On the Diophantine Equation $(5^n)^x + (4^m p + 1)^y = z^2$

Vipawadee Moonchaisook¹, Watakarn Moonchaisook² and Khattiya Moonchaisook³

¹Department of Mathematics Faculty of Science and Technology, Surindra Rajabhat University, Surin 3200, Thailand.

²Computer Technology, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin campus, Surin 32000, Thailan

³Science and Mathematics, Faculty of Agriculture and Technology, Rajamangala University of Technology Isan, Surin campus, Surin 32000, Thailand.

Abstract: In this paper, we proved that the Diophantine equation $(5^n)^x + (4^m p + 1)^y = z^2$ has no solution in non-negative integers x, y, z where p is an odd prime and m, n is a natural number.

Keywords: Diophantine equations, exponential equations, integer solution.

I. INTRODUCTION

Diophantine equation is one of the significant problems in elementary number theory and algebraic number theory. The Diophantine equation of the type $a^x + b^y = z^2$ has been studied by many authorsfor many years. In 2012, Sroysang [16] proved that the Diophantine equation $3^x + 5^y = z^2$ has a unique non-negative integer solution where x, y and z are nonnegative integers. The solution (x, y, z) is (1, 0, 2). In the same year, Sroysang [17] proved that the Diophantine equation $31^x + 32^y = z^2$ has no non-negative integer solution.

In 2017, Asthana, S., and Singh, M. M. [3] studies the Diophantine Equation $3^x + 13^y = z^2$ and proved that thishas exactly four non-negative integer solutions for x, y and z. The solutions are (1, 0, 2), (1, 1, 4), (3, 2, 14) and (5, 1, 16) respectively. In 2018, Kumar et al. [10] studied the non-linear Diophantine equations $61^x + 67^y = z^2$ and $67^x + 73^y = z^2$. They proved that these equations have no non-negative integer solution. Additionally, Kumar et al. [11] studied the non-linear Diophantine equations $31^x + 41^y = z^2$ and $61^x + 71^y = z^2$. They determined that these equations have no non-negative integer integer solution. In the same year, BurshteinN.[8] examined the solutions to the Diophantine Equation $M^x + (M + 6)^y = z^2$ when M = 6N + 5 and M, M + 6 are primes. They proved that this equation has no solutions.

In 2020, Aggarwal et al. [1] examined the Diophantine equation $223^x + 241^y = z^2$, where x, y, z are non-negative integers and determined that this equation has no non-negative integer solution.

Moreover, Aggarwal, S. and Sharma, N.[4]

investigated the non-linear Diophantine equation $379^x + 397^y = z^2$. The results showed that the considered non-linear Diophantine equation has no non-negative integer solution.

Apart from the above claims, Aggarwal et al. [5] studied the existence of solution of Diophantine equation $181^{x} + 199^{y} = z^{2}$ and proved that

this *equation* has no solution.Similarly, Bhatnagar, K. et al. [7], studied the exponential Diophantine equation and proved that $421^p + 439^q = r$, has no solution.In addition, Mishra, R. et al. [14] studied the Diophantine equation $211^{\alpha} + 229^{\beta} = \gamma^2$ and proved that this equation has no solution in 2020.In the same year, Kumar, S. et al. [13] investigated the exponential Diophantine equation $(2^{2m+1} - 1) + (6^{r+1} + 1)^n = \omega^2$ and found that this equation has no solution.Kumar, S Kumar, S. et al. [12] also examined the exponential Diophantine equation $(7^{2m}) + (6r + 1)^n = z^2$ and proved that it has no solution. Moreover, Goel et al., [9] proved that the exponential Diophantine equation $M_5^p + M_7^q = r^2$ has no solution in whole number.

In 2021, Moonchaisook. V., [15] proved that the non-linear Diophantine equation $p^x + (p + 4^n)^y = z^2$ has no solution. Similarly, Aggarwal, S. [2](2021) studied solutions to the exponential Diophantine equation $(2^{2m+1} - 1) + 13^n = z^2$ where m, n are whole numbers and proved that this equation has no solution in whole number.

Aggarwal, S. et al. [6] investigated the exponential Diophantine equation $(19^{2m}) + (12\gamma + 1)^n = \rho^2$ and found no solution in whole number.

Because of this open problem, the author is therefore interested in studying the Diophantine equation; $(5^n)^x + (4^m p + 1)^y = z^2$ has no solution in non-negative integers x, y, z where p is an odd prime and m, n is a natural number.

II. PRELIMINARIES

Lemma 1. For every integer $n \ge 1$ and M, N are natural number. Then $(4^m p + 1)^n = 4N + 1$

Proof:Let p(n) be the proposition that

 $(4^m p + 1)^n = 4N + 1 \text{ for integer } n \ge \mathbf{1}.$ (1)

- 1. P (1) is true. For n = 1, Then $4^m p + 1 = 4^m p + 1$.
- 2. Show that (1) holds for n = k, Assume (1) holds for n = k,

that is $(4^m p + 1)^k = 4N + 1$ is true. (2)We consider P(k+1),

$$(4^m p + 1)^{k+1} = (4^m p + 1)(4^m p + 1)^k$$
$$= (4^m p + 1)(4N + 1)$$
$$= 4(4^m pN + 4^{m-1}p + N) + 1$$

Where $4^m pN + 4^{m-1}p + N$ be natural number.

Hence. By induction P(n) is true for integer $n \ge 1$.

Lemma 2. The Diophantine equation

 $(5^n)^x + 1 = z^2$ has no solution in nonnegative integer x, z where p is an odd prime and, n is a natural number.

Proof: Suppose that $(5^n)^x + 1 = z^2$

$$\to (5^n)^x = z^2 - 1 = (z - 1)(z + 1).$$

Thus we can fine two non-negative integers α and β

Such that $(5^n)^{\alpha} = z - 1$ and $(5^n)^{\beta} = z + 1$ with $\alpha < \beta$ β and $\alpha + \beta = x$

Now $(5^n)^{\alpha} ((5^n)^{\beta - \alpha} - 1) = 2$

This implies $\alpha = 0$ and $(5^n)^{\beta - \alpha} - 1 = 2$

 $\rightarrow (5^n)^\beta = 3$ which is impossible.

Hence the Diophantine equation

 $(5^n)^x + 1 = z^2$ has no solution.

Lemma 3. The exponential Diophantine equation 1 + $(4^m p + 1)^y = z^2$ has no solution in nonnegative integer y, zwhere p is an odd prime and, m is a natural number.

Proof: Suppose that $1 + (4^m p + 1)^y = z^2$

 $\rightarrow (4^m p + 1)^y = z^2 - 1 = (z - 1)(z + 1).$

y

Thus, we can fine two non-negative integers α and β

Such that
$$(4^m p + 1)^{\alpha} = z - 1$$
 and
 $(4^m p + 1)^{\beta} = z + 1$ with $\alpha < \beta$ and $\alpha + \beta =$
Now $(4^m p + 1)^{\alpha} ((4^m p + 1)^{\beta - \alpha} - 1) = 2$
This implies $\alpha = 0, \beta = 1$ and
 $(4^m p + 1)^{\beta - \alpha} - 1 = 2$
 $\rightarrow 4^m p + 1 = 3 \ (m \ge 1)$
 $\rightarrow 4^m p = 2$ which is impossible.
Hence the Diophantine equation

 $1 + (4^m p + 1)^y = z^2$ has no solution.

III. MAIN THEOREM

Theorem1. The Diophantine equation

 $(5^n)^x + (4^m p + 1)^y = z^2$ has no solution in non-negative integer x, y, zwhere p is an odd prime and m, n are natural numbers.

Proof. Suppose that $(5^n)^x + (4^m p + 1)^y = z^2$

when x, y and zare non-negative integers,

m and n are natural number.

we consider 4 cases including x = 0 and $x \ge 1$.

Case 1. Suppose that x = 0, y= 0.

Thus $z^2 = 2$ which is impossible.

Case 2.Suppose that $x = 0, y \ge 1$

The Diophantine equation $1 + (4^m p + 1)^y = z^2$

has no solution in nonnegative integer y, z where p is an odd prime and m is a natural number.

By lemma 3.

*Case 3*Suppose that $x \ge 1$, and y = 0,

The Diophantine equation $(5^n)^x + 1 = z^2$ has no solution in nonnegative integer solution x, z where p is an odd prime andn is a natural number.

By lemma 2.

Case 4.Suppose that $x \ge 1$, $y \ge 1$

Sinethe Diophantine equation

$$(5^n)^x + (4^m p + 1)^y = z^2$$

If x = 2t and $y \ge 1$ (a)

(b) If y = 2s and $x \ge 1$

(c) If x = 2t+1 and y = 2s+1

(a) If x = 2t (t > 0 integer) and $y \ge 1$

Suppose that $(5^n)^x + (4^m p + 1)^y = z^2$

$$\rightarrow (4^m p + 1)^y = z^2 - (5^{nt})^2 \rightarrow (4^m p + 1)^y (z - 5^{nt})(z + 5^{nt})$$

Thus, we can fine two non-negative integers α and β

Such that $(4^m p + 1)^{\alpha} = z - 5^{nt}$ and

$$(4^m p + 1)^\beta = z + 5^{nt}$$
 with $\alpha < \beta$ and $\alpha + \beta = y$

$$\to (4^m p + 1)^\beta = (4^m p + 1)^\alpha + 2(5^{nt})$$

This implies $(4^m p + 1)|2(5^{nt})$ which is impossible. Hence, the Diophantine equation

 $(5^n)^x + (4^m p + 3)^y = z^2$ has no solution in nonnegative integer solution x, y, z where p is an odd prime and n is a natural number.

(b) If y = 2s(s > 0 integer) and $x \ge 1$ Suppose that $(5^n)^x + (4^m p + 1)^y = z^2$

$$\rightarrow (5^n)^x = z^2 - (4^m p + 1)^{2s}$$

$$\rightarrow (5^n)^x = (z - (4^m p + 1)^s)(z + (4^m p + 1)^s)$$

Thus. we can fine two non-negative integers α and β

Such that
$$(5^n)^{\alpha} = z - (4^m p + 1)^s$$
 and

 $(5^n)^\beta = z + (4^m p + 1)^s$ with $\alpha < \beta$, $\alpha + \beta = x$

$$\rightarrow (5^n)^{\beta} = (5^n)^{\alpha} + 2(4^m p + 1)^{2s}$$

This implies $(5^n)|2(4^mp + 1)$ which is impossible. Hence, the Diophantine equation

 $(5^n)^x + (4^m p + 3)^y = z^2$ has no solution in non-negative integer solution x, y, z where p is an odd prime and n is a natural number.

c) If x = 2t+1 (t \ge 0 integer) and y = 2s+1 (s \ge 0 integer) Suppose that $(5^n)^x + (4^m p + 1)^y = z^2$

 $\rightarrow (5^n)^x + (4N + 1) = z^2$, by lemma 1.

$$\rightarrow$$
 $(5^n)^x + 4N = (z+1)(z-1)$

Thus. we can fine two non-negative integers α and β

Such that $((5^n)^x + 4N)^{\alpha} = z - 1$ and

$$((5^n)^x + 4N)^\beta = z + 1$$
 with $\alpha < \beta$, $\alpha + \beta = 1$

$$\to ((5^n)^x + 4N)^{\alpha} [((5^n)^x + 4N)^{\beta - \alpha}] = 2$$

This implies $\alpha = 0$ and $\beta = 1$

Thus $(5^n)^x + 4N = 2$ which is impossible.

Hence, the Diophantine equation

 $(5^n)^x + (4^m p + 3)^y = z^2$ has no solution in nonnegative integer solution x, y, z where p is an odd prime and n is a natural number.

Corollary 1. The Diophantine equation

 $(5^n)^x + (4^m p + 1)^y = u^{2n}$

has no solution, in non-negative integer x, y, u and m, n arenatural number.

Proof. Let $u^n = z$ then $(5^n)^x + (4^m p + 1)^y = z^2$, which has no solution by Theorem 1.

Corollary 2. The Diophantine equation

 $(5^n)^x + (4^m p + 1)^y = u^{2n+2}$ has no solution, in nonnegative integer x, y, u and m, narenatural number.

Proof. Let $u^{n+1} = z$

then $(5^n)^x + (4^m p + 1)^y = u^{2n+2} = z^2$, which has no solution by Theorem 1.

IV. CONCLUSION

The main focus of this paper is to study the solvability of the class of Diophantine equation $(5^n)^x + (4^m p + 1)^y = z^2$ which p is an odd prime.

The case (5,4p + 1) = (5,13) was not considered in this work, but through a brief investigation it might be misunderstood that $5^{2s+1} + 13^{2t} = z^2$ is an even. Thus $z^2 \equiv 0 \pmod{3}$ has a solution when x is an odd number and y is an even number. But if we proved by using theorem 1 as stated earlier, we will find that $5^{2s+1} + 13^{2t} = z^2$ has no solution.

However, there are still some further points to be considered. There might be other solutions in solving positive integers that need to be investigated.

ACKNOWLEDGEMENTS

The author would like to thank all members of editorial boards for putting valuable remarks, comments and suggestions to make this paper complete.

REFERENCES

- [1]. Aggarwal, S., Sharma, S.D. and Singhal, H., (2020) On the Diophantine equation $223^{x} + 241^{y} = z^{2}$, International Journal of Research and Innovation in Applied Science, 5 (8), 155-156.
- [2]. Aggarwal, S., (2021) On the exponential Diophantine equation $(2^{2m+1}-1)+13^n = z^2$.Eng. Appl. Sci. Lett., 4(1), 77-79
- [3]. Asthana, S., and Singh, M. M. (2017). On the Diophantine equation $3^x + 13^y = z^2$. International Journal of Pure and Applied Mathematics, 114, 301 304.
- [4]. Aggarwal, S. and Sharma, N., (2020) On the non-linear Diophantine equation $379^x + 397^y = z^2$, Open Journal of mathematical Sciences, 4(1), 397-399.
- [5]. Aggarwal, S., Sharma, S.D. and Vyas, A., (2020). On the existence of solution of Diophantine equation $181^x + 199^y = z^2$, International of Latest Technology in Engineering, Management& Applied Science, 9(8), 85-86.
- [6]. Aggarwal, S. and Kumar, S., (2021) On the exponential Diophantine equation $(19^{2m}) + (12\gamma + 1)^n = \rho^2$, International Journal of Research and Innovation in Applied Science, 5(3), 14-16.
- [7]. Bhatnagar, K. and Aggarwal, S., (2020) On the exponential Diophantine equation $421^p + 439^q = r^2$ International Journal of Interdisciplinary Global Studies, 14(4), 128-129.
- [8]. Burshtein, N., (2018) On Solutions to the Diophantine Equation $M^x + (M+6)^y = z^2$ when M = 6N + 5, Annals of Pure and Applied Mathematics, 18 (2), 193–200.
- [9]. Goel, P., Bhatnagar, K. and Aggarwal, S., (2020) On the exponential Diophantine equation $M_5^p + M_7^q = \gamma^2$, International Journal of Interdisciplinary Global Studies, 14(4), 78-79.
- [10]. Kumar, S., Gupta, S., & Kishan, H. (2018) On the non-linear Diophantine equations $61^x + 67^y = z^2$ and $67^x + 73^y = z^2$. Annals of Pure and Applied Mathematics, 18(1), 91-94.
- [11]. Kumar, S., Gupta, D. and Kishan, H.,(2018) On the non-linear Diophantine equations $31^x + 41^y = z^2$ and $61^x + 71^y = z^2$. Annals of Pureand Applied Mathematics, 18(2), 185-188.
- [12]. Kumar, S., Bhatnagar, K., Kumar, N. and Aggarwal, S., (2020) On the exponential Diophantine equation $(7^{2m}) + (6r + 1)^n = z^2$, International Journal of Interdisciplinary Global Studies, 14(4), 181-182.
- [13]. Kumar, S., Bhatnagar, K., Kumar, A. and Aggarwal, S., (2020) On the exponential Diophantine equation $(2^{2m+1} 1) + (6^{r+1} + 1)^n = \omega^2$, International Journal of Interdisciplinary Global Studies, 14(4), 183-184.

- [14]. Mishra, R., Aggarwal, S. and Kumar, A., (2020) On the existence of solution of Diophantine equation $211^{\alpha} + 229^{\beta} = \gamma^2$, International Journal of Interdisciplinary Global Studies, 14(4), 78-79.
- [15]. Moonchaisook, V., (2021) On the Non-Linear Diophantine Equation $p^{x} + (p + 4^{n})^{y} = z^{2}$ where p and $p + 4^{n}$ are primes, Annals of Pure and Applied Mathematics, 23(2), 117-121.
- [16]. Sroysang, B., (2012) On the Diophantine equation $31^x + 32^y = z^2$. International Journal of Pure and Applied Mathematics, 81(4), 609-612.
- [17]. Sroysang, B., (2012)On the Diophantine equation $3^x + 5^y = z^2$. International Journal of Pure and Applied Mathematics, 81(4), 605-608.