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Abstract: This paper presents the nonlinear dynamic control of 

autonomous vehicle under slip using improved back propagation 

algorithm. The aim is to address the issue of nonlinearity 

experienced in autonomous vehicle under translational state due 

to slip force. This was achieved developing a nonlinear vehicle 

dynamic model under slip, improved model of the training 

algorithm, slip dataset, feature extraction model and the control 

model. The work was implemented using simulink and tested 

using the necessary simulation parameters. The result was 

evaluated using a regression analysis with predictive accuracy of 

99.5%, and control response time of 0.005sec. 
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I. INTRODUCTION 

ccording to [1] Autonomous vehicle (AV) is a vehicle 

capable of navigating District roadways and interpreting 

traffic-control devices without a driver actively operating any 

of the vehicle’s control systems. They are vehicle designed 

with automated systems to provide electronic blind-spot 

assistance, crash avoidance, emergency braking, parking 

assistance, adaptive cruise control, lane-keep assistance, lane-

departure warning, or traffic-jam and queuing assistance [1]. 

These features are embedded in the system (AV) to ensure 

controllability, reliability, confidence, accuracy and safety 

during motion. However certain factors like road frictional 

coefficients slip force, poor automatic brake system response, 

poor controller response, aggressive nature of servomotors, 

mechanical faults, rigid power steering among others, stand in 

the way of realizing this goals completely and as a result 

causes non linear vehicle dynamics during translation.   

In recent times various methodologies have been adopted to 

ensure that these challenges can be eradicated, such includes 

the implementation of intelligent tires using accelerometers 

[2], smart systems for vital signs and vehicle stress condition 

monitoring [3], the use of intelligent slip estimation 

controllers [3] [1], among other techniques to mention a few. 

However despite the success they achieved, one will ask why 

is it that a complete control of AV is yet to be achieved? 

According to [4] the major challenges of autonomous cruise 

control is that some factors that affects its stability like slip 

and road coefficients are inevitable. Once a vehicle is in 

motion, slip force will continue to act on the tires at a rate 

depending on the frictional coefficient of the road. In order 

words, the rate of slip force is dependent on whether wet or 

dry road surface. Due to this effect, controlling this slip 

parameter is very difficult. 

Various works proposed in the past were able to combat these 

challenges using the methodologies aforementioned, yet there 

is still need for a complete control of slip in real time. 

The major challenges hindering the success of the existing 

system, is that the time of slip force acting on the vehicle is 

less than the response time of the controllers, as a result the 

slip gets accumulated and reflects on the steering dynamics 

thus causing nonlinearity in the vehicle position. The author 

believes that if this slip can be predicted before it actually 

occurs, they can be controlled spontaneously in real time. 

This paper therefore presents the use of artificial neural 

network to develop a controller with the ability to predict the 

slightest slip parameters and active control mechanism before 

it affects the vehicle dynamics. The prediction rate will be 

improved using an enhanced back-propagation algorithm for 

the training of the nonlinear autoregressive slip model. 

II. LITERATURE REVIEW 

[2] Presented a research paper on ―accelerometer based 

method for tire load and slip angle estimation‖.  The work was 

able to estimate the rate of slip force acting on a tire during 

motion using the slip angle and magic formula. However they 

never proposed any means to control the effect in real time. 

In 2016, [3] presented a research paper on ― slip angle 

estimation using neural network for wheel vehicle‖, the wok 

was able to estimate the degree of slip angle on a vehicle. 

However this slip estimation was based on a road coefficient 

of 1 (dry road), but the wet road condition cannot be neglected 

because they induce more slip when vehicle is moving. Hence 

there is need for a model which considers various road 

condition in estimating slip.  

In [5] they presented a research on adaptive critic anti-slip 

control of autonomous robot. According to them, when a 

wheeled autonomous robot drives with wheel slips, the 

velocity and posture control becomes difficult. They proposed 

A 
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the use of adaptive controllers for the stability response. 

However the response time of the fuzzy adaptive controller is 

more than the time of slip occurrence. 

According to [6], presenting an integrated driver and active 

steering control for vision based lane keeping system. A 

nested PID (proportional–integral–derivative) steering control 

for autonomous vehicles equipped with artificial vision 

systems was designed so that the driver can override the 

automatic lane-keeping action and obtain complete control of 

the vehicle lateral dynamics without any switching strategy. 

However in a situation where the AV is on a high velocity and 

slip rate, the PID can get aggressive. 

[7] Presented a work on time delay sliding mode control of 

non holonomic wheeled mobile robot, their endeavor employs 

a hybrid control strategy for composite path tracking control 

of a holonomic wheeled mobile robotic (WMR) system under 

parametric and nonparametric uncertainties. However despite 

the success achieved in their hybrid methodology we believe 

the neural network will achieve better result an at a faster 

response and prediction time. 

III. METHODOLOGY 

The system will be developed using the proposed system 

diagram in figure 1; the proposed system uses the nonlinear 

greybox model of the autonomous vehicle, which represents 

the nonlinear vehicle dynamics during translational motion 

consisting of slip angle and magic formula as the slip 

parameters. This features will be extracted and trained using 

an improved training algorithm. The prediction response of 

slip will trigger the automatic brake and steering system to 

control the vehicle speed and position. 

 

 

Figure 1: the proposed system 

The proposed system will guide the system design starting 

with the vehicle model, slip model, neural network model, 

improved training algorithm, prediction model and the control 

model. 

Vehicle translational Model 

To develop the vehicle model under motion, force is applied 

on the vehicle longitudinal acceleration (x), lateral velocity 

(y), steering angle (t) and yaw rate (φ) to calculate the 
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translational motion of the body fixed coordinates frame. This 

force applied is the resultant relationship between the 

longitudinal force Fx, lateral force Fy and yaw rate Fz to 

estimate the rotational force FB acting on the tyres. Relating 

this vehicle body whose origin is fixed coordinated in the 

center of gravity. The mass of the vehicle body m is assumed 

constant, where the applied force [Fx, Fy, Fz]
T 

in the body 

fixed frame and velocity V is defined as; 

FB =  
𝐹𝑥
𝐹𝑦
𝐹𝑧

    = m (V + ɷ x V)                      equation 1 

Where Mb =  
𝐿
𝑀
𝑁

  = Iɷ + ɷ x (Iɷ)  and  

 I=  

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧𝑧

                    

Where Mb is the mass between the front and the rear tyres, I is 

the vehicle moment body of inertia along x,y and z axes. 

Now to derive the relation between the fixed angular velocity 

vector of the body [p q r]
T
, and the rate of Euler angle 

variation [φ ϴ ψ]
T,

  this is designed furnishing the fixed body 

frame with the Euler rate as presented in the structure below; 
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equation 2 

Where: φ, ϴ, and ψ are the rotation of the vehicle fixed 

frames about the earth fixed x roll, y pitch and z yaw axes 

respectively. Inverting the function of J presents the desired 

Euler rate vector relationship of the system as;                                                                        

       

𝜑
𝛳
𝜓
   = J  

𝑝
𝑞
𝑟
 =   

1 (𝑠𝑖𝑛𝜑 𝑡𝑎𝑛𝛳) (𝑐𝑜𝑠𝜑 𝑡𝑎𝑛𝛳
0 𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑

0
𝑠𝑖𝑛𝜑

𝑐𝑜𝑠𝛳

𝑐𝑜𝑠𝜑

𝑐𝑜𝑠𝛳

   
𝑝
𝑞
𝑟
                              

equation 3 

The applied force Fb  moment Mb of the system are the  

defined considering the relationship between the force of 

gravity Fg, drag force Fd, moment Mb, suspension forces and 

the four tyres as shown in the model below; 

Fb =  
𝐹𝑥
𝐹𝑦
𝐹𝑧

   =  
𝐹𝑑𝑥
𝐹𝑑𝑦
𝐹𝑑𝑧

 +  

𝐹𝑔𝑥
𝐹𝑔𝑦
𝐹𝑔𝑧

 +   
𝐹𝑒𝑥𝑧𝑥
𝐹𝑒𝑥𝑧𝑦
𝐹𝑒𝑥𝑧𝑧

 +   

𝐹𝑓𝑙𝑥
𝐹𝑓𝑙𝑦

𝐹𝑓𝑙𝑧
  +  

𝐹𝑟𝑙𝑥
𝐹𝑟𝑙𝑦
𝐹𝑟𝑙𝑧

 +

  
𝐹𝑟𝑟𝑥
𝐹𝑟𝑟𝑦
𝐹𝑟𝑟𝑧

                                                                                                          equation 4 

Mb =  
𝑀𝑥
𝑀𝑦
𝑀𝑧

   =  
𝑀𝑑𝑥
𝑀𝑑𝑦
𝑀𝑑𝑧

 +  

𝑀𝑔𝑥
𝑀𝑔𝑦
𝑀𝑔𝑧

 +   
𝑀𝑒𝑥𝑧𝑥
𝑀𝑒𝑥𝑧𝑦
𝑀𝑒𝑥𝑧𝑧

 +   

𝑀𝑓𝑙𝑥
𝑀𝑓𝑙𝑦

𝑀𝑓𝑙𝑧
  + 

 
𝑀𝑟𝑙𝑥
𝑀𝑟𝑙𝑦
𝑀𝑟𝑙𝑧

 +  
𝑀𝑟𝑟𝑥
𝑀𝑟𝑟𝑦
𝑀𝑟𝑟𝑧

  + MF                                                                equation 5 

Where; Ffl, Mfl — Front left, Ffr, Mfr — Front right and 

Frl, Mrl — Rear left, Frr, Mrr — Rear right 

Slip Data model 

The data model will describe the vehicle slip data which will 

be used to train the neural network. This slip dataset will be 

modeled using the entity relationship diagram considering the 

magic input and road parameters as shown below; 

 

Figure 2: slip data model 

Feature extraction 

This is the extraction of statistics values from the slip data 

model as a compact feature vector for training purposes; this 

process is done using statistical method of feature extraction. 
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Artificial neural network 

The extracted features will be feed to the neural network as a 

nonlinear auto regressive model as shown in the model below; 

y(k+d)=N(y(k),y(k−1),…,y(k−n+1),u(k),u(k−1),……u(k−n+1

))                                                                              equation 6 

Where u(k) is the feature vectors inputs, N is the non linear 

slip force, and y(k) is the system output. This identified slip 

model is trained using an improved back propagation 

algorithm. 
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Figure 3: flow chart for the existing back propagation algorithm 

Improving the training model 

The model of the back-propagation algorithm produced a 

constant learning rate, hence only precised when the setting 

parameters are in order. However, when the training 

parameters are set too high or low, the algorithm becomes 

unstable and oscillates, while when the setting is too small, 

the algorithm converges. This is a serious problem because as 

the training process is initiated, most times the optimal 

learning rate varies. Hence there is need for a system which 

allows the learning rate to change as a result of the training 

process dynamics. To achieve this, there is need for a model 

which keeps the learning step size as large as possible and at 

the same time keeping the learning stable. This is done by 

developing a model which identifies the output of the initial 

algorithm in figure 3 and adjusting the bias variables 

according to the gradient descent as shown below; thus 

increasing the learning rate. 

dx= Ir * 
𝐷𝑒𝑘

𝑑𝑥
                                       equation 7 

Where (𝐷𝑒𝑘) is the back propagation derivative performance 

with respect to the weight and bias variables (x), where Ir is 

the learning rate. Now, at each training epoch, if the 

performance decreases towards the training goal, the learning 

rate (Ir) automatically increases by a factor of Ir_inc (which is 

equal to 0.5, epoch), on the other hand if the training 

performance increases which might result to over fitting, the 

learning rate automatically decreases the epoch factor (Ir_dc) 

by 0.7. In training the network, the aim is to achieve optimal 

number of hidden layer neurons and also the learning 

parameter. So, through training of different combination of 

hidden layer neurons and the learning parameter, the optimal 

number of hidden layer neurons and the learning parameter 

were obtained. This is summarized using the flow chart in 

figure 4. 

Table 1: Neural Network Parameters 

Training epochs 10 

Size of hidden layers 10 

Controller training segments 30 

No. delayed reference input 2 

Maximum feature output 3.1 

Maximum feature input 15 

Number of non hidden layers 2 

Maximum interval per sec 2 

No. delayed output 1 

No. delayed feature output 2 

Minimum reference value -0.7 

Maximum reference value 0.7 
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Figure 4: flow chart of the improved training algorithm 

The resultant effect of the training algorithm produces the 

approximate slip model as shown in equation 8; 

ˆy(k+d)=f(y(k),y(k−1),…,y(k−n+1),u(k−1),…,u(k−m+1))+g

(y(k),y(k−1),…,y(k−n+1),u(k−1),…,u(k−m+1))⋅u(k)                                          

equation 8 

This approximate model is classified with the reference slip 

model obtained from the training of the slip dataset (see figure 

5) as shown in the structure;  

u(k+1) = 
 yr(k+d) – f[y(k),…..,y(k−n+1),u(k),….,u (k−n+1)]   

g[y(k),….,y(k−n+1),u(k),…..,u(k−n+1)]
                    

equation 9 

 

Figure 5: neural network slip training architecture 

This reference model is classified with the slip trained slip 

model to predict the slip force using the prediction model 

below; 

Prediction model 

The prediction is done using the numerical optimization 

program to determine the training result over the specified 

horizon using the model below; 

J =   𝑦𝑟  𝑡 + 1 −  𝑦𝑚  𝑡 + 𝑗  
2

+ 𝑝  (𝑢` 𝑡 + 𝑗 −𝑁𝑢
𝑗=1

𝑁2
𝑗 =𝑁1

2)^2                                                                      equation 10 

Where N1, N2, and Nu define the horizons over which the 

prediction error and the learning increments are evaluated. 

The u′ variable is the tentative feature values signal, yr is the 

desired trained response, and ym is the network 

model response. The ρ value determines the contribution that 

the sum of the squares of the learning rate has on the 

performance index. The optimization block determines the 

values of u′ that minimize J, and then the optimal u is input to 

the training algorithm.  

Control model 

The effect of slip affects the positional dynamics of the 

vehicle, hence to control this effect the speed and position 
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must be controlled. This will be achieved using the automatic 

brake and steer control mechanism.  

Brake model 

A disc brake converts brake cylinder pressure from 

the brake cylinder into force. The disc brake applies the force 

at the brake pad mean radius. The equation that the block uses 

to calculate brake torque, depends on the wheel speed, Ω, such 

that when Ω≠0, 

T= 
𝜇𝑘𝑃𝜋𝐷𝑏 ^2∗𝑅𝑚𝑁

4
                    equation 11 

However when Ω=0, the torque applied by the brake is equal 

to the torque that is applied externally for wheel rotation. The 

maximum value of the torque that the brake can apply 

when Ω=0, is 

T=
𝜇𝑠𝑃𝜋𝐷𝑏 ^2∗𝑅𝑚𝑁

4
                    equation 12 

In any case, Rm= 
𝑅𝑜+𝑅𝑖

2
 

Table 2: equations parameters description 

μk is the disc pad-rotor coefficient 

of kinetic friction. 
T is the brake torque. 

Db is the brake actuator bore 

diameter. 
P is the applied brake pressure. 

Rm is the mean radius of brake pad 
force application on brake rotor. 

Ω is the wheel speed. 

Ro is the oukter radius 

of brake pad. 

N is the number of brake pads in 

disc brake assembly. 

Ri is the inner radius of brake pad. 
μs is the disc pad-rotor coefficient of 

static friction. 

Steering model  

To develop the steering model, the ackerman model was 

adopted and presented below as (mathworks, 2018) 

Cot (ɗL) – cot (ɗR) = 
𝑇𝑊

𝑊𝐵
                                       equation 13 

ɗvir = 
ɗin

𝑦
 

ɗL =  tan−1 (

𝑊𝐵𝑡𝑎𝑛  (ɗvir  )

𝑊𝐵−0.5𝑇𝑊 tan (  ɗvir  )
 

      

ɗR =  tan−1 (

𝑊𝐵𝑡𝑎𝑛  (ɗvir  )

𝑊𝐵+ 0.5𝑇𝑊 tan (  ɗvir  )
 

Table 3: The illustration and equations use these variables. 

δin Steering angle 

δL Left wheel angle 

δR Right wheel angle 

δvir Virtual wheel angle 

TW Track width 

WB Wheel base 

Γ Steering ratio 

IV. RESULTS 

The models were implemented using simulink and simulated 

using the parameters in table 1. The results generated will be 

discussed considering the neural network training 

performance. This begins with the mean square error (MSE) 

performance of the training process. From the figure the aim 

is to achieve a similar correlated pattern between the training, 

test and validation training (multi dataset) process. However 

in a case where this three transfer training functions are non 

correlated in terms of pattern, this shows physically that the 

network under performs. Now blending this to the result 

obtained from the training process as shown in the MSE 

performance in figure 6, it was observed that the relationship 

between the multi dataset training patterns are correlated as 

expected. The implication of this MSE training performance 

is to show the best training epoch value, this epoch value is 

the epoch point at which the best training accuracy is 

achieved and then the training process stops. This is when the 

root mean square error performance is recorded as 5.8375e-

10 root mean square error which is good. Showing that the 

training performance produces a précised regression value  

 

Figure 6: NN training MSE performance 

The next result which will be reported in this paper is the 

regression analysis of the training performance. This work 

will be used to evaluate the training accuracy of the test, 

training and validation process as shown in figure 7 the aim of 

the training performance is to achieve a regression value equal 

or approximately one. 
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Figure 7: NN regression performance 

From the four plots presented in figure 7, representing the 

training, test, validation and the summarized results, the dash 

lines in each result represents the perfect result-output= 

targets. The solid lines represent the best fit linear regression 

line between output and targets. The R value is an indication 

of the relationship between the output and targets. If R is zero 

then there is no linear relationship between the output and 

target, however as shown by our result, R = 1, showing the a 

précised prediction performance is achieved. In the next result 

the step response time of the euro controller will be evaluated. 

This is to know the time it takes for the control mechanisms 

modeled in equation 3.12 for speed control and equation 3.13 

for position control to response to slip force causing the 

vehicle nonlinearity. This is shown in the figure 8 

 

Figure 8: step response of the slip controller 

From the result in figure 8, it was observed that due to the 

predictive nature of the controller, designed, it almost 

instantaneously at 0.005s detect the slip as shown in the result 

and hence prevent its effect on the vehicle. This is to say that 

within 0.005 seconds of slip detection, the control response is 

triggered for normalization. 
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