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Abstract: The study investigated thermal transfer in MHD 

convective flow of Cu-H2O nanofluid in a porous medium with 

heat generation/absorption. A set of partial differential equations 

with copper nanoparticles were used. The partial differential 

equations were non-dimensioned with various dimensionless 

quantities in order to obtain forms whose solutions can be easily 

obtained. The partial differential equations were later 

transformed into ordination differential equations through a two 

term perturbation technique which were later solved using 

method of undetermined coefficient to obtain the exact solutions 

for the energy and momentum equations. Using the exact 

solutions; plots were done with the aid of standard parameters to 

estimate the variational effects of parameters that entered the 

flow field and from the plots; it was observed that thermal 

radiation decreased the temperature of the fluid. Heat 

generation/absorption parameter increased the temperature of 

the fluid. The effective thermal conductivity increased the 

temperature of the fluid. Peclet number decreased the velocity of 

the fluid. Reynolds number decreased the fluid velocity.  

Keywords: Entropy generation, Nanofluid, 

Magnetohydrodynamics(MHD) 

I. INTRODUCTION 

hermal conductivity plays a vital role in warmness 

transfer enhancement. Conventional heat switch fluids 

along with water, ethylene glycol (EG), kerosene oil and 

lubricant oils have negative thermal conductivities compared 

to solids. Solids debris however has better thermal 

conductivities in comparison to traditional warmth switch 

fluids. Choi (1995) in his pioneering paintings indicated that 

when a small quantity of nanoparticles .is added to not 

unusual base fluids, it will increase extensively the thermal 

conductivity of the base fluids in addition to their convective 

warmness transfer rate. This combination is known as 

nanofluids. More precisely, nanofluids are suspensions of 

nano-length debris in base fluids. Usually nanofluids include 

specific sorts of nanoparticles inclusive of oxides, metals and 

carbides in generally base fluids like water, EG, propylene 

glycol and kerosene oil. Some unique packages of nanofluids 

are located in various digital equipment, energy supply, 

energy generation, air con and manufacturing. Vajjha and Das 

(2009) for the first time used EG (60 %) and water (forty %) 

aggregate as base fluid for the preparation of alumina (Al2O3), 

copper oxide (CuO) and zinc oxide (ZnO) nanofluids. At the 

identical temperature and attention, they observed that CuO 

nanofluid posses excessive thermal conductivity evaluate to 

the ones of Al2O3 and ZnO nanofluids. Naik and Sundar 

(2011) took 70 % propylene glycol and 30 % water and 

prepared CuO nanofluid. As expected, they found that CuO 

nanofluid has better thermal conductivity and viscosity homes 

compare to base fluid. Malvandi et al.(2013) studied entropy 

generation of nanofluids over a plate analytically. The used 

the homotopy-pertubation method (HPM) and the variational 

iteration method (VIM) to solve the nonlinear ordinary 

differential equation. It was noted the high density of Cu 

adding this nanoparticles to water generates more entropy in 

contrast to other nanoparticles in a process. Thiagarajan et 

al.(2019) embarked on the study viscous dissipation and joule 

heating effects on thermo solutal stratified nanofluid over a 

stretching sheet. They remarked that Schmidt number 

decreases the temperature after obtaining a numerical solution 

of the nonlinear ordinary differential equations. Md et 

al.(2012) studied the unsteady mhd free convection of 

nanofluid along a stretching sheet with thermal radiation. 

They obtained different time steps and for the different values 

of the parameters of physical and engineering interest. Natural 

convection flow of fractional nanofluids over an isothermal 

vertical plate with thermal radiation was studied by 

Constantin et al.(2017). The fluid temperature increases for 

increasing values of the nanoparticle volume fraction was 

noted by them after obtaining the closed form solution and 

plotting the graph. Latiff et al.(2016) studied Stefan blowing 

effect of nanofluid over a solid rotating stretchable disk. The 

nonlinear ordinary differential equations were solved 

numerically using the Runge-Kutta-Fehlberg method. It was 

remarked that the Stefan blowing increases the local skin 

friction and reduces the heat transfer, mass transfer and 

microorganism transfer rates. Second order slip flow of Cu-

Water nanofluid over a stretching sheet with heat transfer was 

undergone by Rajesh et al.(2014). They solved the differential 

equations using finite element method. They show the effects 

of parameters variation with the aid of graphs. Aaiza et 

al.(2015) studied energy transfer in nanofluid containing 

different shapes of nanoparticles. They found that viscosity 

and thermal conductivity ate the most prominent parameters 

responsible for different results of velocity and temperature.  

T 
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The concept of heat generating and absorbing fluid cannot be 

ignored due to its significance in problems dealing with 

chemical reactions. Heat generation effects may alter the 

temperature distribution asnd this in turn can impact the 

particle deposition rate in nuclear reactors, electronic chips 

and semi conductor wafers. Though the exact modeling of 

internal heat generation or absorption in its sense is difficult to 

combat but some simple mathematical models can be used to 

express its general behavior for most of the physical 

circumstances. It is assumed to be constant, space-dependent 

or temperature –dependent. A host of authors have dealt with 

this concept. Thiagarian et al.(2019) studied viscous 

dissipation of nanofluid over a stretching sheet with heat 

generation. They solved the nonlinear models adopting a 

numerical approach of Nachitsheim-Swigert shooting 

technique scheme together with Runge Kutta fourth order. 

Remarkably they noted that heat generation increased the 

temperature of the fluid under consideration. Mass transfer 

and heat generation effects was embarked on by Reddy et 

al.(2011). They considered the mhd free convection in 

connection to it. They adopted the Runge Kutta fourth order 

with shooting technique to solve the problems. They noted 

that heat generation increased both the velocity and 

temperature of the fluid. 

Magnetohydrodynamics (MHD) is the science which is 

associated with the motion of exceedingly conducting liquids 

in the presence of a magnetic field. The motion of the 

conducting liquid throughout the magnetic area generates 

electric currents which change the magnetic field, and the 

motion of the magnetic field on those currents offers upward 

thrust to mechanical forces which alter the drift of the liquid. 

MHD combines both standards of fluid dynamics and 

electromagnetism. MHD considers the magnetic properties of 

electrically conducting fluids. When an electrically 

conducting fluid moves through a magnetic field, an electric 

field may be brought on and will interact with the magnetic 

properties to supply a body pressure. The science which deals 

with this phenomenon is referred to as 

magnetohydrodynamics. Owing to the significance of this 

concept; so many authors halve delved into it.  Soret effect on 

MHD free convection through a porous inclined channel was 

embarked upon by Achogo et al.(2020). They noted that soret 

number increases both the concentration and velocity profiles 

after obtaining the closed form analytically through the 

method of undetermined coefficient. Reddy et al.(2011) 

examined mass transfer and heat generation effects on MHD 

free convection flow past an inclined vertical surface ina 

porous medium. They solved the nonlinear systems through a 

numerical approach by applying the Runge-Kutta method of 

fourth order with shooting technique. Buggaramulu et 

al.(2017) studied MHD convection flow of Kuvshinski fluid 

past an infinite vertical porus plate. The nonlinear equations 

were solved by adopting a two term perturbation technique 

and they solved analytically. 

In this paper, we considered the thermal transfer in MHD 

convective flow of Cu – H2O nanofluid  in a porous medium 

with heat generation/absorption. 

II. FORMULATION OF THE PROBLEM 

The following assumptions were made; 

a) The flow is oscillatory of nanofluids. 

b) The fluid is electrically conducting in the presence of 

uniform magnetic field applied perpendicularly to the 

direction of flow. 

c) The magnetic Reynolds number is very small such 

that the impact of induced magnetic field is forfeited. 

d) The external electric field is considered zero and the 

electric field due to polarization is negligible. 

e) The no-slip condition at the boundary walls is 

considered. 

f) The x-axis is taken along the flow and y-axis is taken 

normal to the direction of flow. 

g) The natural convection results from buoyancy force 

together with external pressure gradient applied 

along the x-direction. 

h) T0 and Tw are considered very high enough to induce 

the radiative heat transfer. 

i) Going by the Boussinesq approximation, the 

governing equations of momentum and energy are as 

follows; 

𝜌𝑛𝑓  
𝜕𝑢 ′

𝜕𝑡 ′
+ 𝑣′

𝜕𝑢 ′

𝜕𝑦 ′
 = −

𝜕𝑝 ′

𝜕𝑥 ′
+  𝜇𝑛𝑓

𝜕2𝑢′

𝜕𝑦 ′  2 −
𝜇𝑛𝑓

𝐾
𝑢′ − 𝜎𝛽0

2𝑢′ +

𝑔 𝜌𝛽 𝑛𝑓  𝑇
′ − 𝑇0    (1) 

 𝜌𝑐𝑝 𝑛𝑓  
𝜕𝑇′

𝜕𝑡 ′
+ 𝑣′

𝜕𝑇′

𝜕𝑦 ′
 =  𝑘𝑛𝑓

𝜕2𝑇′

𝜕𝑦 ′  2 −
𝜕𝑞𝑟 ′

𝜕𝑦 ′
− 𝑄0 𝑇

′ − 𝑇0   

 (2) 

Where u=u(y,t) represents the velocity in the direction of x, 

T=T(y,t) the temperature, 𝜌𝑛𝑓  the density, 𝜇𝑛𝑓  the dynamic 

viscosity of the nanofluid, 𝜎 the electrical  conductivity of the 

base fluid, K> 0 the permeability of the porous medium, 

 𝜌𝛽 𝑛𝑓  thermal expansion coefficient of nanofluid, g the 

acceleration due to gravity,  𝜌𝑐𝑝 𝑛𝑓  the heat capacitance of 

nanofluids, 𝑘𝑛𝑓  the thermal conductivity of nanofluid, 𝑞𝑟  the 

radiative heat flux in x-direction, p the external pressure, 𝑄0 

the heat generation/absorption 

The boundary condition expedient are as follows; 

y=0; u=0, T=T0       (3a) 

y=d; u=0, T=Tw       (3b) 

Following the Hamilton and Crosser model( 1962),the 

dynamic viscosity of the nanofluid(𝜇𝑛𝑓 ), thermal expansion 

coefficient of nanofluid( 𝜌𝛽 𝑛𝑓 ),  heat capacitance of 

nanofluids( 𝜌𝑐𝑝 𝑛𝑓 ), thermal conductivity of nanofluid(𝑘𝑛𝑓 ) 

are; 

𝜇𝑛𝑓 = 𝜇𝑓 1 + 𝑎∅ + 𝑏∅2           (4a) 
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𝑘𝑛𝑓

𝑘𝑓
=

𝑘𝑠+ 𝑛−1 𝑘𝑓+ 𝑛−1  𝑘𝑠−𝑘𝑓 ∅

𝑘𝑠+ 𝑛−1 𝑘𝑓+ 𝑘𝑠−𝑘𝑓 ∅
      (4b) 

𝜌𝑛𝑓 =  1 − ∅ 𝜌𝑓 + ∅𝜌𝑠        (4c) 

 𝜌𝛽 𝑛𝑓 =  1 − ∅  𝜌𝛽 𝑓 + ∅ 𝜌𝛽 𝑠      (4d) 

 𝜌𝑐𝑝 𝑛𝑓 =  1 − ∅  𝜌𝑐𝑝 𝑓 + ∅ 𝜌𝑐𝑝 𝑠  (4e) 

 denotes the nanoparticles volume fraction, 𝜌𝑓  and 𝜌𝑠 are the 

densities of the base fluid and solid nanoparticles, 𝛽𝑠 and 𝛽𝑓  

are the volumetric expansion coefficients of thermal 

expansions of solid nanopartiles and base fluids, 𝑐𝑝 𝑠 and 

  𝑐𝑝 𝑓  are the specific heat capacities of solid nanoparticles 

and base fluids at constant pressure, a and b represent 

constants and find their values on the particle shape as 

represented by Aaiza et al.(2015) in Table 1. The n in 

equation (4b) denotes the empirical shape factor and it is 

expressed as 𝑛 =
3

Ψ
, where  means the sphericity which 

denotes the ratio between the surface are of the sphere and the 

surface area of the real particle with equal volumes(Aiza et 

al.(2015)). The  is clearly seen in Table 2.  

Table1: Constants a and b empirical shape factors 

Model Platelet Blade Cylinder Brick 

A 37.1 14.6 13.5 1.9 

B 612.6 123.3 904.4 471.4 

Table 2: Sphericity   for different shapes nanoparticles 

Model Platelet Blade Cylinder Brick 

Ψ 0.52 0.36 0.62 0.81 

Table 3: Thermophysical properties of water and nanoparticles 

Model 
𝜌(𝑘𝑔𝑚−3

) 
𝑐𝑝 𝑘𝑔

−1𝐾−1  𝑘 𝑊𝑚−1𝐾−1  
𝛽
× 10−5 𝐾−1  

Pure 
water(H2O) 

997.1 4179 0.613 21 

Copper(Cu

) 
8933 385.0 401.0 1.67 

Following Cogley et al.(1968) for optically thin fluid with 

relatively low density, the heat flux is expressed as; 

𝜕𝑞𝑟

𝜕𝑦
= −4𝛼2 𝑇 ′ − 𝑇0      (5) 

The symbol 𝛼 denotes the mean radiation absorption 

coefficient.  

Now introducing equation (5) into equation (2), it yields; 

 𝜌𝑐𝑝 𝑛𝑓  
𝜕𝑇′

𝜕𝑡 ′
+ 𝑣′

𝜕𝑇′

𝜕𝑦 ′
 =  𝑘𝑛𝑓

𝜕2𝑇′

𝜕𝑦 ′  2 + 4𝛼2 𝑇 ′ − 𝑇0 −

𝑄0 𝑇
′ − 𝑇0         (6)    

Now we introduce the following dimensionless quantities into 

equations (1) and (6) 

𝑥 =
𝑥 ′

𝑑
, 𝑦 =

𝑦′

𝑑
, 𝑢 =

𝑢′

𝑈0

, 𝑡 =
𝑡𝑈0

𝑑
, 𝑝 =

𝑑

𝜇𝑈0

𝑝′ , 𝑇

=
𝑇 ′ − 𝑇0

𝑇𝑤 − 𝑇0

, 𝜔 =
𝑑𝜔′

𝑈0

, 𝜀 =
𝜇

𝜇𝑓

,
𝜕𝑝

𝜕𝑥
= 𝜆𝑒𝑖𝜔𝑡 , 

 𝑅𝑒 =
𝑈0𝑑

𝑣𝑓
, 𝑀2 =

𝜎𝐵0
2𝑑2

𝜇𝑓

, 𝐾 =
𝐾 ′

𝑑2
, 𝐺𝑟

=
𝑔𝛽𝑓𝑑

2 𝑇𝑤 − 𝑇0 

𝑣𝑓𝑈0

, 𝑃𝑒𝑡 =
𝑈0𝑑 𝜌𝑐𝑝 𝑓

𝑘𝑓
, 𝑁2

=
4𝑑2𝛼2

𝑘𝑓
,  

𝜆𝑛 =
𝑘𝑛𝑓

𝑘𝑓
, 𝑆 =

𝑄0𝑑
2

𝑘𝑓
, 𝜂 =

1

𝑈0

, 𝑣 =
𝑣′

𝑣0

,  

 together with equations (4a)-(4e) appropriately.  

Re is the Reynolds number, M is the magnetic parameter also 

known as the Hartmann number, K is the permeability, Gr is 

the thermal Grashof number, Pe is the Peclet number, N is the 

radiation parameter, S is the heat generation parameter. 

 A close look at the continuity equation shows that the suction 

velocity normal to the channel is a function of time and shall 

therefore be taken as; 

𝑣′ = 𝑣0(1 + 𝜖𝐴𝑒𝑛𝑡 )                                                             (7) 

 The following were obtained; 

𝑚4𝑅𝑒  
𝜕𝑢

𝜕𝑡
−𝑚2

𝜕𝑢

𝜕𝑦
 = 𝜆𝑒𝑖𝜔𝑡 + 𝑚5

𝜕2𝑢

𝜕𝑦2 +  𝑀2 +
𝑚5

𝐾
 𝑢 +

𝑚6𝐺𝑟𝑇                                        (8) 

𝑚1𝑃𝑒

𝜆𝑛
 
𝜕𝑇

𝜕𝑡
−𝑚2

𝜕𝑇

𝜕𝑦
 =

𝜕2𝑇

𝜕𝑦2 +
𝑁2−𝑆

𝜆𝑛
𝑇   

                           (9) 

where 𝑚1 = 1 − 𝜙 + 𝜙
 𝑐𝑝  𝑠

 

 𝑐𝑝  𝑓

, 𝑚2 = 𝜂 1 + 𝜖𝐴𝑒𝑛𝑡  ,𝑚5 = 1 +

𝑎∅ + 𝑏∅2, 𝑚4 = 1 − 𝜙 + 𝜙
𝜌𝑠

𝜌𝑓
, 

 𝑚6 = 1 − 𝜙 + 𝜙
 𝜌𝛽 𝑠
 𝜌𝛽 𝑓

 

with the boundary conditions as; 

y=0; u=0, T=0     

          (10a) 

y=1; u=0, T=1     

          (10b) 

We now assume pertubation solutions for the momentum and 

temperature of the forms below;  

u(y,t)=u0(y)+u1(y)𝜖𝑒𝑖𝜔𝑡     

          (11) 

T(y,t)=T0(y)+T1(y) 𝜖𝑒𝑖𝜔𝑡     

                        (12) 
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Adopting equations (11) and (12) in equations (8) and (9), we 

obtain ordinary differential equations depending on the space 

coordinate only as follows; 

𝑚5
𝑑2𝑢0

𝑑𝑦2 + 𝑚2𝑚4𝑅𝑒
𝑑𝑢0

𝑑𝑦
−  𝑀2 +

𝑚5

𝐾
 𝑢0 = −𝑚6𝐺𝑟𝜃0 

           (13) 

𝑚5
𝑑2𝑢1

𝑑𝑦2 + 𝑚2𝑚4𝑅𝑒
𝑑𝑢1

𝑑𝑦
−  𝑀2 +

𝑚5

𝐾
+ 𝑚4𝑅𝑒𝑖𝜔 𝑢1 = −𝜆 −

𝑚6𝐺𝑟𝜃1                                       (14) 

𝑑2𝑇0

𝑑𝑦2 +
𝑚2𝑚1𝑃𝑒

𝜆𝑛

𝑑𝑇0

𝑑𝑦
+

 𝑁2−𝑆 

𝜆𝑛
𝑇0 = 0   

                         (15) 

𝑑2𝑇1

𝑑𝑦2 +
𝑚2𝑚1𝑃𝑒

𝜆𝑛

𝑑𝑇1

𝑑𝑦
+

 −𝑁2+𝑆+𝑚1𝑃𝑒𝑖𝜔  

𝜆𝑛
𝑇1 = 0  

                        (16) 

The boundary conditions also as; 

y=0; u0=0,u1=0, 𝜃0 = 0, 𝜃1 = 0   

          (17a) 

y=1; u0=0,u1=0, 𝜃0 = 1, 𝜃1 = 0   

          (17b) 

We proceeded to solve equations (13)-(14) together with the 

appropriate boundary conditions (equation 17a and 17b) and 

obtained; 

u0(y)=𝐷5𝑒
𝛼5𝑦 + 𝐷6𝑒

𝛼6𝑦 + 𝐷7𝑒
𝛼1𝑦 + 𝐷8𝑒

𝛼2𝑦  

           (18) 

u1(y)=𝐷15𝑒
𝛼11𝑦 + 𝐷16𝑒

𝛼12𝑦 + 𝐷17 + 𝐷18𝑒
𝛼7𝑦 + 𝐷19𝑒

𝛼8𝑦

                         (19) 

𝑇0(y)=𝐷1𝑒
𝛼1𝑦 + 𝐷2𝑒

𝛼2𝑦     

                         (20) 

𝑇1(y)=𝐷11𝑒
𝛼7𝑦 + 𝐷12𝑒

𝛼8𝑦     

                         (21) 

Invoking  equations (18)-(19) into equations (11)-(12), we 

obtained the final solutions for the momentum and energy 

equations as follows; 

u(y,t)= 𝐷5𝑒
𝛼5𝑦 + 𝐷6𝑒

𝛼6𝑦 + 𝐷7𝑒
𝛼1𝑦 + 𝐷8𝑒

𝛼2𝑦+𝜖 (𝐷15𝑒
𝛼11𝑦 +

𝐷16𝑒
𝛼12𝑦 + 𝐷17 + 𝐷18𝑒

𝛼7𝑦 + 𝐷19𝑒
𝛼8𝑦 )𝑒𝑖𝜔𝑡   

      

                                                    (22) 

T(y,t)= 𝐷1𝑒
𝛼1𝑦 + 𝐷2𝑒

𝛼2𝑦+𝜖 (𝐷11𝑒
𝛼7𝑦 + 𝐷12𝑒

𝛼8𝑦 ) 𝑒𝑖𝜔𝑡

            (23) 

The constants in the final solutions are clearly stated in the 

appendix 

It is also very crucial to determine the physical effects at the 

walls of the channel. Hence, we obtain the physical effects by 

determining the skin friction coefficient and local Nusselt 

number as follows: 

𝐶𝑓 =
𝜌𝑑2𝜏𝑤

𝜇2 =  
𝑑𝑢

𝑑𝑦
 
𝑦=0,1

, 𝑁𝑢 =
𝑑𝑞𝑤

𝑘𝑓  𝑇𝑤−𝑇0 
= − 

𝑑𝜃

𝑑𝑦
 
𝑦=0,1

, 

where 𝜏𝑤 = 𝜇  
𝑑𝑢

𝑑𝑦
 
𝑦=0,𝑑

, 𝑞𝑤 = −𝑘𝑓  
𝑑𝑇

𝑑𝑦
 
𝑦=0,𝑑

 

III.  RESULTS AND DISCUSSION 

Figure 1 shows the effect of Peclet number variation on the 

temperature. The increase in the Peclet number shows no 

significant change in the temperature. Figure 2 displays the 

effect of radiation parameter on the temperature. Increasing 

the radiation parameter decreases the temperature of the fluid. 

This is because high radiation of fluid temperature 

consequently reduces the temperature when it is radiating heat 

at higher level. Figure 3 depicts the heat generation parameter 

increase the temperature profile on the increase of heat 

generation. Figure 4 shows the effective thermal conductivity. 

Increasing the thermal conductivity increases the fluid 

temperature. Figure5 depicts the volume fraction of copper 

nanoparticles. Increase in the volume fraction nanoparticles 

did not consequently change the temperature of the fluid. 

Figure 6 presents the increase in the Peclet number increases 

the velocity of the fluid. The radiation parameter decreases the 

velocity of the fluid as shown in figure 7 due to a decrease in 

the momentum boundary layer. Variation in the heat 

generation and effective thermal conductivity parameters as 

shown in the figures 8 and 9. Varying the heat generation 

parameter and effective thermal conductivity did not 

significantly cause any change in the velocity. Increasing the 

Reynolds number decreases the velocity of the fluid as shown 

in figure 10. The presence of Lorentz force in the magnetic 

field deters the motion of the fluid owing to the friction 

created by the Lorentz force as displays in figure 11. 

Increasing the Grashof number increases the velocity of the 

fluid owing the increase in the thermal buoyancy which in 

turns increases the boundary layer, hence leading to the 

increase in the velocity of the fluid as seen in figure 12. The 

volume fraction of copper nanofluid particles is shown in 

figure 14. Increasing the volume fraction decreases the fluid 

velocity. Figure 13 shows no change in the velocity for 

consequent variation in the porosity on the velocity. Figure 15 

shows the impact of the frequency of oscillation on the 

velocity. Increasing the frequency of oscillation decreases the 

fluid velocity. The figure 16 shown the different shapes of 

copper. It is seen that increasing the different shapes of copper 

increases the velocity of the fluid.  
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Figure1: Dependence of temperature on coordinate with Peclet number in 

water based nanofluid when N=1.07, S=0.62, 𝜆𝑛=1,t=0.1,𝜖 = 0.5 

   

Figure2: Dependence of temperature on coordinate with thermal radiation(N) 

in water based nanofluid when Pe=1, S=0.62, 𝜆𝑛=1,t=0.1,𝜖 = 0.5 

 

Figure3: Dependence of temperature on coordinate with heat generation 

parameter in water based nanofluid when N=1.07, Pe=1, 𝜆𝑛=1,t=0.1,𝜖 = 0.5 

   

Figure4: Dependence of temperature on coordinate with effective thermal 

conductivity in water based nanofluid when N=1.07, S=0.62, 𝑃𝑒=1,t=0.1,𝜖 =
0.5 

   

Figure5: Dependence of temperature on coordinate with 𝜙 of Cu in water 

based nanofluid when N=1.07, S=0.62, 𝜆𝑛=1,t=0.1,𝜖 = 0.5 

 

Figure6: Dependence of velocity on coordinate with Peclet number in water 

based nanofluid when N=1.07, S=0.62, 𝜆𝑛=1,t=0.1,𝜖 =
0.5,Gr=0.03,M=0.21,K=1.49,Re=100, 𝜔 = 0.2 

   

Figure7: Dependence of velocity on coordinate with thermal radiation(N) 

varying in water based nanofluid when Pe=1, S=0.62, 𝜆𝑛=1,t=0.1,𝜖 =
0.5,Gr=0.03,M=0.21,K=1.49,Re=100, 𝜆 = 1, 𝜔 = 0.2 

   

Figure8: Dependence of velocity on coordinate with heat generation 

parameter varying in water based nanofluid when N=1.07, Pe=1, 

𝜆𝑛=1,t=0.1,𝜖 = 0.5,Gr=0.03,M=0.21,K=1.49,Re=100, 𝜆 = 1, 𝜔 = 0.2 
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Figure9: Dependence of velocity on coordinate with effective thermal 
conductivity varying in water based nanofluid when N=1.07, 

S=0.62,t=0.1,𝜖 = 0.5,Gr=0.03,M=0.21,K=1.49,Re=100, 𝜆 = 1,Pe=1, 𝜔 =
0.2 

 

Figure10: Dependence of velocity on coordinate with Reynolds number 

varying in water based nanofluid when N=1.07, S=0.62, 𝜆𝑛=1,t=0.1,𝜖 =
0.5,Gr=0.03,M=0.21,K=1.49,Re=100, 𝜆 = 1,Pe=1, 𝜔 = 0.2 

 

Figure11: Dependence of velocity on coordinate with magnetic field 
parameter varying in water based nanofluid when N=1.07, S=0.62, 

𝜆𝑛=1,t=0.1,𝜖 = 0.5,Gr=0.03,K=1.49,Re=100, 𝜆 = 1,Pe=1, 𝜔 = 0.2 

   

Figure12: Dependence of velocity on coordinate with thermal Grashof 

number varying in water based nanofluid when N=1.07, S=0.62, 

𝜆𝑛=1,t=0.1,𝜖 = 0.5,M=0.21,K=1.49,Re=100, 𝜆 = 1,Pe=1,m 𝜔 = 0.2 

  

Figure13: Dependence of velocity on coordinate with porosity of the channel 

varying in water based nanofluid when N=1.07, S=0.62, 𝜆𝑛=1,t=0.1,𝜖 =
0.5,M=0.21,Gr=0.03,Re=100, 𝜆 = 1,Pe=1, 𝜔 = 0.2 

  

Figure14: Dependence of velocity on coordinate with 𝜙 of Cu in water based 

nanofluid when N=1.07, S=0.62,𝜆𝑛=1,t=0.1,𝜖 =
0.5,M=0.21,Gr=0.03,Re=100, 𝜆 = 1,Pe=1, 𝜔 = 0.2 

 

Figure15: Dependence of velocity on coordinate with 𝜔 varying in water 

based nanofluid when N=1.07, S=0.62, 𝜆𝑛=1,t=0.1,𝜖 =
0.5,M=0.21,Gr=0.03,Re=100, 𝜆 = 1,Pe=1, 𝜔 = 0.2 

   

Figure16: Dependence of velocity on coordinate with different shapes of Cu 

nanoparticles  in water- based nanofluid when N=1.07, S=0.62, 

𝜆𝑛=1,t=0.1,𝜖 = 0.5,M=0.21,Gr=0.03,Re=100, 𝜆 = 1,Pe=1, 𝜔 = 0.2 
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IV. CONCLUSION 

In this paper, we have successfully analyzed the entropy 

generation on thermal transfer in MHD natural convection of 

Cu-H2O nanofluid in a porous channel with heat 

generation/absorption.  The governing equations were 

analytically solved and expressed in exponential and 

complimentary functions. From the foregoing, it is observed 

that: 

1. Thermal radiation decreased the temperature of the 

fluid. 

2. Heat generation/absorption parameter increased the 

temperature of the fluid. 

3. The effective thermal conductivity increased the 

temperature of the fluid. 

4. Peclet number decreased the velocity of the fluid. 

5. Reynolds number decreased the fluid velocity. 

6. Peclet number, Reynolds number and heat generation 

rapidly increased and decreased the entropy 

generation at the lower and upper plates respectively. 

7. Brinkmann number increased the entropy generation 

at the lower plate slightly. 
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