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Abstract: This work presents “precision control of autonomous 

vehicle under slip using artificial neural network”. The work was 

achieved using FCN LSTM slip dataset, dynamic model of the 

vehicle, nonlinear slip model, feature extraction model, artificial 

neural network and simulink. The neural network was trained 

using back propagation algorithm. The training performance of 

the neural network was analyzed using a regression analyzer to 

evaluate the training validation performance with slip estimation 

accuracy of 99%. 
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I. INTRODUCTION 

ccording to [1], over 900 million individuals travel by 

car all over the world every day. However, despite the 

importance of this great locomotive invention of mankind, it 

equally means that over 900 million people stand the risk of 

accident daily.  The evidence is there for all to see in the 

news, social media, along the highways among others. 

According to the road traffic accident system (RTA) over 1.2 

million deaths and 50 million people are injured every year 

due to road crash [2] and this has remained a very big problem 

till date. The main cause of this problem includes the 

unreliable psychological nature of most driver body condition 

which when subjected to stress or fatigue affects level of 

concentration on high ways. Other reasons for accident 

includes  during driving, lack of detailed driving experience, 

bad roads, weather conditions, faults on the vehicles like bad 

tyres bursting while on high speed and lots more.  

For over fifty years various techniques discussed in [3] have 

been proposed to combat this road sadness. However despite 

the success recorded, there is still need for complete vehicle 

cruise automation. [4] Identified autonomous vehicles with 

high level of intelligence to sense disturbance, over speeding 

and other nonlinear input and take necessary control 

precaution is the solution. 

To achieve this, several works have been proposed, using 

different intelligent techniques, but however, despite the 

success achieved so far, certain constraints affect the complete 

system reliability, operational effectiveness and automation of 

the technology [5]. Among these constraints is slip force. It is 

the angle between the tyre and road surface, with the capacity 

to change the dynamics of vehicle, upsetting stability and 

cruise control linearity. This slip force is a major challenge 

affecting the stability of autonomous vehicles during speed 

and is difficult to control in real time. This paper therefore 

presents an artificial intelligence system which be trained with 

slip dataset to control this problem and stabilize the vehicle 

once nonlinearity is detected as a result of slip. This will be 

achieved in the research developing a model of the 

autonomous vehicle during translation, modeling the slip 

which affect the stability of the vehicle and training a neural 

network algorithm for the approximation and control of the 

vehicle during under the effect of slip. 

II. METHODOLOGY 

The system was developed using slip data collected from [5] 

to train a neural network controller which extracts slip effects 

nonlinear vehicle behaviour, then train it to classify 

nonlinearity and then stability then control the vehicle or 

stability. The block diagram was presented in figure 3.1;  

 

Figure 1: system block diagram 

III. SYSTEM DESIGN 

The system design will be developed using the dynamic 

vehicle state space model under motion, the slip model, 

feature extraction model, nonlinear grey box model, nonlinear 

auto regressive model, training model. 

Model of the vehicle dynamics 

This section describes the mathematical model of the 

autonomous vehicle dynamics, considering the longitudinal 

velocity, lateral velocity, the yaw rate about the point of 

gravity and tire slip angles. This model will be defined 

considering Newton law of motion connecting the variables 

already mentioned using differential equations as shown in 

equation 1; 

A 
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d

dt
 Vx t =  Vy t ∗ r t +  

1

m
∗  Fx Fl t +  FxFr   t  

∗ cos delta t   

∗ sin delta t  +  FX Rl t +  FxRr t 

−  CA ∗ Vx (t)2                  Equation 1 

Where the longitudinal vehicle velocity is Vx(t); Vy(t) is 

longitudinal acceleration, r(t) is yaw rate, 𝐹𝑥𝐹𝑙  is the left front 

tyre, 𝐹𝑥𝐹𝑟  is the right front tyre, 𝐹𝑋𝑅𝑙  is the right rear tyre, 

𝐹𝑥𝐹𝑟  is the right front tyre, delta is the steering angle, and CA 

is the center of gravity. Considering the vehicle state space 

model under acceleration presented the equation 2; 

𝑑

𝑑𝑡
 𝑉𝑦  𝑡 =  𝑉𝑥 𝑡 ∗ 𝑟 𝑡 +  

1

𝑚
∗  𝐹𝑥𝐹𝑙 𝑡 +  𝐹𝑥𝐹𝑟   𝑡  

∗ 𝑐𝑜𝑠 𝑑𝑒𝑙𝑡𝑎 𝑡   

∗ 𝑠𝑖𝑛 𝑑𝑒𝑙𝑡𝑎 𝑡  + 𝐹𝑋𝑅𝑙 𝑡 

+  𝐹𝑥𝑅𝑟 𝑡                 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2   

Where 𝑉𝑦 is the lateral velocity and 𝑉𝑥  lateral acceleration. 

Considering the model in equation 1 and 2with inertia with 

respect to the point of gravity presented the vehicle model in 

equation 3; 

𝑑

𝑑𝑡
 𝑟 𝑡 + 

1

𝐽
 (𝑎) ∗  𝐹𝑥𝐹𝑙 𝑡 + 𝐹𝑥𝐹𝑟   𝑡  

∗ sin delta t  

∗ cos delta t  + Fy Rl t 

+  Fy Rr t                          Equation 3 

Where J is the moment of inertia, a and b are the distance 

from the center of gravity to the front and rear axles 

respectively. Applying force and slip on the model in equation 

3 presents the vehicle behavior in equation 4 and 5; 

𝐹𝑥,𝑖(𝑡) = 𝐶𝑥 ∗ 𝑠𝑖(𝑡)                                      Equation 4 

𝐹𝑦,𝑖(𝑡) = 𝐶𝑦 ∗ 𝑎𝑙𝑝𝑕𝑎𝑖(𝑡)                             Equation 5 

Where Cx and Cy are the longitudinal and lateral tire stiffness 

respectively, i is the (FL, FR, RL,RR) wheels when the 

stiffness is the same for the four wheels (i) then the 

longitudinal slip is presented as si(t) and the tire slip angle is 

alpha i(t).  

Vehicle translational Model  

To develop the vehicle model under motion, force id applied 

on equation (1 to 3) to calculate the translational motion of the 

body fixed coordinates frame. This force applied is the 

resultant relationship between the longitudinal force Fx, 

lateral force Fy and yaw rate Fz to estimate the rotational 

force FB acting on the tyres. Relating this vehicle body whose 

origin is fixed coordinated in the center of gravity. The mass 

of the vehicle body m is assumed constant, where the applied 

force [Fx, Fy, Fz]
T 

in the body fixed frame and velocity V is 

defined as; 

FB =  
𝐹𝑥
𝐹𝑦
𝐹𝑧

    = m (V + ɷ x V)                 equation 6 

Where Mb =  
𝐿
𝑀
𝑁

  = Iɷ + ɷ x (Iɷ); I=  

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧𝑧

   

Where Mb is the mass between the front and the rear tyres, I is 

the vehicle moment body of inertia along x,y and z axes.  

Now to derive the relation between the fixed angular velocity 

vector of the body [p q r]
T
, and the rate of Euler angle 

variation [φ ϴ ψ]
T,

  this is designed furnishing the fixed body 

frame with the Euler rate as presented in the structure below; 

 
𝑝
𝑞
𝑟
 = 

𝜑
0
0
 +  

1 0 0
0 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑
0 −𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

   
0
𝛳
0
 +

 

1 0 0
0 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑
0 −𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

  
𝑐𝑜𝑠𝛳 0 −𝑠𝑖𝑛𝛳

0 1 0
𝑠𝑖𝑛𝛳 0 𝑐𝑜𝑠𝛳

  
0
0
𝜓
 =J

-1 

𝜑
𝛳
𝜓
           

Equation 7 

Where: φ, ϴ, and ψ are the rotation of the vehicle fixed 

frames about the earth fixed x roll, y pitch and z yaw axes 

respectively. Inverting the function of J presents the desired 

Euler rate vector relationship of the system as;                                                                        

       

𝜑
𝛳
𝜓
   = J  

𝑝
𝑞
𝑟
 =   

1 (𝑠𝑖𝑛𝜑 𝑡𝑎𝑛𝛳) (𝑐𝑜𝑠𝜑 𝑡𝑎𝑛𝛳
0 𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑

0
𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝛳

𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝛳

   
𝑝
𝑞
𝑟
                    

Equation 8 

The applied force Fb  moment Mb of the system are the  

defined considering the relationship between the force of 

gravity Fg, drag force Fd, moment Mb, suspension forces and 

the four tyres as shown in the model below; 

Fb =  
𝐹𝑥
𝐹𝑦
𝐹𝑧

   =  
𝐹𝑑𝑥
𝐹𝑑𝑦
𝐹𝑑𝑧

 +  

𝐹𝑔𝑥
𝐹𝑔𝑦
𝐹𝑔𝑧

 +   
𝐹𝑒𝑥𝑧𝑥
𝐹𝑒𝑥𝑧𝑦
𝐹𝑒𝑥𝑧𝑧

 +   

𝐹𝑓𝑙𝑥
𝐹𝑓𝑙𝑦

𝐹𝑓𝑙𝑧
  +  

𝐹𝑟𝑙𝑥
𝐹𝑟𝑙𝑦
𝐹𝑟𝑙𝑧

 +

  
𝐹𝑟𝑟𝑥
𝐹𝑟𝑟𝑦
𝐹𝑟𝑟𝑧

                                                                     equation 9 

Mb =  
𝑀𝑥
𝑀𝑦
𝑀𝑧

   =  
𝑀𝑑𝑥
𝑀𝑑𝑦
𝑀𝑑𝑧

 +  

𝑀𝑔𝑥
𝑀𝑔𝑦
𝑀𝑔𝑧

 +   
𝑀𝑒𝑥𝑧𝑥
𝑀𝑒𝑥𝑧𝑦
𝑀𝑒𝑥𝑧𝑧

 +   

𝑀𝑓𝑙𝑥
𝑀𝑓𝑙𝑦

𝑀𝑓𝑙𝑧
  + 

 
𝑀𝑟𝑙𝑥
𝑀𝑟𝑙𝑦
𝑀𝑟𝑙𝑧

 +  
𝑀𝑟𝑟𝑥
𝑀𝑟𝑟𝑦
𝑀𝑟𝑟𝑧

  + MF                         equation 10 

Where; Ffl, Mfl — Front left, Ffr, Mfr — Front right and 

Frl, Mrl — Rear left, Frr, Mrr — Rear right 

Non linear Slip model 
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This model will present the relationship between the force 

acting on the tyres, the vehicle dynamics considering the 

lateral, longitudinal, yaw rate and the slip angles respectively. 

Slip is defined as the force acting between the tyres and the 

ground when the vehicle is in motion. From the model of the 

vehicle dynamics, the forces acting on the tyres were defined 

using the tyres stiffness model in equation 4 and 5.  

Thus for the front tyres, the slip is presented as sFL(t) and 

sFR(t) derived from the relationship between then force acting 

on the tyres in equation 4 and the slip angle (alpha Fj(t)) as 

shown in equation 11; 

𝑎𝑙𝑝𝑕𝑎 𝑭𝒋 𝑡 =  𝑑𝑒𝑙𝑡𝑎  𝑡 −  arctan⁡(𝑉
𝑦 𝑡 + 

𝑎(𝑟 𝑡 )

𝑉𝑥(𝑡)

                                  

Equation 11 

For the rear tyres the force defined by equation 5 is considered 

to derive the slip sRL(t) and sRR(t), in line with the rear tire 

slip angle (alpha Rj(t))  to produce the resultant slip force as; 

𝑎𝑙𝑝𝑕𝑎 𝑹𝒋 𝑡 =   arctan⁡(𝑉
𝑦 𝑡 + 

𝑏(𝑟 𝑡 )

𝑉𝑥(𝑡)

                    Equation 12 

In the designed models so far, beginning from equation (1 to 

12) which can be collectively defined as the real time non 

linear structural dynamics of the autonomous vehicle in 

motion, with the nonlinearity induces using the slip model in 

equation 11 and 12. This model is represented as a nonlinear 

grey box identification structure of the autonomous vehicle 

under slip force using the equation below; 

AVUS = 
𝑑𝑥

𝑑𝑡
= 𝐹 (𝑡, 𝑢 𝑡 , 𝑥 𝑡 , 𝑝(𝑛))                equation 13 

Where u(t) are the vehicle parameters which will be 

considered for feature extraction, p is the vehicle 

characteristics and x representing the lateral, longitudinal and 

yaw rate of the vehicle.  

Feature extraction model 

Feature extraction process is the real time collection of the 

non linear vehicle feature vectors as it moves and senses the 

least degree of slip force. This feature extraction model (Fxm) 

is designed using the relationship between the vehicle 

parameter defined in equation 13 as shown below; 

Fxm (t) = H(𝑡, 𝑢 𝑛 , 𝑥 𝑡 , 𝑝 𝑡 ) + e(t)                 equation 14 

When h is the height of the vehicle from the ground, u are the 

feature vectors which are the slip forces detected and sensed 

on the front (u1, u2) and rear tyres ( u3, u4) and steering angle 

(u5) respectively. 

Artificial neural network Model 

After the feature extraction process, the feature vectors are 

feed to the neural network as a non linear auto regressive with 

external input model as shown below; 

y(k+d)=N(y(k),y(k−1),…,y(k−n+1),u(k),u(k−1),……u(k−n+1

))                                                                             equation15 

Where u(k) is the feature vectors inputs, N is the non linear 

slip force, and y(k) is the system output as shown using the 

neural network architecture in figure 2. 

 

Figure 2: The neural network architecture 

These nonlinear output parameters are trained using back 

propagation algorithm (see figure 3.4) to generate the 

approximate slip model as shown in equation 16; 

ˆy(k+d)=f(y(k),y(k−1),…,y(k−n+1),u(k−1),…,u(k−m+1))+g

(y(k),y(k−1),…,y(k−n+1),u(k−1),…,u(k−m+1))⋅u(k)                                                      

                                                                                equation 16 

This approximate model is classified with the reference slip 

vector obtained from FCN LSTM dataset as shown in the 

structure;  

u(k+1) = 
 yr(k+d) – f[y(k),…..,y(k−n+1),u(k),….,u (k−n+1)]   

g[y(k),….,y(k−n+1),u(k),…..,u(k−n+1)]
            

equation 17 

The model of the trained normal vehicle structure in equation 

17, is developed as an adaptive controller using the flow chart 

in figure 3, this model is classified with the approximate slip 

model to detect nonlinearity in the vehicle and hence control 

system (see training parameters in table 1). 

Table 1; ANN training parameters 

Parameters values 

Controller Training epochs 6 

Size of hidden layers 6 

No. delayed reference input 2 

Maximum plant output 3.1 

Maximum plant input 5 

Number of non hidden layers 5 

Maximum interval per sec 2 

No. delayed controller output 1 

No. delayed plant output 2 

Minimum reference value -0.05 
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Figure 3: flow chart for controller 
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Figure 4: flow chart for Training algorithm 

IV. IMPLEMENTATION 

The system is implemented using the mathematical models 

designed in the previous section. The model portrays the 

designed the nonlinear vehicles structure redefined using the 

nonlinear grey box identification model in equation 13, 

relating the slip force, the vehicle dynamics and Newton law 

of motion. This slip is identified as a non linear regressive 

model using the equation 15, and trained using the neural 

network structure in equation 16 to control the vehicle using 

the adaptive controller designed in equation 17. The resultant 

simulink block which united this model is implemented using 

the neural network toolbox and control system toolbox as 

shown in figure 5; 

 

Figure 5: Control of the nonlinear vehicle 

Table 2: Simulation parameters 

Vehicle parameters Value 

Vehicle mass [kg] 1700 

Distance from front axle to COG [m] 1.5 

Distance from rear axle to COG [m] 1.5 

Longitudinal tire stiffness [N] 150000 

Lateral tire stiffness [N/rad] 40000 

Longitudinal velocity [m/s] 17.60 

Total drive time x and y distance [m] 300 x 150 

Voltage 24V 

V. RESULTS AND DISCUSSIONS 

To evaluate the performance of the neural network training 

performance, the regression analyzer was used. The 

implication is due to its ability to analyze the training 

performance of the testing and training dataset respectively 

and collectively. From the result in figure 6, the regression 

analyzer shows the training performance of the slip dataset, 

and also that of the real time nonlinear vehicle data collected 

as a feature vector. The training performance produces a 

validation rate of 0.999; which indicated a training accuracy 

of 99%.  

 

Figure 6: regression result of the training process. 
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The result shows that once nonlinearity is experience in the 

autonomous vehicle during translational motion, this is 

immediately detected and rectified using the necessary control 

structures. 

The result in figure 7 also shows the relation between the 

validation, test and training process. From the mean square 

error performance, the best validation value is 5.8375e-10 at 

which the training was stopped. This shows a stable and 

précised training performance to justify the regression result 

obtained in figure 6.  

Figure 7: Mean square error performance 

VI. CONCLUSION 

This work has successfully developed a system which controls 

the nonlinear effect of slip on a translational autonomous 

vehicle using artificial neural network. The network is trained 

with a vehicle dataset collected form a moving vehicle at 

normal condition and used to classify real time autonomous 

vehicle nonlinear characteristics. These will immediate 

controls the vehicle dynamics once slip is identified and 

ensure smooth and steady state locomotive condition. 
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