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Abstract: In this paper, we proved that the Diophantine equation 

 𝟓𝐧 𝐱 +  𝟒𝐦𝐩 + 𝟏 𝐲 = 𝐳𝟐has no solution in non-negative integers 

x, y, z where p is an odd prime and m, n is a natural number.  
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Ι. INTRODUCTION 

iophantine equation is one of the significant problems in 

elementary number theory and algebraic number theory. 

The Diophantine equation of the type 𝑎𝑥 + 𝑏𝑦 = 𝑧2has been 

studied by many authorsfor many years. In 2012, Sroysang 

[16] proved that the Diophantine equation  3𝑥 + 5𝑦 = 𝑧2 has a 

unique non-negative integer solution where x, y and z are non-

negative integers. The solution (x, y, z) is (1, 0, 2). In the same 

year, Sroysang [17] proved that the Diophantine equation 

31𝑥 + 32𝑦 = 𝑧2has no non-negative integer solution. 

In 2017, Asthana, S., and Singh, M. M. [3] studies the 

Diophantine Equation 3𝑥 + 13𝑦 = 𝑧2and proved that thishas 

exactly four non-negative integer solutions for x, y and z. The 

solutions are (1, 0, 2), (1, 1, 4), (3, 2, 14) and (5, 1, 16) 

respectively.In 2018, Kumar et al. [10] studied the non-linear 

Diophantine equations  61𝑥 + 67𝑦 = 𝑧2and  67𝑥 + 73𝑦 = 𝑧2 . 

They proved that these equations have no non-negative integer 

solution. Additionally, Kumar et al. [11] studied the non-linear 

Diophantine equations  31𝑥 + 41𝑦 = 𝑧2 and  61𝑥 + 71𝑦 =
𝑧2.They determined that these equations have no non-negative 

integer solution. In the same year, BurshteinN.[8] examined 

the solutions to the Diophantine Equation 𝑀𝑥 +  𝑀 + 6 𝑦 =
𝑧2 when M = 6N + 5 and M, M + 6 are primes. They proved 

that this equation has no solutions. 

In 2020, Aggarwal et al. [1] examinedtheDiophantine equation 

223𝑥 + 241𝑦 = 𝑧2 , where 𝑥, 𝑦, 𝑧 are non-negative integers 

and determined that this equation has no non-negative integer 

solution. 

Moreover, Aggarwal, S. and Sharma, N.[4] 

investigated the non-linear Diophantine equation 379𝑥 +
397𝑦 = 𝑧2.The results showed that the considered non-linear 

Diophantine equation has no non-negative integer solution.  

Apart from the above claims, Aggarwal et al. [5] studied the 

existence of solution of Diophantine equation  181x + 199y =
z2 and proved that  

this 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 has no solution.Similarly, Bhatnagar, K. et al. 

[7], studied the exponential Diophantine equation and proved 

that 421𝑝 + 439𝑞 = 𝑟,2 has no solution.In addition, Mishra, R. 

et al. [14] studied the Diophantine equation 211𝛼 + 229𝛽 =
𝛾2and proved that this equation has no solution in 2020.In the 

same year, Kumar, S. et al. [13] investigated the exponential 

Diophantine equation 22𝑚+1 − 1 +  6𝑟+1 + 1 𝑛 = 𝜔2and 

found that this equation has no solution.Kumar, S Kumar, S. et 

al. [12] also examined the exponential Diophantine 

equation 72𝑚 +  6𝑟 + 1 𝑛 = 𝑧2and proved that it has no 

solution. Moreover, Goel et al., [9] proved that the exponential 

Diophantine equation 𝑀5
𝑝

+ 𝑀7
𝑞

= 𝑟2  has no solution in whole 

number.  

In 2021, Moonchaisook. V., [15] proved that the non-linear 

Diophantine equation 𝑝𝑥 +  𝑝 + 4𝑛 𝑦 = 𝑧2 has no solution. 

Similarly, Aggarwal, S. [2](2021) studied solutions to the 

exponential Diophantine equation (22𝑚+1 − 1) + 13𝑛 = 𝑧2 

where m, n are whole numbers and proved that this equation 

has no solution in whole number. 

Aggarwal, S. et al. [6] investigated the exponential 

Diophantine equation (192𝑚 ) +  12𝛾 + 1 𝑛 = 𝜌2and found 

no solution in whole number. 

Because of this open problem, the author is therefore interested 

in studying the Diophantine equation;  5n x +  4m p + 1 y =
z2has no solution in non-negative integers x, y, z where p is an 

odd prime and m, n is a natural number.  

II. PRELIMINARIES 

Lemma 1. For every integer n ≥ 𝟏and M, N are natural 

number. Then  4𝑚𝑝 + 1 𝑛 =  4𝑁 + 1 

Proof:Let 𝑝 𝑛  𝑏𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡  

 4𝑚𝑝 + 1 𝑛 = 4𝑁 + 1 forinteger n ≥ 𝟏. (1) 

1. P (1) is true.  For n = 1, Then4𝑚𝑝 + 1 = 4𝑚𝑝 + 1. 

2. Show that (1) holds for n = k, Assume (1) holds for n 

= k,  
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that is  4𝑚𝑝 + 1 𝑘 = 4𝑁 + 1is true. (2) 

We considerP(k+1), 

 4𝑚𝑝 + 1 𝑘+1 =   4𝑚𝑝 + 1 (4𝑚𝑝 + 1)𝑘  

  =  4𝑚𝑝 + 1  4𝑁 + 1  

  =  4 4𝑚𝑝𝑁 + 4𝑚−1𝑝 + 𝑁 + 1 

Where 4𝑚𝑝𝑁 + 4𝑚−1𝑝 + 𝑁 be natural number. 

Hence. Byinduction P(n) is true for integer n ≥ 𝟏. 

Lemma 2.The Diophantine equation 

 5𝑛 𝑥 + 1 = 𝑧2has no solution in nonnegative integer x, z 

where p is an odd prime and, n is a natural number.  

Proof:Suppose that  5𝑛 𝑥 + 1 = 𝑧2 

→  5𝑛 𝑥 = 𝑧2 − 1 =  𝑧 − 1  𝑧 + 1 . 

Thus.we can fine two non-negative integers 𝛼 and 𝛽 

Such that  5𝑛 𝛼 = 𝑧 − 1  𝑎𝑛𝑑  5𝑛 𝛽 = 𝑧 + 1 with 𝛼 <
𝛽 𝑎𝑛𝑑 𝛼 + 𝛽 = 𝑥 

Now   5𝑛 𝛼  5𝑛 𝛽−𝛼 − 1  =  2 

This implies  𝛼 = 0  𝑎𝑛𝑑 5𝑛 𝛽−𝛼 − 1 =  2 

→  5𝑛 𝛽 = 3 which is impossible. 

Hence the Diophantine equation 

 5𝑛 𝑥 + 1 = 𝑧2has no solution. 

Lemma 3.The exponential Diophantine equation1 +
 4𝑚𝑝 + 1 𝑦 = 𝑧2has no solution in nonnegative integer y, 

zwhere p is an odd prime and, m is a natural number.  

Proof:Suppose that 1 +  4𝑚𝑝 + 1 𝑦 = 𝑧2 

→  4𝑚𝑝 + 1 𝑦 = 𝑧2 − 1 =  𝑧 − 1  𝑧 + 1 . 

Thus. we can fine two non-negative integers 𝛼 and 𝛽 

Such that  4𝑚𝑝 + 1 𝛼 = 𝑧 − 1  𝑎𝑛𝑑  

 4𝑚𝑝 + 1 𝛽 = 𝑧 + 1with𝛼 < 𝛽 𝑎𝑛𝑑 𝛼 + 𝛽 = 𝑦 

Now   4𝑚𝑝 + 1 𝛼  4𝑚𝑝 + 1 𝛽−𝛼 − 1  =  2 

This implies  𝛼 = 0 , 𝛽 = 1 and 

 4𝑚𝑝 + 1 𝛽−𝛼 − 1 =  2 

→ 4𝑚𝑝 + 1 = 3  (m≥ 1 ) 

→ 4𝑚𝑝 = 2  which is impossible. 

Hence the Diophantine equation 

1 +  4𝑚𝑝 + 1 𝑦 = 𝑧2has no solution. 

III. MAIN THEOREM 

Theorem1.The Diophantine equation 

 5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑧2has no solution in non-negative 

integer x, y, zwhere p is an odd prime and m, n are natural 

numbers.  

Proof.Suppose that  5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑧2 

when 𝑥, 𝑦 and 𝑧are non-negative integers,   

m and n are natural number. 

we consider 4 cases including 𝑥 = 0 and 𝑥 ≥ 1. 

Case 1. Suppose that x = 0, y= 0. 

Thus𝑧2 = 2  which is impossible. 

Case 2.Suppose that x = 0, 𝑦 ≥ 1 

The Diophantine equation 1 +  4𝑚𝑝 + 1 𝑦 = 𝑧2 

has no solution in nonnegative integer y, z where p is an odd 

prime and m is a natural number.  

By lemma 3. 

Case 3Suppose that𝑥 ≥ 1, and 𝑦 = 0,  

The Diophantine equation   5𝑛 𝑥 + 1 = 𝑧2has no solution in 

nonnegative integer solution x, z where p is an odd prime andn 

is a natural number. 

By lemma 2. 

Case 4.Suppose that x ≥ 1, y ≥ 1 

Sinethe Diophantine equation 

 5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑧2 

(a) If x= 2t and y ≥ 1 

(b) If y = 2s and x ≥ 1 

(c) If x= 2t+1 and y = 2s+1 

(a) If x= 2t (t > 0 integer) and y ≥ 1 

Suppose that 5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑧2 

→  4𝑚𝑝 + 1 𝑦  =  𝑧2 − (5𝑛𝑡 )2 

→  4𝑚𝑝 + 1 𝑦(𝑧 − 5𝑛𝑡 )(𝑧 + 5𝑛𝑡 ) 

Thus. we can fine two non-negative integers 𝛼 and 𝛽 

Such that  4𝑚𝑝 + 1 𝛼 = 𝑧 − 5𝑛𝑡   𝑎𝑛𝑑  

 4𝑚𝑝 + 1 𝛽 = 𝑧 + 5𝑛𝑡  with𝛼 < 𝛽 𝑎𝑛𝑑 𝛼 + 𝛽 = 𝑦 

→  4𝑚𝑝 + 1 𝛽 =  4𝑚𝑝 + 1 𝛼 + 2(5𝑛𝑡  ) 

This implies   4𝑚𝑝 + 1  2(5𝑛𝑡  ) which is impossible. 

Hence,the Diophantine equation 

 5𝑛 𝑥 +  4𝑚𝑝 + 3 𝑦 = 𝑧2has no solution in nonnegative 

integer solution x, y, z where p is an odd prime and n is a 

natural number. 

(b) If y = 2s(s > 0 integer) and x ≥ 1 

Suppose that 5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑧2 
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→   5𝑛 𝑥  =  𝑧2 −  4𝑚𝑝 + 1 2𝑠 

→    5𝑛 𝑥  =   𝑧 −  4𝑚𝑝 + 1 𝑠  𝑧 +  4𝑚𝑝 + 1 𝑠  

Thus. we can fine two non-negative integers 𝛼 and 𝛽 

Such that  5𝑛 𝛼 = 𝑧 −  4𝑚𝑝 + 1 𝑠   𝑎𝑛𝑑  

 5𝑛 𝛽 = 𝑧 +  4𝑚𝑝 + 1 𝑠with 𝛼 < 𝛽 , 𝛼 + 𝛽 = 𝑥 

→  5𝑛 𝛽 =  5𝑛 𝛼 + 2 4𝑚𝑝 + 1 2𝑠 

This implies   5𝑛  2(4𝑚𝑝 + 1) whichis impossible. 

Hence,the Diophantine equation 

 5𝑛 𝑥 +  4𝑚𝑝 + 3 𝑦 = 𝑧2has no solution in non-negative 

integer solution x, y, z where p is an odd prime and n is a 

natural number. 

c) If x = 2t+1 (t≥ 0integer) and y = 2s+1 (𝑠 ≥ 0 integer) 

Suppose that 5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑧2 

→   5𝑛 𝑥 + (4𝑁 + 1)  =  𝑧2, by lemma 1. 

→    5𝑛 𝑥 + 4𝑁 = (z+1) (z−1) 

Thus. we can fine two non-negative integers 𝛼 and 𝛽 

Such that   5𝑛 𝑥 + 4𝑁  𝛼 = 𝑧 − 1  𝑎𝑛𝑑  

  5𝑛 𝑥 + 4𝑁  𝛽 = 𝑧 + 1 with𝛼 < 𝛽 , 𝛼 + 𝛽 = 1 

→ ( 5𝑛 𝑥 + 4𝑁)𝛼  ( 5𝑛 𝑥 + 4𝑁)𝛽−𝛼  = 2 

This implies 𝛼 = 0 𝑎𝑛𝑑 𝛽 = 1 

Thus  5𝑛 𝑥 + 4𝑁 = 2 which is impossible. 

Hence,the Diophantine equation 

 5𝑛 𝑥 +  4𝑚𝑝 + 3 𝑦 = 𝑧2has no solution in nonnegative 

integer solution x, y, z where p is an odd prime and n is a 

natural number. 

Corollary 1.  The Diophantine equation  

 5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑢2𝑛  

  has no solution, in non-negative integer x, y, u and m, n 

arenatural number. 

Proof. Let 𝑢𝑛 = 𝑧then  5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑧2 , which has 

no solution by Theorem 1.  

Corollary 2.  The Diophantine equation 

 5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑢2𝑛+2  has no solution, in non-

negative integer x, y, u and m, narenatural number. 

Proof. Let 𝑢𝑛+1 = 𝑧 

then 5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 = 𝑢2𝑛+2 = 𝑧2, which has no 

solution by Theorem 1. 

IV. CONCLUSION 

The main focus of this paper is to study the solvability of the 

class of Diophantine equation  5𝑛 𝑥 +  4𝑚𝑝 + 1 𝑦 =
𝑧2which p is an odd prime. 

Thecase 5,4𝑝 + 1 =  5,13  was not considered in this work, 

but through a brief investigation it might be misunderstood that 

52𝑠+1 + 132𝑡 = 𝑧2 is an even. Thus  z2 ≡  0 mod 3  has a 

solution when x is an odd number and y is an even number.But 

if we proved by using theorem1 as stated earlier, we will find 

that52𝑠+1 + 132𝑡 = 𝑧2has nosolution. 

However, there are still some further points to be considered. 

There might be other solutions in solving positive integers that 

need to be investigated. 
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