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ASYMMETRIC VOLATILITY 

Asymmetric volatility phenomenon is a market dynamic which shows that there are higher market volatility 

levels in market downswings (negative shocks) than in market upswings (positive shocks). It implies that 

volatility tends to increase in response to bad news and decrease in response to good news (Okpara, 2016). In 

other words, the presence of asymmetric volatility is mostly apparent during stock market crisis when a large 

decline in stock price is associated with a significant increase in market volatility (Wu 2001). This implies that 

negative surprises have a much greater effect on volatility than do positive ones. This situation is commonly 

associated with the financial market where 'bad news' (negative shocks) is found to have larger impact on 

volatility than good news (positive shocks) of the same magnitude. 

Researchers such as Christie (1982), Schwert (1989) and Nelson (1991) observe that when bad news reaches 

the stock market, future volatility generally increases while good news of the same magnitude does not cause 

sharp increase in future volatility. In other words, a sharp price drop increases the stock return volatility but a 

price rise of the same magnitude leads to lower volatility of stock return. Asymmetric volatility is linked to 

financial leverage.  

Black (1976) first found the asymmetric volatility and attributed it to changes in financial leverage. Christie 

(1982) in her work also attributed asymmetric volatility to effects stemming from changes in financial leverage 

(debt-equity ratio). The leverage effect theory maintains that a decrease in the price of stock (bad news) will 

lead to an increase in financial leverage (debt to equity ratio) implying that firms will be highly geared. 

Asymmetric effects where negative shocks (bad news) cause the value of the firms to fall will have the effect 

of raising the debt-equity ratio which is synonymous with the increase in the risk of bankruptcy. This will 

make the stock riskier and increase the volatility of returns. Although to many, “leverage effects” have become 

synonymous as asymmetric volatility, the asymmetric nature of the volatility response to return shocks could 

simply reflect the existence of time-varying risk premiums (Pindyck, 1984, French, Schwert and Stambaugh, 

1987 and Campbell and Hentschel, 1992). The measured effect of stock price changes on volatility is too large 

to be explained solely by financial leverage changes. The leverage effect explains why a lower return leads to a 

higher volatility; while the volatility feedback effect shows how higher volatility may reinforce a lower return. 

The volatility feedback theory states that an increase in expected volatility will lead to a decrease in stock 

demand due to risk aversion.  

Review of Relevant Asymmetric Models  

Asymmetric models used for this analysis are the exponential GARCH models, the threshold GARCH model 

and the Power GARCH model. We shall explain each of   these model as follows.    

EGARCH in Mean Model 

The GARCH model developed by Bollerslev (1986) imposed limitations that impair the capturing of positive 

or negative sign of the error term ut as to determine the impact of negative and positive shocks on conditional 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/
https://doi.org/10.51584/IJRIAS.2025.10020056


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume X Issue II February 2025 

 

 

 

 

 

www.rsisinternational.org Page 664 

 

   

 

 

volatility. To him, both signs of shocks have the same impact on conditional variance. The GARCH model 

though reckoned for its simplicity unarguably is not without shortcomings. For instance, fitting the model 

becomes difficult when it involves more than one lag on each of the explanatory variables. Secondly, it negates 

the effects of shock on its signs where as in actuality evidence of asymmetric response abound in the financial 

market especially in the stock market. In the GARCH model, only the squared residual enters the condit ional 

variance equation thereby rendering the signs of the residuals  no effect on conditional volatility.  The GARCH 

(p,q) model for conditional volatility is written as follows. 

𝜎1
2  =  𝜔0  +  ∑ 𝛼𝑖𝜀𝑡−𝑖

2𝑝
𝑖=1   +  ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑞
𝑗=1 ,  

where 𝛼𝑖  > 0 and 𝛽𝑗> 0  a condition for the conditional variance, 

 𝜎𝑡
2 to be always positive.  

while  ∑ 𝑎𝑖
𝑞
𝑖=1   +  ∑ 𝛽𝑗

𝑝
𝑗=1  < 1 is the condition for stationarity.  

Thus, the case of GARCH model depends on the three terms namely, the mean 𝜔0, news on volatility of last 

period 𝜀𝑡−𝑖
2 ,  which is the ARCH term and the last period's  forecast variance know as the GARCH term.  

If the conditional variance is introduced into the mean equation, the ARCH in mean (ARCH- M)model is 

derived. 

Yt = 𝑋𝑡
1𝑌𝑡  +   𝑌2𝜎𝑡−1

2   +  𝜀𝑡 

This is often used in financial applications where the expected return on an asset is related to the expected asset 

risk. It is however often the case that the conditional variance,  𝜎𝑡
2 is not an even function of the past 

disturbances, Ut-1, Ut-2, ... Ut-n , an important feature which is often observed when analyzing stock market 

returns (Koulakiotis, Papasyriopuolos and Molyneux, (2006). In order to arrest this important feature, Nelson 

(1990) proposed the exponential GARCH model which incorporates leverage effect and observed asymmetric 

volatility changes with the change in return sign. In his model, the log of conditional variance implies that the 

leverage effect is exponential, rather than quadratic and that forecast of the conditional variance are guaranteed 

to be nonnegative. In other words, exponential GARCH Model is a refinement of GARCH model as it allows 

for conditional variance to respond asymmetrically to return innovations of different signs.  Nelson (1991) 

proposed this model (EGARCH) to allow for asymmetric effects between positive and negative asset returns. 

The EGARCH model adopts the device of making the natural logarithm of the variance, ln𝜎2 linear in some 

functions of time and lagged error terms. In other words, it is formulated in terms of the logarithm of 

conditional variance. The model for conditional variance is specified as follows. 

In𝜎𝑡
2  =  𝜔  +  𝛽In𝜎𝑡−1

2   +  ∝ [
|𝜀𝑡−1|

𝜎𝑡−1
 −   

2

𝜋
] +  𝛾

𝜀𝑡−1

𝜎𝑡−1
                         20.11 

Where:- 𝜔, 𝛽, ∝, 𝛾 are constant parameters,  

In𝜎𝑡
2 = the one period ahead volatility forecast 

𝜔  =  the mean level 

𝛽  =  persistence parameter 

∝  =  volatility clustering coefficient  

In𝜎𝑡−1
2   =  the past period variance  

𝛾  =  the leverage effect 

Unlike the GARCH model, the EGARCH model allows for leverage effect. 
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In the analysis of the relationship between expected returns and expected volatility, the augmented version of 

the EGARCH-in-mean model is usually employed in order to capture the leverage effect. The choice of the 

method stems from the fact that in a developing economy for instance, the market consists of risk-averse 

investors as the opportunity to invest and diversify the investment is not much. Thus, the expected returns on 

asset should significantly move in the same direction with the expected risk of the asset. We therefore state the  

return equation as follows 

Rt  =  b0  +  b1Rt-1  +  b2𝜎𝑡
2  +  𝜀𝑡                                               …20.12 

Where: 

Rt     =   stock market returns at time t 

Rt-1   =   last period return accounting for autocorrelation 

𝜎𝑡
2     =  the conditional variance 

b2𝜎𝑡
2  =  market rise premium for expected volatility  

𝜀𝑡   = the usual idiosyncratic term with zero mean and conditional variance 𝜎𝑡
2. 

This expected volatility which is approximated by the conditional variance 𝜎𝑡
2 which is related to information 

set up such that 

                       𝜎𝑡
2  =  var (Rt / 𝜓𝑡−1) 

Where  

𝜓𝑡−1 is the information set at time, t-1 contains observations on lagged values of Rt and 𝜎𝑡. That is 

𝜎𝑡−1, 𝜎𝑡−2..... Rt-1, Rt-2 ......) 

Thus, the expected returns on asset should significantly move in the same direction with the expected risk of 

the asset. In the light of this, one can state the return equation together with the log of conditional variance 

equation as follows in 20.13 and 20.14. These equations were jointly estimated. 

Rt  =  b0  +  b1Rt-1  +  b2𝜎𝑡
2  +  𝜀𝑡         …20.13 

  fR-1, f𝛿2𝑡 > 0 

  𝜀𝑡/𝜓𝑡−1 ~ N(0, 𝜎𝑡
2) 

             𝜀𝑡  =  zt𝜎𝑡 and zt ~ N(0,1) 

In𝜎𝑡
2  =  𝜔 + 𝛽In𝜎𝑡−1

2   +  ∝ [
|𝜀𝑡−1|

𝜎𝑡−1
 −  √

2

𝜋
]  +  𝛾

𝜀𝑡−1

𝜎𝑡−1
                                …20.14 

f𝛿2𝑡  >  0,  𝑓∝, 𝑓  <  0 

The parameters have been previously defined  

The conditional variance b2 and the persistent parameter are expected to be positive while the volatility 

clustering coefficient and the leverage effect coefficients should be negative. If the estimated variance can be 

used to predict expected returns in equation 20.6, then the value of b2 should be positive and significant for a 

risk averse investor. That is to say that the higher the risk of an investment, the higher the reward accruable for 

having undertaken such a risky investment. The EGARCH-M model, a refinement of the GARCH model 

imposes a non-negativity constraint on market variance, and allows for conditional variance to respond 
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asymmetrically to return innovations for different signs. If 𝛾 is negative, that is 𝛾 < 0, leverage effect exists. If 

𝛾 ≠ 0, 𝑡ℎ𝑒𝑛 𝑡ℎ𝑒 𝑖𝑚𝑝𝑎𝑐𝑡 𝑖𝑠 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐. Black (1976) was the first to note that changes in stock returns 

display a tendency to be negatively correlated with changes in returns volatility. The leverage effect 

phenomenon posit that volatility tends to rise in response to “bad news” and to fall in response to “good news”. 

That is unexpected drop in price (bad news) increases predictable volatility more than an unexpected increase 

in price (good news) of similar magnitude (Black, 1976; Christe, 1982). In other words, negative value of 𝛾 

indicates that volatility is higher when returns are negative. 𝛾 is called the "sign effect". If 𝛼 is positive, then 

the conditional volatility tends to rise (fall) when the absolute value of the standardized residuals is larger 

(smaller).  𝛼 is called the ''magnitude effect".  

Threshold-Garch  

Another Extension of the classic GARCH model called Threshold-GARCH that allows for leverage effect was 

propounded by Jean-Michel Zakoian (1990). The Threshold-ARCH (or TARCH) model divides the 

distribution of the innovations into disjoint intervals and then approximates  piecewise linear function for the 

conditional standard deviation. Rabemananjara and Zakoian (1993) by including the lagged conditional 

standard deviations as a regressor extended the preliminary model to be known as Threshold GARCH 

(TGARCH). TGARCH is estimated  with the following equation: 

            𝜎𝑡
2  =  a0  + ∑ 𝑎

𝑝
𝑖=1  i Ԑ1−𝑖

2
  +  ∑ 𝛾𝑆

𝑝
𝑖=1  i Ԑ1−𝑖

2
  +  ∑ 𝑏

𝑞
𝑗=1  i 𝜎1−𝑗

2
 

                                               1            Ԑt-i  <  0   

  St-i     =                         0 if    Ԑt-i  ≥  0 

The effects of Ԑt-i on the conditional variance  𝜎𝑡
2 will depend on whether the error term, Ԑt-i is above or under 

the threshold value which is always Zero. Ԑ2
t-i  will have different effects on the conditional variance 𝜎2

t,  as 

follows:  

 If Ԑt-i is positive, total effects are given by  Ԑ2
t-i 

 If Ԑt-i is negative, total effects are given by (ai +𝛾i) Ԑ𝑡−𝑖
2 . 

𝐼𝑛 𝑡ℎ𝑒 𝑐𝑎𝑠𝑒 𝑜𝑓 𝑇𝐺𝐴𝑅𝐶𝐻 𝑚𝑒𝑡ℎ𝑜𝑑, 𝛾 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑒𝑓𝑓𝑒𝑐𝑡 𝑎𝑛𝑑 𝑖𝑡 𝑖𝑠 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑡𝑜  

𝑏𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑎𝑛𝑑 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑏𝑎𝑑 𝑛𝑒𝑤𝑠 𝑡𝑜 (𝑖𝑛𝑐𝑟𝑎𝑠𝑒)ℎ𝑎𝑣𝑒  𝑚𝑜𝑟𝑒  𝑒𝑓𝑓𝑒𝑐𝑡  

𝑜𝑛 𝑣𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑛 𝑔𝑜𝑜𝑑 𝑛𝑒𝑤𝑠 𝑤ℎ𝑖𝑐ℎ 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡ℎ𝑎𝑡 𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑒𝑥𝑖𝑠𝑡. 𝛾 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  

𝑖𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒, 𝑡ℎ𝑎𝑡 𝑖𝑠 𝛾 < 0 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑙𝑒𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑓𝑓𝑒𝑐𝑡.  

PGARCH Model 

Another extended popular GARCH method in asymmetric GARCH-family is called the Power GARCH ( 

PGARCH) developed by Ding, Granger and Engle (1993). Power GARCH estimates the most appropriate 

power term instead of keeping two as the power transformation factor. Owing to its flexibility as alternative 

method that also nests the asymmetric modeling in the competing GARCH families, the researcher adopts the 

method in estimating the volatility of the daily stock returns. The basic form of PGARCH (p,d,q) model is 

given by: 

           σ𝑡
𝑑 = 𝑎0 +  ∑ 𝑎

𝑝
𝑖=1 i (| Ԑt-i | + 𝛾i Ԑt-i) d +  ∑ 𝑏

𝑞
𝑗=𝑖 j𝜎𝑡−𝑗

𝑑 ,  d >0, / 𝛾𝑖/≤ 1  ∀ 𝑖 = 1,2, … 𝑟. 

where σ𝑡
𝑑is the estimated conditional variance for time t, ai and bj are residual and variance coefficients 

respectively, Ԑt-i is the residual from previous periods while 𝜎𝑡−𝑗
𝑑  is the lagged variance from the period t-j.  d is 

a positive coefficient which denotes the value of the power term. The GARCH term bj estimates the volatility 
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clustering of the conditional variance. If the GARCH term is significant, it indicates that the volatility is found 

in clusters meaning that periods of high volatility and periods of low volatility are observed. While 𝛾 is the 

leverage effects which estimate the asymmetric feature of volatility.  

When d = 2,  and 𝛾 = 0, the above equation reduces to classic GARCH model. For the model to capture the 

asymmetric effects, 𝛾 must not have to be equal to zero, that is 𝛾 ≠ 0. When d = 1 the conditional standard 

deviation will be estimated. The flexibility of the PGARCH model can be increased by looking at d as another 

coefficient that must also be estimated [ Zivot (2008)].  

MATERIALS AND METHODS 

In discussing GARCH models, the researcher bears in mind of two categories of  GARCH and choose the one 

appropriate to his investigation. The two categories are the symmetric models which are made up of GARCH 

(1,1) and GARCH-M (1,1) models, the next is the Asymmetric models which are made up of the Exponential 

GARCH (EGARCH 1,1) model, the Power GARCH (PGARCH 1,1), Threshold GARCH (TGARCH 1,1), 

Glosten, Jagannathan and Runkle (GJRGARCH) model, Quadratic GARCH (QGARCH) and others in the 

family of asymmetric GARCH models. In all this study, we shall apply the EGARCH and PGARCH models 

not only to estimate the conditional hetroscedasticity of the models but also to test for the more efficient model 

using the diagnostic ARCH-LM test of coefficients of the models as well as the Akaike and Schewatz 

information criteria.    

Data employed for these analysis are the daily all share index (ASI) of the Nigerian Stock Exchange (NSE) 

from 1st February 2001 to 11th August 2018 resulting in 4423 observations excluding public holidays. The 

daily all share index (ASI) series are used to generate the continuously compounding returns used in the 

Asymmetric GARCH modeling. The compounding returns are given as follows: 

 100*ln(
𝑃𝑡

𝑃𝑡−1
)   =  100[ln(𝑃𝑡 ) − 𝑙𝑛(𝑃𝑡−1)]   

Where 𝑅𝑡 represents the continuously compounded daily percentage returns of the ASI for period t and t-1. 

𝑃𝑡 𝑎𝑛𝑑 𝑃𝑡−1  represent current and past daily prices. For lack of space, the data are not provided in this work 

but may be made available on request. In this analysis, the researcher first of all looked at the descriptive 

statistics of the NSE's  continuously compounding daily return series over the period 1/2/2001 to 11/8/2018 to 

observe the behavior of the sourced data in terms of mean, median, standard deviation, skewness, kurtosis, 

Jarque Bera and others.   

Table 4.1 Descriptive Statistics for Stock Returns 

 RT 

 Mean -0.031054 

 Median  0.000246 

 Maximum  11.04592 

 Minimum -11.40446 

 Std. Dev.  1.028414 

 Skewness -0.118686 

 Kurtosis  11.95810 

 Jarque-Bera  14795.98 

 Probability  0.000000 

 Sum -137.3207 

 Sum Sq. Dev.  4675.810 

 Observations  4422 

Table 4.1 showing the descriptive statistics of the return series indicates that the series ranges from minimum 

of -11.40446 to maximum of 11.04592 with a mean value of -0.031054. The Jarque-Bera is 14795.98 with a 

probability value of 0.000000 which is significant at the 1% level thereby indicating that the distributed 
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population of the return series are not normal. The skewness is negative (-0.118686) suggesting that the 

distribution of the variable has a long left tail. The kurtosis  of 11.95810 is greater than the usual kurtosis of 3 

implying that the distribution is leptokurtic. Thus, the observed skewness and kurtosis also show that the 

distribution of daily stock return series is non normal.  

The trend line snapshot view for  the daily returns for examining the stationarity of the data suggests that the 

data are stationary. The daily return series graph is presented in fig.4.1 as follows. 

-12

-8
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12

500 1000 1500 2000 2500 3000 3500 4000

RT

 

 Fig.4.1 Graph of the Daily Return series  

The graph suggests that the data on returns are stationary at the level. To authenticate this using the 

Augumented  Dicky Fuller unit root test (Dickey and Fuller, 1979), the unit root test is checked by fitting a 

regression on equation based on a random walk with an intercept drift term (𝜗)  as follows. 

 ∆𝑦𝑡 =  𝜗    +   𝛿𝑦𝑡−1  + ∑∅𝑗𝑦𝑡−1  +  𝜇𝑡  

Where 𝜇𝑡 is a stochastic term. The null hypothesis here is:0  

Ho:  𝛿 = 0  against the alternative hypothesis H1; 𝛿 < 0. If the value of ADF test statistics exceeds the value 

of Mackinnon critical value, the null hypothesis is rejected and there is no unit root in the series. The unit root 

test is presented at the level n table 4.2 as follows  

Table 4.2 Unit root Test at the level. 

Null Hypothesis: RT has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic - based on SIC, maxlag=30) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -41.94291  0.0000 

Test critical values: 1% level  -3.431646  

 5% level  -2.861998  

 10% level  -2.567057  

*MacKinnon (1996) one-sided p-values.  

From table 4.2, we can see that the Augmented Dickey Fuller test statistic is -41.94291 which is more negative 

than the critical value at 1% level (which is -3.431646). This confirms that the return series are stationary at the 

level.  Thus, the graphical assertion has been authenticated .  
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Asymmetric Models Analysis 

Based on the forgoing, the researcher focused on exponential generalized autoregressive conditional 

hetroscedasticity in mean (EGARCH in Mean) model and Power generalized autoregressive conditional 

hetroscedasticity (PARCH) Model analyses.  The two models using Akaike and Schewarz information criteria  

are compared in order to determine the one that is better fitted to the model. We however ran the model first 

using the least squared method and checked the residuals of this model. the least square method of the model is 

presented in table 4.3.  

Table 4.3 Least Square Method 

Dependent Variable: RT   

Method: Least Squares   

Date: 03/01/20   Time: 15:31   

Sample (adjusted): 3 4423   

Included observations: 4421 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.   

RT1 0.430563 0.013576 31.71388 0.0000 

C -0.017542 0.013968 -1.255861 0.2092 

R-squared 0.185403     Mean dependent var -0.030880 

Adjusted R-squared 0.185219     S.D. dependent var 1.028465 

S.E. of regression 0.928347     Akaike info criterion 2.689629 

Sum squared resid 3808.415     Schwarz criterion 2.692522 

Log likelihood -5943.425     Hannan-Quinn criter. 2.690649 

F-statistic 1005.770     Durbin-Watson stat 1.994550 

Prob(F-statistic) 0.000000    

From the OLS model, we check the residuals. It should be noted that the existence of hetroscedasticity is a 

precondition for applying the GARCH models to a financial time series data and as such provides justification 

for volatility modeling using the GARCH models. The result of the residuals is presented in fig.4.4  as follows. 
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Fig 4.2 Residuals of the Model 

Fig 4.2 showing the residual plot elucidates that there are long periods with low fluctuations as well as long 

periods with high fluctuations implying that periods of low volatility tends to be followed by periods of low 

volatility for a prolonged period and periods of high volatility is followed by periods of high volatility for a 

relatively short period. Such consistent behavior of residuals suggests the use of ARCH family models. To 

authenticate this fact, we ran a hetroscedasticity test. The result of the hetroscedasticity test is presented in 

table 4.4 as follows. 
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Table 4.4 Hetroscedasticity test. 

Heteroskedasticity Test: ARCH   

F-statistic 905.3762     Prob. F(1,4418) 0.0000 

Obs*R-squared 751.7340     Prob. Chi-Square(1) 0.0000 

The result of the hetroscedaticity test in table 4.4 shows that the probability value of F and the observed R2, all 

are less than 5% indicating the presence of ARCH effect. We further confirm this using the correlogram and 

Ljung-Box Q- statistics test for Hetroscedasticity. 

Table 4.5 Correlogram and Ljung-Box Q- statistics Test for Hetroscedasticity. 

Date: 03/08/20   Time: 06:37    

Sample: 2 4423      

Included observations: 4422     

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

        |***   |         |***   | 1 0.431 0.431 820.28 0.000 

        |*     |         |      | 2 0.180 -0.006 963.97 0.000 

        |      |         |      | 3 0.030 -0.055 968.09 0.000 

        |      |         |      | 4 0.001 0.010 968.09 0.000 

        |      |         |      | 5 -0.009 -0.004 968.42 0.000 

        |      |         |      | 6 -0.035 -0.037 973.84 0.000 

        |      |         |      | 7 -0.022 0.008 975.95 0.000 

        |      |         |      | 8 -0.011 0.002 976.52 0.000 

        |      |         |      | 9 0.028 0.038 980.02 0.000 

        |      |         |      | 10 0.028 0.002 983.47 0.000 

        |      |         |      | 11 0.017 -0.003 984.77 0.000 

        |      |         |      | 12 0.018 0.013 986.20 0.000 

        |      |         |      | 13 0.016 0.005 987.30 0.000 

        |      |         |      | 14 0.022 0.013 989.36 0.000 

        |      |         |      | 15 0.012 -0.001 989.99 0.000 

        |      |         |      | 16 0.016 0.013 991.15 0.000 

        |      |         |      | 17 0.004 -0.007 991.23 0.000 

        |      |         |      | 18 0.018 0.021 992.70 0.000 

        |      |         |      | 19 0.022 0.009 994.77 0.000 

        |      |         |      | 20 0.013 -0.003 995.54 0.000 

        |      |         |      | 21 0.038 0.039 1001.8 0.000 

        |      |         |      | 22 0.063 0.042 1019.3 0.000 

        |      |         |      | 23 0.029 -0.025 1023.1 0.000 

        |      |         |      | 24 0.037 0.033 1029.3 0.000 

        |      |         |      | 25 0.018 -0.006 1030.7 0.000 

        |      |         |      | 26 0.045 0.043 1039.7 0.000 

        |      |         |      | 27 0.068 0.045 1060.6 0.000 

        |      |         |      | 28 0.056 0.006 1074.4 0.000 

        |      |         |      | 29 0.017 -0.019 1075.7 0.000 

        |      |         |      | 30 -0.008 -0.010 1076.0 0.000 

        |      |         |      | 31 0.004 0.015 1076.1 0.000 

        |      |         |      | 32 -0.006 -0.012 1076.2 0.000 

        |      |         |      | 33 -0.018 -0.015 1077.6 0.000 

        |      |         |      | 34 -0.017 -0.001 1079.0 0.000 

        |      |         |      | 35 -0.010 -0.002 1079.4 0.000 

        |      |         |      | 36 0.003 0.002 1079.4 0.000 
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Using Ljung-Box Q-statistics to check for validity of autoregressive conditional hetroscedaticity (ARCH) in 

the residuals, it is found that since the values of autocorrelations and partial autocorrelations are not zero at all 

lags and since the Q statistics are significant, there is clear evidence that the return series exhibits ARCH 

effects. In other words, if there is ARCH in the residuals, the autocorrelations and partial autocorrelations 

should not be zero at all lags and the Q statistics should be significant. Thus, by this decision rule, we conclude 

that there exists ARCH effects in the return series. The conclusion therefore informs the use of GARCH 

models which are designed to deal with time series hetroscedasticity. The researcher therefore confidently 

compare the efficiency of EGARCH-in Mean and PGARCH methodology in working on the time series 

hetroscedasticity. The EGARCH in Mean model is presented in table 4.6 as follows. 

Table 4.6 EARGARCH in Mean Model 

Dependent Variable: RETURNS   

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Sample: 2001 4479   

Included observations: 2479   

Convergence achieved after 25 iterations  

Coefficient covariance computed using outer product of gradients 

Presample variance: backcast (parameter = 0.7) 

LOG(GARCH) = C(4) + C(5)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(6) 

        *RESID(-1)/@SQRT(GARCH(-1)) + C(7)*LOG(GARCH(-1)) 

Variable Coefficient Std. Error z-Statistic Prob.   

GARCH -0.019880 0.038946 -0.510450 0.6097 

RT1 0.495144 0.016208 30.54907 0.0000 

C 0.040870 0.024215 1.687835 0.0914 

 Variance Equation   

C(4) -0.316298 0.023358 -13.54131 0.0000 

C(5) 0.340646 0.027633 12.32755 0.0000 

C(6) -0.032595 0.012995 2.508207 0.0121 

C(7) 0.903765 0.010408 86.83494 0.0000 

R-squared 0.345491     Mean dependent var 0.046702 

Adjusted R-squared 0.344962     S.D. dependent var 1.013347 

S.E. of regression 0.820146     Akaike info criterion 2.283149 

Sum squared resid 1665.456     Schwarz criterion 2.303570 

Log likelihood -2827.921     Hannan-Quinn criter. 2.293113 

Durbin-Watson stat 1.663530    

Table 4.7 ARCH  LM TEST 

Heteroskedasticity Test: ARCH   

F-statistic 0.376997     Prob. F(1,2476) 0.5393 

Obs*R-squared 0.377244     Prob. Chi-Square(1) 0.5391 

The  coefficients estimated for the stock return as presented in table 4.7 shows that there are no more ARCH 

effects as the F statistic is not significant at 5 percent critical level. Thus, we conclude that there are no more 

ARCH effect in the residual using  EGARCH in mean model. This therefore justifies the efficiency of 

EGARCH-in-mean model in estimating the conditional volatility of the stock returns. The GARCH parameter 

representing the conditional variance is negative, suggesting that the stock exchange in Nigeria is a negative 

and insignificant function of conditional variance.  The researcher, at this point estimates the PARCH model to 
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examine the performance so as to compare the models. The result of the PARCH model estimation is presented 

in table 4.8 as follows: 

Table 4.8 The result of the PGARCH Model  

Dependent Variable: RETURNS   

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps) 

Sample: 2001 4479   

Included observations: 2479   

Convergence achieved after 49 iterations  

Coefficient covariance computed using outer product of gradients 

Presample variance: backcast (parameter = 0.7) 

@SQRT(GARCH)^C(8) = C(4) + C(5)*(ABS(RESID(-1)) - C(6)*RESID( 

        -1))^C(8) + C(7)*@SQRT(GARCH(-1))^C(8) 

Variable Coefficient Std. Error z-Statistic Prob.   

GARCH -0.002055 0.039197 -0.052419 0.9582 

RT1 0.497374 0.016459 30.21910 0.0000 

C 0.027921 0.024757 1.127783 0.2594 

 Variance Equation   

C(4) 0.066919 0.008331 8.032285 0.0000 

C(5) 0.192466 0.017661 10.89762 0.0000 

C(6) -0.085751 0.042609 -2.012508 0.0442 

C(7) 0.752683 0.019595 38.41100 0.0000 

C(8) 1.353554 0.217721 6.216928 0.0000 

R-squared 0.345918     Mean dependent var 0.046702 

Adjusted R-squared 0.345389     S.D. dependent var 1.013347 

S.E. of regression 0.819879     Akaike info criterion 2.285759 

Sum squared resid 1664.370     Schwarz criterion 2.304526 

Log likelihood -2825.198     Hannan-Quinn criter. 2.292575 

Durbin-Watson stat 1.668914    

Table 4.8 confirms that the conditional variance is negatively and insignificantly related to the stock market in 

Nigera. In other words, the stock market is a negative and  insignificant function of  conditional volatility in 

Nigeria. 

Table 4.9   Heteroskedasticity Test: ARCH 

F-statistic 0.213069     Prob. F(1,2476) 0.6444 

Obs*R-squared 0.213223     Prob. Chi-Square(1) 0.6443 

The persistent parameter  β(C5)  is positive and significant indicating  (or confirming) the existence of 

clustering feature in the volatility of the stock market in Nigeria. The asymmetric coefficients are negative and 

significant implying that there is asymmetric effect and leverage effect in the Nigerian stock market. The 

Power term estimate as presented in table 4.8 is 1.353554.  In the light of this, the researcher resort to 

diagnostic test by applying ARCH LM test on the residuals to check whether PGARCH model is efficient 

enough in explaining conditional heteroskedasticity of the stock returns. The Heteroskedasticity test is 

presented in table 4.9 

The result from table 4.9  shows that there are no longer ARCH effects in the model. 

The persistent parameter is positive and significant indicating that the stock market volatility is persistent.  

Comparing  the Schwarz Information Criteria of the two models, it is seen that while the Schwarz Information 

Criteria  for  the EGARCH in mean Model is 2.303570,  the  Schwarz Information Criteria for  PARCH model 
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is 2.304526. Thus, Science the Schwarz information criteria in EGARCH in mean Model is less than that of 

PARCH model, the EGARCH in mean model is robust and more efficient for estimation Asymmetric Models 

CONCLUSION  

In the mean equation, the GARCH parameters which is the stock market conditional volatility exerts a negative 

and  insignificant impact on the stock market. In other words, the stock market return is a negative and 

insignificant function of  conditional volatility. 

The persistent parameter β is positive and significant confirming the existence of clustering features in the 

volatility of the stock market in Nigeria.  

The asymmetric coefficients are negative and significant implying that there is asymmetric effect and leverage 

effect in the Nigerian stock market suggesting that unexpected drop in price (bad news) increases predictable 

volatility more than an expected increase in price \(good news) of similar magnitude in the country. 

Comparing the efficacy of the two models, it is found that the  EGARCH in mean Model is more efficacious or 

so to say much more Robust and efficient than the PARCH Model in estimating the asymmetric GARCH 

Models since the values of both Akaike Information Criteria and the Skewatz Information Criteria are lower in 

EGARCH in Mean than in PARCH Model.  
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