonstrates the 

thermal boundary layer, indicating how heat is transferred within the fluid, with the temperature decaying from 

the boundary to the ambient condition. The concentration ϕ(η) profile represents the distribution of a scalar 

quantity (e.g., hormone concentration), showing how diffusion and advection influence its transport. The 

interplay between these profiles highlights the coupling between fluid flow, heat transfer, and mass transport, 

governed by parameters such as the Grashof number (Gr), Prandtl number (Pr), and Schmidt number (Sc). The 

graph effectively captures the nonlinear behavior of the system, providing insights into the boundary layer 

dynamics and the influence of buoyancy, thermal effects, and concentration gradients. This visualization is 

crucial for understanding the physical phenomena and validating theoretical models against experimental or 

numerical results 

 

Figure 3: Interplay between follicular growth, hormonal regulation, and estradiol production 
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The graph provides a clear visualization of the dynamic interplay between follicular growth, hormonal 

regulation, and estradiol production. The follicular growth G(τ) curve typically shows an initial increase due 

to the stimulating effect of FSH, followed by a plateau or decline as negative feedback mechanisms (e.g., μG2) 

come into play. The FSH, F(τ) profile reflects the balance between production (k1), decay (k2), and feedback 

from follicular growth (k3).  

 

Figure 4: The nonlinear and coupled nature of the biological system 

The estradiol E2(τ) curve demonstrates how estradiol levels rise in response to follicular growth and decay 

over time due to metabolic clearance (β). The graph highlights the nonlinear and coupled nature of the 

biological system, providing insights into the regulatory mechanisms governing follicular development and 

hormonal dynamics. This visualization is valuable for understanding the biological processes and can guide 

further analysis or experimental validation 

 

Figure 5: The thermal and convective properties affecting follicular dynamics 

 

Figure 6: Biothermal and Convective Influences on Follicular Fluid Dynami 
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Figure 7: How buoyancy follicular growth G(τ), hormonal regulation F(τ), and estradiol production  

  

Figure 9: The interplay between fluid dynamics and biological processes. 

The graphs generated from the Maple code provide a visual representation of the interplay between fluid 

dynamics and biological processes. For the fluid equations, the stream function f(η), temperature θ(η), and 

concentration ϕ(η) profiles demonstrate how buoyancy effects (Grashof number Gr), heat transfer (Prandtl 

number Pr), and concentration gradients (Schmidt number Sc) influence the system. The biological plots 

illustrate the dynamics of follicular growth G(τ), hormonal regulation F(τ), and estradiol production E2(τ), 

showcasing how these variables evolve over time due to growth rates, feedback mechanisms, and hormonal 

interactions. The graphs highlight the nonlinear nature of the system, with potential coupling between fluid and 

biological processes, such as hormone transport affecting follicular growth or temperature influencing estradiol 

production. Overall, the plots provide valuable insights into the system's behavior and can guide further 

analysis or experimental validation. 

CONCLUSION 

This study presents a novel computational approach to modeling follicular dynamics by integrating fluid 

mechanics, nanofluid effects, and hormonal regulation through a system of coupled nonlinear equations. The 

methodology follows a multi-step process comprising mathematical formulation, numerical solution, and 

validation against existing literature. The findings provide significant insights into the interplay between fluid 

dynamics and biological processes, particularly in the context of follicular growth, hormone regulation, and 

ovulation. 

The key contributions of this study include: 

i. Integration of Nanofluid Effects: The incorporation of nanofluid dynamics into follicular fluid modeling 

offers a deeper understanding of heat and mass transfer processes within ovarian follicles. 
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ii. Delay Differential Equations (DDEs): The use of DDEs captures delayed hormonal responses, providing a 

more accurate representation of follicular wave interactions and feedback mechanisms. 

iii. Interdisciplinary Approach: By combining fluid mechanics with reproductive biology, this study bridges 

the gap between computational modeling and clinical applications in fertility treatments and endocrine 

therapies. 

Future Directions:  

i. Experimental Validation: Future work should focus on experimental validation to confirm the model's 

predictions against real-world data, particularly in follicular thermodynamics and hormone diffusion. 

ii. Real-World Applications: The model has potential applications in assisted reproductive technologies (ART) 

and endocrine therapies, where it can be used to optimize fertility treatments by simulating different hormonal 

and thermal conditions. 

iii. Computational Efficiency: Improvements in computational efficiency, such as the use of parallel 

computing techniques, adaptive mesh refinement, and machine learning algorithms, could enhance the model's 

scalability and predictive accuracy for complex biological systems. 

This study establishes a foundation for future advancements in reproductive medicine, offering a robust 

framework for understanding and optimizing follicular dynamics in both clinical and research settings. 
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