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Abstract: Hepatitis B has been a major global health menace for 

it’s a potentially life-threatening liver disease. Around two billion 

persons are living with this infectious disease across the world. 

It’s transmitted by infected individual to uninfected person 

either vertically (transmission before or during birth by carrier 

mother to the baby) or horizontally—transmission when the 

bodily fluid of an infected person comes into contact with the 

hepatitis B virus-free person. This can happen through the 

sharing of non-sterilized injection syringes, tattooing objects and 

through sexual intercourse. This particular project studied a 

mathematical model that combined both vaccination and 

treatment as a means to controlling the hepatitis B virus (HBV). 

In our mathematical model, equations are derived from the flow 

chart representing the HBV transmission dynamics. We 

determined the disease-free equilibrium (DFE) state, the endemic 

equilibrium (EE) state and the basic reproduction number 0R . 

The stability of these points are determined and the results show 

that the disease-free equilibrium is both locally and globally 

asymptotically stable i.e 10 R . The stability analysis of 

endemic equilibrium point also reveals that the point is locally 

and globally asymptotically stable, i.e 10 R . The basic 

reproduction number 0R is computed using the next generation 

matrix method. The systems of ordinary differential equations 

(ODEs), which are non-linear are solved by numerical 

simulation. This was achieved by use of Runge-kutta method of 

order four with the help of MATLAB software and techniques. 

These results show that either of the method, treatment or 

vaccination, administered is effective in alleviating the spread of 

HBV disease, however, when both control strategies are 

combined, the disease is quickly controlled and ultimately 

brought to eradication.  

Keywords: Mathematical model, Hepatitis B Virus (HBV), 

Treatment, Reproduction number, stable, unstable, Disease-free 

Equilibrium and Endemic Equilibrium 

I.  INTRODUCTION 

1.1 Background Information 

epatitis B Virus (HBV) is a hepadnavirus with circular 

genome composed of partially double-stranded DNA and 

replicates through intermediate form by reverse transcription, 

Lacamini (2004). Hepatitis B therefore, is a liver infection 

caused by HBV and always finally evolves to liver cirrhosis 

and hepatocarcinom, Klysik (2001). This disease has two 

routes through which it is transmitted’ One is a vertical 

transmission from an infected mother to the child during birth. 

This is a mode of infection in which 95 percent of the cases 

becomes chronic. The second infection route is through 

horizontal transmission between adults mainly through sexual 

contact, sharing bloodied needles and injection equipment, 

Liang (2009) and Rehermann & Nascimeni (2014). In this 

case, it is known that more than 90 percent of infection 

becomes acute. The first record of hepatitis B was made in 

1885 and the discovery of its associated virus was later made 

by Bruch Bloomberg in 1986 at the National Health Institute 

in the USA. Since then, it has remained a major health 

pandemic. Towards the end end of 1980²s in an attempt to 

address this menace, WHO designed and initiated a very 

crucial Demonstration Project, in HBV history, on a large 

scale controlled clinical trial to vaccinate 80,000 newborns in 

high incident area of Qidong of Jiansu Province in China, 

Zuckerman et al, (1983). The Project ended seven years later 

and it was found that hepatitis B virus vaccination provided 

75% protective efficiency against HBV infection. The 

organization therefore, recommended that hepatitis B 

vaccination should be included in all the national 

immunization programs and systems in all the countries of the 

world.   

 In Western Europe, and America, the prevalence of Hepatitis 

B remains very significantly small below 1 percent, while in 

both South East Asia and Sub-Saharan Africa, it is so high 

with about 5 percent to 10 percent of the population 

chronically infected with the disease, World Health 

Organization [WHO] (2016). The basic control measures of 

HBV are vaccination, treatment, educating the masses, 

screening of the blood and all blood products, Centre for 

Prevention and Control of Diseases [CDC](2005). According 

to Kenya Medical Research Institute [KEMRI](2004), there is 

an alarming increase of HBV cases in Kenya. It puts the 

prevalence rate of HBV at about 10 percent in pregnant 

women and more than 30 percent among the liver-diseased 

patients attending clinics. KEMRI further stated that the 

regions with high prevalence of HBV in Kenya are West 

Pokot County, Turkana County, Garissa County and Wajir 

County. The ostensible causes of HBV in the regions are 

cultural practices such as tattooing and circumcision in which 

they do not use sterilized implements and because the areas 

H 
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are dry and people may not be able to get proper nutrition that 

ensures stronger immunity.   

1.2 Statement of the Problem 

Owing to the life-threatening nature of hepatitis B virus, 

global community has attempted to understand its dynamics 

and mathematics language has become one of the finest ways 

to comprehend the phenomenon. As such, mathematical 

modelers have modeled HBV epidemiology and their 

recommendations have become extremely useful to the public 

health policy makers in trying to control the disease. Despite 

all of this work, the existence of HBV still indicates a slow 

pace of control. Therefore, a lot of work is required to be done 

in this area. Our work focuses on analyzing Hepatitis B. Virus 

by using Mathematical model to assess the impacts of 

vaccinating and treating HBV patients in Turkana County, 

Kenya’s one of the regions, in which prevalence of HBV is so 

high. In our model we assumed that babies born to carrier 

mothers are vertically infected as usual but automatically 

become carriers without incubating in the epidemiological 

class of latent stage. Besides vaccination, we factored in and 

focused on the role of treatment to supplement the vaccination 

control strategy. In this study, we investigated the impact of 

treatment in the carrier stage. This is because relapse and 

resistance may occur after treating the patients at the acute 

stage. 

1.3 Justification of the Study 

We do acknowledge that much work has been done in 

attempting to understand the HBV properties and to control its 

transmission as attested to by an inexhaustible list of models 

currently in publications. However, to effectively control or 

even eradicate the infectious hepatitis B virus, vaccination 

alone, as a path taken by several modelers, is not enough 

unless it’s coupled with treatment since the already infected 

people cannot be helped by vaccination alone. This gap of 

knowledge is what our study attempts to close by forming and 

analyzing the HBV mathematical model. The research is also 

affordable and time-friendly, making it a worthwhile research 

undertaking. 

1.4 Aim and Objectives 

1.4.1 General Objective 

The main objective of our study is to establish a mathematical 

model for Hepatitis B Virus and make an investigative 

analysis with a view to eradicating or fully control the spread 

of HBV using vaccination and treatment as the control 

strategy in a given population. 

1.4.2 Specific Objectives 

The particular or specific objectives of this study are: 

i) Formulation of a mathematical model flowchart 

ii) To derive the model equations 

iii) To find the reproduction number 

iv) Analyze the stability of the model at both the 

disease-free equilibrium and endemic equilibrium 

points. 

v) Use numerical simulation to investigate the impact of 

combining vaccination and treatment in controlling 

HBV pandemic 

1.5 Significance of the Study 

Since HBV is proving to be life-threatening disease and we 

are looking for the possible best solutions, the work will help 

us in understanding the dynamics and control of hepatitis B 

Virus (HBV) through the effects of vaccination and treatment. 

It will enable the public health policy makers, by applying the 

recommendations of the study, to be able to make predictions 

about HBV and hence accurate policies and control. 

The model will enable us to apply the mathematical 

knowledge, to our real-life situation which in this case is the 

control of HBV. Because it closes the existing gap of 

knowledge, just like any other research work, its tentative or 

possible weaknesses that will have eluded our intellect by the 

end of the study will excite further research from the 

interested modeling researchers and hence the advancement of 

knowledge in this particular field. 

II.  LITERATURE REVIEW 

The World Health Organization [WHO] (2017) reported that 

more than 0.25 billion people are living with hepatitis B virus 

infection, most of which resulted in several deaths. According 

to the WHO reports in 2021, there were more than 820,000 

HBV-related deaths in 2019 with 1.5 million infections each 

year. The infection is spread when the bodily fluid of an 

infected individual comes into contact with someone who is 

not yet infected, Sirlert et al, (2014). Hepatitis B virus causes 

chronic liver disease and chronic infections and puts people at 

a higher risk of death from cirrhosis of the liver and liver 

cancer. Hepatitis B infection acquired in adulthood leads to 

chronic Hepatitis in less than 5 percent of the cases while 

many of the infant-related infections develop into chronic 

infection, Hyams (1995) and this is the basis for strengthening 

and prioritizing infant and childhood vaccination, WHO 

(2013). The Hepatitis B virus nfant vaccination series (three 

doses of HBV vaccination) which provides infants with long 

term protection from HBV infection Peto T.J. (2014), was 

introduced in immunization programs in all but 12 countries, 

by 2017, WHO (2016). Elimination of Hepatitis B Virus from 

liver tissue remains an elusive goal. Chronic HBV results 

mainly from maternal-neonatal vertical infection, Rehermann 

(2013). Direct study of the initial HBV-immune dynamics in 

patients is simply difficult hence, the attention is given to 

animals and Mathematical modelling, Murray and Goyal, 

2015; Congelosi et al, 2017. Mathematical models have 

therefore, been used to study HBV quite extensively, Ciupe et 

at, 2007; Fetahi Chenar et al, 2018. Such models have 

revealed various protection levels, virus clearance rate and 

half-life of infected cells. The use of mathematical modeling 

has improved our understanding of contracting factors and 

how we should control it.  Modeling has ranged from simple 
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model, Anderson 2008; Halfmann et al, 2008, to more 

complex models involving the contribution of controls such as 

vaccine, Pang and Zou (2010) and the analysis of impact of 

immigration, Khan et al, 2013. Hepatitis B infection was one 

of the two greatest attributes proportion of cancer deaths by 

risk factor in China, S. Islami et al, 2017. The risk of 

developing a carrier is dependent on age of infection and the 

transmission has different routes for adults and children, L. 

Zou et al, (2017). It is known that sexual transmission is an 

important route of HBV spread in adults, L. Zou et al, (2015). 

Looking at all the available literature on this particular 

disease, research has intensively been geared towards 

vaccination to control the disease. However, it must be 

implemented along with treatment if HBV is going to be 

effectively controlled or eliminated altogether. Our study 

therefore, introduced treatment to back up vaccination as a 

means to control HBV.  The gap stems from Zou et al (2010) 

paper who proposed a mathematical model to investigate the 

transmission dynamics and prevalence of HBV in China 

where they implemented vaccination alone. Our case study is 

confined to Turkana County, Kenya where the prevalence is 

high. 

Since the risk of contracting hepatitis B is essentially related 

to sexual exposure and/ or other fluid contacts between 

carriers and uninfected individuals, treating carriers becomes 

so important. This backs up the immune system which usually 

mounts high response to fight HBV but sometimes fail due to 

viral resistance. We have divided the host population into five 

epidemiological classes in proportions: susceptible class S(t), 

acutely infected class I(t), chronic carrier class C(t), 

vaccinated class V(t) and recovered class R(t) where 

parameter t is the time variable. 

III. THE HEPATITIS B VIRUS MODEL 

3.1 Mathematical Formation Description of the Model 

We formulate a mathematical model in which the total human 

population is compartmentalized into the following: 

susceptible individuals S(t), acutely infected persons I(t), 

chronic carriers C(t), vaccinated individuals V(t) and 

recovered patients R(t).  c 1  is the rate of recruitment 

of population into susceptible group.   is the transmission 

coefficient from susceptible group to acutely infected class 

while  is a reduced transmission rate relative to acute 

infection by chronic carriers. 10  and  ,  are the birth rate 

recruited into susceptible class, natural death rate which 

occurs in all the five classes and the Hepatitis B Virus -related 

death rate respectively in the model system.  is the 

proportion of birth without vaccination while )1(   is the 

vaccinated proportion.  is the proportion of birth vertically 

infected i.e those children infected during birth. 3  is the rate 

of vaccination while  is the rate of waning back to 

susceptibility when vaccination does not clear the disease.  1  

is the rate of moving from acute stage to other compartments 

while q is an average probability an individual fails to clear 

acute infection but develops carrier stage.  q 1  is the rate of 

moving from acute stage to carrier. Chronic carriers are 

treated at the rate of  and these treated individuals move 

from chronic carriers to immunity at the rate of .2  (1-q) 1  

is the rate of recovery from acute infection. 

Table 3.1: Variables and parameters of the model 

Description of variable Symbol 

Susceptible population S(t) 

Acutely Infected Members of the Population I(t) 

Individuals who are chronic carriers C(t) 

Vaccinated Individuals of the population V(t) 

Recovered individuals R(t) 

Rate at which children are born into the 

population 

 

Natural death portion 
 

Hepatitis B Virus -related death rate 

Percentage of birth that is not vaccinated 

Percentage of birth vaccinated 
 

(1-) 
 

Percentage of birth that has vertical infection 
 

Rate of waning back to susceptibility by 
vaccinated individuals 

 

Coefficient of transmission to any class 
 
 

 

Rate of transition from acute stage to other 
compartments  

Probability of failure of individual to clear 

acute infection stage but instead develops 

carrier stage 

q 

Rate of transitioning from acute infection to 

chronic carrier 
q 

Rate of transitioning from acute infection to 
recovered class 

 

(1-q) 
 

Rate of moving from chronic carrier to 
immunity  

Vaccination rate of susceptible individuals 
 

Reduced transmission rate by acute infection 

relative to carriers 

Rate at which chronic carriers are treated 
 

3.1.1 Model Assumptions 

The following assumptions are made regarding the model: 

i) The members of the population are the same 

(homogeneous population) 

ii) Recruitment of individuals into the population is only 

through birth 

iii) Exiting out of the population is through both natural 

death and Hepatitis B Virus-related death only 

iv) Individuals who received vaccination may not 

necessarily achieve permanent immunity 

v) Infants born to carrier mothers proceed to chronic 

carrier stage immediately 

vi) Treated carriers recover 
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3.1.2 Flow chart Describing the Model and its associated Equations 

 

Figure 3.1: Flow chart 

The following are the equations we can possibly draw from 

the flow chart above 
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(3.1) 

Since R appears only in the last equation, it’s sufficient that 

we discuss only the first four equations which are independent 

of R. 

CCIq

ISCI

SV

SCIVC

)(
dt

dC

)()(
dt

dI

)()1(
dt

dV

)()1(
dt

dS

2101

10

30

30

















                                      

(3.2) 

3.2 Analysis of the Model 

In this section, we discuss the positivity, boundedness, 

existence and uniqueness of the solutions. We also discuss the 

equilibrium points (Disease-free Equilibrium and Endemic 

equilibrium) and the basic reproduction number. 

3.2.1 Positivity of the Solutions 

We give the proof that for all 

  C(t) I(t), V(t), S(t), , t,0 0t  will be positive in .4

  

Since it’s already known that all the parameters used in the 

model system are entirely positive, we will place a lower 

bound on each of the equations of the system (3.2), such that 
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By the method of separation of variables, we obtain the 

following solutions; 
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The third equation gives us; 
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Finally, we solve for C(t) 
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3.2.2 Boundedness of the solutions 

Lemma 1  
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Thus (S+I+C)(t) is bounded, so S(t), I(t) and C(t) are all 
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Since S(t) is bounded for all  , t,0 0t we know that V(t) is 

bounded for all  . t,0 0t
 

3.2.3 Existence and Uniqueness of the Solutions 

Lemma 2:  Let .00 t  In the model, if the initial conditions 
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Proof 

 

   
  
















































CCIq

ISCI

VS

SCI

tC

tI

tV

tS

x









2101

10

03

30

)()1(

-VC)-(1

f(t) and 

)(

)(

)(

)(

 

We note that f is continuously differentiable on 
4 and thus f 

is locally Lipschitz in 
4  

Theorem 1: Fundamental Existence and Uniqueness 

Theorem. Suppose the function 
nnf : is continuously 
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equation 
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By the well-known existence and uniqueness theorem we 

have just stated above without proof, as well as the proved 

lemmas of positivity and boundedness of the solutions, we can 

conclude that there exist unique, positive and bounded 

solutions to the system (3.2) of the ordinary differential 

equations. 

3.2.4 The Disease-free Equilibrium (DFE) point 

The point referred to as a disease-free equilibrium of a system 

is a point that is free of disease or in which there is no 

infection within the population under study. At a disease-free 

equilibrium situation, we equate the equations of the system 

(3.2) to zero, thus; 
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(3.3) 

Now,  

    01 30  SCIVC 
 

Since there is no infection, the terms containing I and C 

vanish so that we have 

  )..(..........030 iSV  
 

Also, the second equation becomes 

  )(..........003 iiVS  
 

Making V the subject of the formula, we obtain 










0

3SV

 

Substituting expression of V into (i), we obtain 

  030
3 











 S

S







 

Expansion gives 

      

  0

0

30300030

30030





SS

SS





 

 

 

 
 





























30

00

03000

0

030000

030000

000000

0

0

S

S

S

S

SSS

 We also need to find the expression of 
0V  

Using equation (ii) 

 

 

3

0

03












V
S

VS

 

Substitute this expression into equation (i) 

 
 

  

  0

0

0

333030000033

03033

3

0
30














 











VVVVV

VVV

V
V

 

Opening the bracket, we have; 
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 

 
 000

3000

00000

300

30003000

30300000

0

0



























V

V

V

VVV

 

The disease-free equilibrium point is thus given by 

 
 

 
 

0

0,0,,

00

300

030

300

00






















CI

E








 

Threshold for Disease Spread 

When dealing with an infectious disease, the major concern is 

always its ability to attack the completely susceptible 

population. It’s therefore, imperative to get the threshold 

parameter whose value usually dictates whether the disease 

will continue to spread or die out. This parameter is referred 

to as the basic reproduction number  0R . This quantity gives 

the average number of secondary infections generated when 

one infected individual is introduced into a fully susceptible 

population. If ,10 R on average an infected individual 

produces less than one new infected individual in the course 

of the infectious period and hence the disease dies out of the 

population. But if ,10 R  infected individual produces, on 

average, more than one new infected individual and thus the 

spread of the disease is possible.  

3.2.5 Calculating the Basic Reproduction Number  0R  

We use the next generation matrix method stipulated by Van 

den Driessche Watmough (2002) to calculate .0R The basic 

reproduction number formula is given by  .1

00

VF 0F  is 

the Jacobian of 
ii ff  and Eat  0
 is the rate of appearance of 

new infection in the compartments 

.at   ofJacobian   theis V  while 0

0 Evi i iv represents rate 

at which are individuals are transferred into and out of the 

compartment .i  The population infected with the disease is 

represented by the two  equations below. 

   

  0

0

2101

10





CCq

ISCI





 

Taking  CIx ,  

 
  




















 







Cq

ICSIS

vf
dt

dx
ii

2101

10

0
 

where, 

 
  




















 


CCIq

I
v

CSIS
f ii





2101

10
 and 

0

 











00
at   ofJacobian 

00

0

0

SS
EfF i



 

 
 

   




























































210

10

10200

1

10

210

1

0

2101

100

0

0

0
at   ofJacobian 

q
V

q
EvV i

Multiplying the two matrices gives 

 

  
  

 




































00

200

10

0

10210

0

1

10

0

210

1

00











 SSqS

VF

 

The basic reproduction number 0R is given by the spectral 

radius of the matrix,
1

00

VF  that is, its highest absolute value 

of eigenvalue. 

 1

000

 VFR 
 

The eigenvalues of the above matrix are; 

  
  

  
  


















210300

100

30100

0210
21  ,0

 

Clearly, the basic reproduction number becomes 

  
  

  
  

















210300

100

30100

0210
0R
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3.2.6 Endemic Equilibrium (EE) Point. 

It is a point at which disease persists within the population 

under study. For the disease to remain in the population, the 

vaccinated class, the susceptible class, the infected class and 

the chronic carriers’ class must not be zero. In other words, 

  0.,, ***** CIVSE . 

When we substitute ,*E we obtain system (3.4) below. 

  0)(

0)()(

0)()1(

0)()1(

*

210

*

1

*

10

***

*

3

*

0

***

30

**









CIq

ISCI

SV

SCIVC









                                             (3.4)

 

Without the loss of generality, we can as well omit the 

asterisk  *
 in our calculations but replace it later. 

   

 
)....(..........

1

01

0

3

30

iii
S

V

SV














 

Adding the third equation of system (3.2) to the first equation 

i.e  

   

   

      (iv).......... 01

0

01

1030

10

30









ISVC

ISCI

SCIVC







 

But we know V in terms of S, therefore, 

 

 
 

   

        
  100

30030

1030

0

3

}1{1

0
}1{

1






















SSC
I

IS
S

C

 

Simplifying terms containing S i.e, 

 

    

 S

SSSSS

SS

03000

3030003

3003 }{













 

Substituting back we have; 

     
  

)........(v
1

10

03000










SC
I P

 

Add second equation of (3.2) to (iv), i.e  

     

   

     

   
 

 

               0}1{11

0
}1{

11

).......(vi..........011

Hence

01

01

100003000

100

0

30

1000

30

13

















ISSC

IS
S

C

ISVC

SV

ISVC















 

Substituting the expression of I which is equation (v), we 

obtain 

             

  0

111

03000

00300000





S

CSSC





 

Rearranging, we get; 

         000003030000 1}{ S

 

Hence 

   
   








003003000

000* 1
S

 

From (iii), we have 

 









0

31 S
V

 

Therefore,  

 









0

*

3* 1 S
V

 

We need to find 
*I  
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Adding the first and fourth equations of (3.2) 

 

 

    .(vii)..........0

0

0

210301

2101

30









CSCIIqV

CCIq

SCIVC







 

Adding (vii) to the third equation of (3.2), we obtain; 

      (viii)..........021010

*

301

*  CISIqV 

From the fourth equation of the system (3.2), we have; 








210

1Iq
C

 

Substituting expression of C into (viii) and simplifying, we 

obtain; 

 
  }{}}{{

}}{{

210210101

210

**

30*










q

VS
I

 

Having known I, our C becomes 

  0C I, V, , *****

210

*

1*






SE

Iq
C





 

3.3 Stability of the Disease-Free Equilibrium point. 

In this section, we discuss the local and global stability of the 

disease-free equilibrium. 

3.3.1 Local Stability of the Disease-Free Equilibrium point. 

We would want to find the local stability of the disease-free 

equilibrium point of the system of ODEs. Local stability is 

calculated at this point using the Jacobian of the model at .0E  

It is achieved using the sign of the real parts of the 

eigenvalues of the corresponding Jacobian matrix. 

Theorem 2: The disease-free equilibrium of the system of 

ODEs is locally asymptotically stable if the reproduction 

number 10 R and unstable if 10 R  

Proof 

Taking the equations of the system (3.2), 
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Or simply 
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At a particular time when vaccination becomes effective such 

that the rate of waning back becomes zero i.e ,0  we 

have 
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By inspection, it’s seen from the matrix above that 

 10201  ,    are the eigenvalues and the 

other two remaining eigenvalues can be obtained from 22  

matrix thus, 
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2

 ,let 

0
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Such that 001

2  aa  

Using Routh-Hurwitz criterion, the disease-free equilibrium 

point 
0E is locally asymptotically stable if  
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i.e 0 that implies this

.0 and 0

0

011





a

aaa
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Dividing both sides by  , we obtain 

1210 




 q
 

Thus, the proof that 10 R implying the disease-free 

equilibrium point is asymptotically stable. 

3.3.2 Global Stability of the Disease-Free equilibrium Point 

Using Castillo-Chavez et al approach (2002), system (3.2) can 

be expressed as; 

 

   

 
  ts.compartmen infected  the,,X

 whereassindividual infected-non ofnumber   the,,X Where

00,,,

,

2

2
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1
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2

21
1

CI

VS

XGXXG
dt

dX

XXF
dt

dX









 

The conditions below are for global stability of disease-free 

equilibrium point: 

 

        



212121221

01

,for  0,,,,XG  2.

stableally asymptotic is ,0, .1

XXXXGXXGAXX

XXF
dt

dX
 

Where A is the M-matrix for its off-diagonal elements are 

positive in the area  in which model equations make 

epidemiological sense. If the above two conditions are 

satisfied by our model system, then the theorem stated below 

is true 

Theorem 3: Provided that 10 R and the conditions 1 and 2 

are satisfied, the diseases-free equilibrium point 

 0 ,00 XE   of the system (3.2) is globally asymptotically 

stable. 

Proof 

The DFE is now denoted as: 

   0,*

1

0 XE  

Where  0,0*

1 NX   

Now, the first condition that is globally asymptotically stable 

(GAS) is 
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A linear differential equation solving gives 
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Clearly, from the above solutions, we have 
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thus
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Next, we prove that the second condition is true, that is 
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Hence the proof is complete and the disease-free equilibrium 

is asymptotically stable. 

3.4 Stability of the endemic Equilibrium 

3.4.1 Local Stability of the Endemic Equilibrium 
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Theorem 4: The Endemic Equilibrium point  *E  of the 

system (3.2) is locally asymptotically stable if 10 R  

Proof 

The Jacobian matrix at the endemic equilibrium is; 
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With effective vaccination, 0  
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By inspection, 01    and the rest of eigenvalues can 

be determined by reducing by reducing  *EJ  to 
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By the use of Routh-Hurwitz criterion regarding the necessary 

and sufficient conditions as it’s well detailed in Enagi et al, 

the characteristic polynomial has all roots with negative real 

parts if 
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The determinant will be given by; 
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meaning all the eigenvalues of  *

1 EJ  have real parts with 

negative sign if .10 R  

Therefore,  *EJ  is locally asymptotically stable provided 

.10 R  

3.4.2 Global Stability of the Endemic Equilibrium Point 

Theorem 5: The Endemic Equilibrium Point
*E of the system 

(3.2) is globally asymptotically stable if .10 R  

Proof 

To give the proof of global stability of ,*E  we need to use 

the approach of LaSalle (1976) to construct the appropriate 

Lyapunov function as shown. 
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Differentiating U, we obtain; 
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Substituting   
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dI
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dV
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dS
 and , , ,    from system (3.2), 

we have; 
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From system (3.4), we have; 
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(3.5) 
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Setting 

0
dt

dU
obtain   we,CC and II ,VV , ****  SS  

Therefore, 0
dt

dU
 holds. By LaSalle invariant principle, 

(LaSalle 1976), as ,t  every solution to the system (3.2) 

approaches endemic equilibrium hence the point is globally 

asymptotically stable. 

IV. NUMERICAL SIMULATION GRAPHS 

We used MATLAB to simulate system (3.2) and investigate 

the impact of both vaccination and treatment as a control 

strategy against infectious HBV on chronic carriers and 

acutely infected individuals. 

The values of the parameters used are as shown below. 

Table 4.1: Parameter values used in the numerical simulation 

Parameter Value Reference 

 

 
 

0.0367 USAID (2009) 

 

 
 

0.0166 USAID (2009) 

 
0.1 Assumed 

 
0.1 Assumed 

 

 
 

0.11 Zou et al (2009) 

 

 
 

0.1 Zou et al (2009) 

 

 
 

0.95 Edmunds et al (1996a) 

 
0.885 Zou et al (2009) 

 

 
 

4. per annum Zou et al (2009) 

 
0.025 Zou et al (2009) 

 
0.9 Assumed 

 
0.16 Edmunds et al (1996a) 

 

 
 

0.9 Assumed value 

Results of simulation presented in graphical forms 

 

Figure 4.1: Impacts of vaccination on chronic carriers without treatment 

 

Figure 4.2: Impact of low treatment and vaccination on chronic carriers. 

 

Figure 4.3: Impact of equal rate of vaccination and treatment on chronic 

carriers 

 

Figure 4.4 Impact of increased treatment on acutely infected individuals 
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Figure 4.5: Impact of both vaccination and treatment on acutely infected 

individuals. 

V. DISCUSSION 

Our study focused on the possibility of eradicating infectious 

HBV by varying the data values assigned to vaccination and 

treatment. We take vaccination and treatment as the major 

control method of Hepatitis B Virus as discussed below. 

Figure 1 indicates the existence of infectious Hepatitis B 

Virus in the carrier population with vaccination intervention 

but no treatment administered. At the initial point where there 

is no both vaccination and treatment, 

  0 and 0 ,01 3   , the disease increases to the 

peak and slightly decreases and then remain almost stable 

throughout the population. The peak represents the epidemic 

crisis while the “almost stable state” indicates how the entire 

population is diseased.  However, vaccination at varying rates 

helps alter the almost stable state of the pandemic and reduces 

it as shown by green, blue and yellow graphs. 

Figure 2 shows that without any intervention strategy,

  0  and ,0 ,01 3   , the carrier population 

remains alarmingly high, almost constant. However, when a 

relatively high vaccination and treatment efforts are made at 

the same rate,   0.6 and ,6.0 ,6.01 3   , the 

disease prevalence drastically reduces as shown by the blue 

graph among the carriers. Interestingly, treating carriers tends 

to be effective than vaccinating them at the same rate as 

shown by the graphs of   0.6 ,0 ,01 3    

compared to that of   0 ,6.0 ,6.01 3  
 

This is because of relapse and resistance of infection to 

antibodies of the immune system. 

Figure 3 shows that when we treat and vaccinate the carriers 

at the same rate, the disease decreases but eradication is 

possible when the efforts are increased. This is attested to by 

the graph of   0.9 and ,9.0 ,9.01 3    in which 

intervention strategies are very high. 

Figure 4 shows infected population proportions in which only 

vaccination is administered and no treatment. The natural 

immune system fights the disease up to a relatively stable 

state. But increasing vaccination helps supplement the 

immune system in the fight and reduction of the prevalence of 

disease among acutely infected individuals. 

Figure 5 reveals that when we combine administering both 

treatment and vaccination, the disease is fully eradicated. The 

graph also indicates that for us to effectively bring full control 

over the infectious HBV disease, we have to increase the rate 

of implementing the two strategies. 

VI. CONCLUSION 

We studied a mathematical model of an infectious Hepatitis B 

Virus in which both treatment and vaccination are combined 

in an attempt to eradicate the disease in a completely 

susceptible population. In our work, we formed the flow chart 

which represents the disease transmission dynamics. From 

this flow chart we derived five model equations. The disease-

free equilibrium point, the basic reproduction number 

associated with the system of equations, as well as the 

endemic equilibrium point and the stability of those two 

equilibrium points were determined. Using MATLAB, we 

employed the method of Runge-Kutta of order four to obtain 

numerical simulation results. According to our analysis, 

vaccination and treatment can be effective intervention efforts 

to mitigate the prevalence of infectious HBV. However, 

combination of both treatment and vaccination eradicates the 

epidemic, the HBV, hence the two should always be 

combined and employed as single control strategy. 

VII. RECOMMENDATIONS 

 The government should periodically carry out mass 

vaccination of expecting mothers and children. 

 Educating the masses about the need to go for regular 

testing so that chronic carrier cases are detected and 

treated. 

 Educating the nomad communities which are tightly 

held to unhealthy cultures like FGM and traditional 

methods of circumcision. This will help in 

eliminating unnecessary transmission of HBV which 

is usually contracted as a result of using non-

sterilized objects for tattooing and circumcision. 

 Further research on impact of waning health 

conditions on completely susceptible population 

when the same methods of control are employed 
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