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Abstract- Analysis of the effects of applying variable pressure 

gradient to a Magnetohydrodynamic fluid flowing between two 

parallel plates under the influence of variable transverse 

magnetic fields are investigated. The study involves a steady, 

incompressible hydromagnetic fluid flowing through parallel 

plates. The upper plate is considered porous moving in the 

opposite direction to the fluid flow while the lower plate remains 

stationary. The results obtained shows that velocity profiles 

decreases whenever Reynold number, magnetic number or 

suction parameter is increased. As the pressure gradient is 

increased, velocity of the flow increased but temperature 

decreased. Also, increase in suction number yields to increase in 

temperature profile. 

Index Terms- Magnetohydrodynamic flow, porous parallel 

plates, variable pressure gradient, variable transverse magnetic 

fields.  

I. INTRODUCTION 

iquids and gases are commonly referred to as fluids. 

Incompressible fluid flow between parallel plates normal 

to them is referred to as Hartmann. Hartmann number is 

defined to as the ratio of electromagnetic force to the viscous 

force experienced by fluid flow through magnetic fields. 

Under magnetic fields, the flow of an electrically conducting 

fluid induces electric currents and therefore Lorentz force is 

developed.  

Manyonge, et al (2012) investigated two dimensional 

Magnetohydrodynamic poiseuille flow of incompressible 

steady fluid. The fluid was flowing between porous channel 

influenced by slanting magnetic field and uniform pressure 

gradient. The analysis obtained showed that velocity 

distribution decreased as magnetic field strength increased. 

Unsteady Magnetohydrodynamic couette flow between 

infinite porous plates where the lower plate was considered 

porous past sloped magnetic field with heat transmission was 

analyzed by Joseph, et al (2014). They found out that energy 

losses were reduced by high magnetic field.  Singh (2014) 

studied steady laminar flow of viscous incompressible fluid 

between two parallel infinite plates with constant pressure 

gradient. The results showed that increase of inclination of 

magnetic field decreased velocity profile. 

 Kiema, et al (2015) studied MHD fluid steadily flowing with 

constant pressure gradient between two limitless parallel 

pervious sheets under the action of steady magnetic field. The 

fluid entered through the lower sheet and exited through the 

top sheet. The results showed that velocity was lowered 

whenever Hartmann number was increased. Mbugua, et al 

(2016) investigated electrically conducting flow of 

incompressible unsteady Newtonian fluid flowing through 

porous non conducting sheets in the presence of variable 

transverse magnetic field. The top sheet moved contrary to the 

fluid flow as the bottom sheet remained stationary. Pressure 

gradient was taken to be uniform throughout. They concluded 

that reduced suction parameter increased the velocity 

distribution and decreased the temperature profiles. They also 

deduced that suction stabilized the boundary layer growth. 

 MHD fluid through parallel plates subject to an inclined 

magnetic field under uniform pressure gradient was studied by 

Mburu & Kwanza (2016). They found out that increase in 

Hartmann number lowered velocity and pressure gradient was 

directly proportional to velocity. Dash & Ojha (2018) studied 

viscoelastic hydromagnetic flow between two permeable 

sheets in the presence of sinusoidal pressure gradient in the 

presence of magnetic field and porous matrix. They found out 

that flowing back of fluid could be prevented by having 

pressure gradient oscillation at low frequency. Using finite 

difference method, MHD flow of two parallel plates 

influenced by sliding magnetic field was analyzed by Aruna 

and Dubewar (2019). They confirmed that as the slant angle 

increased velocity decreased. 

The aim of this paper is to analyze the effects of variable 

pressure gradient applied to a MHD fluid when the variable 

magnetic fields are transverse to the upper plate. 

II. FORMULATION OF THE PROBLEM 

We consider effects of various thermos-physical parameters 

on velocity and temperature profiles due to a variable pressure 

gradient on 2- dimensional Magnetohydrodynamic fluid flow 

between parallel plates. The fluid is considered to be steady, 

incompressible and viscous. When the fluid is at rest, at t=0, 

both plates are stationary and at time greater than zero (t>0), 

the lower plate is immobile as the top plate move in the 

opposite direction to the fluid flow. The two plates are 

considered to be of infinite length in the x- and z- directions 

and transverse magnetic fields act on the y- axis.  

L 
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Figure 1: Flow configuration 

The equations governing the flow are: 

a) Equation of continuity 

In tensor form, the equation of continuity is given by, 

𝜕𝜌

𝜕𝑡
 + 

𝜕

𝜕𝑥𝑖
(ρu𝑖) =0.                                                                     (1) 

Where,  𝑖 = 1,2,3 represent x, y, z directions respectively. 

Since the flow is steady and incompressible, the density of 

fluid does not change with time. In Cartesian coordinates 

equation (1) becomes,  

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0.                                                                  (2) 

The parallel plates are of immeasurable length in x- and z- 

directions hence the velocity components do not depend on x 

and z. Simplifying equation (2) we get 

𝜕𝑣

𝜕𝑦
= 0                                                                                   (3) 

Resulting to 

𝑣 = 𝑣°                                                                                                                                                                                                        
(4)  

𝑣°   is the equivalent to suction velocity of the upper porous 

plate 

b) Navier- Stokes equation 

The general Navier- Stokes equation in tensor is expressed as, 

  𝜌  
𝜕𝑢𝑖

𝜕𝑡
  + 𝑢𝑗  + 

𝜕𝑢𝑖

𝜕𝑥𝑗
  =−  

𝜕𝑃

𝜕𝑥𝑗
 + 𝜇∇2𝑢𝑖 + 𝜌𝐹𝑖                     (5) 

In this research we consider magnetic force, electric force and 

shear stress while gravitational force is taken to be negligible. 

We consider a 2-dimensional flow in the x- direction. 

Velocity profile in the y-axis is zero.  

 
𝜕𝑢

𝜕𝑡
+ 𝑈

𝜕𝑢

𝜕𝑥
+ 𝑉

𝜕𝑢

𝜕𝑦
=  −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 

𝜇

𝜌
 

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 +
𝜕2𝑢

𝜕𝑧2 +
𝐹𝑥

𝜌
   (6) 

 0 =  −
1

𝜌

𝜕𝑃

𝜕𝑦
+  

𝐹𝑦

𝜌
                                                        (7) 

In equation (7), gravitational forces are considered negligible 

hence,  

 𝑃 = 𝑃 𝑥                                                                     (8) 

 The plates are of immeasurable length in x- and y- directions 

which simplifies equation (6) to 

  
𝜕𝑢

𝜕𝑡
+ 𝑣°

𝜕𝑢

𝜕𝑦
=  −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 

𝜇

𝜌

𝜕2𝑢

𝜕𝑦2 +
𝐹𝑥

𝜌
                             (9)  

Considering Lorentz force, a particle of charge q moving with 

a velocity 𝑉     in an electric field 𝐸     and a magnetic field 𝐵   

experiences a force of, 

 𝐹 = 𝑞𝐸  + 𝑞𝑉  × 𝐵           (10) 

Considering Ohms law equation and assumption that forces 

due to electric field are negligible,  

𝐽 = 𝜎 𝑉  × 𝐵                     (11)  

Also, the velocity vector of the fluid is given by 

𝑉  = 𝑉   𝑈, 0,0               (12) 

Then,  

𝐽 = 𝑉  × 𝐵  = 𝜎  

𝑖 𝑗 𝑘
𝑈 0 0
0 𝐵𝑦 0

 = 𝜎𝑈𝐵𝑦𝑘      (13) 

Applying Lorentz force equation 

𝐽 × 𝐵  =  

𝑖 𝑗 𝑘
0 0 𝜎𝑈𝐵𝑦

0 𝐵𝑦 0
 =  −𝜎𝐵𝑦

2𝑈𝑖.    (14) 

Substituting magnetic permeability equation 𝐵𝑦 = 𝜇𝑒𝐻𝑦  to 

equation (14) we get 

𝐽 × 𝐵  = −𝜎𝜇𝑒
2𝐻𝑦

2𝑈𝑖                      (15) 

Therefore the Lorentz force experienced is given by 

𝐹 = −𝑈𝜎𝜇𝑒
2𝐻𝑦

2                           (16)                                                                                                                                                                                  

Substituting equation (16) into equation (9) we get                                                                                                                                                                  

𝑣°
𝜕𝑢

𝜕𝑦
=  −

1

𝜌

𝜕𝑃

𝜕𝑥
+ 

𝜇

𝜌

𝜕2𝑢

𝜕𝑦2 −
𝑈𝜎𝜇𝑒

2𝐻𝑦
2

𝜌
                   (17) 

c) Energy equation 

The tensor form of this equation is written as 

𝜌  
𝜕𝑟

𝜕𝑡
 + 

𝜕

𝜕𝑥𝑗
  𝜌𝑢𝑗𝑟 =  

𝜕𝑃

𝜕𝑡
 +

𝜕

𝜕𝑥𝑗
  𝑢𝑖𝑃 −  

𝜕𝑞𝑗

𝜕𝑥𝑗
 +  𝜑  (18) 

Substituting heat equation and considering that the plates are 

in x- and y- directions, equation (18) becomes 

𝜌𝐶𝑝  
𝜕𝑇

𝜕𝑡
+ 𝑣°

𝜕𝑇

𝜕𝑦
 = 𝐾

𝜕2𝑇

𝜕𝑦2 + 𝜇  
𝜕𝑢

𝜕𝑦
 

2

                       (19)                                                                                                                                                                                                        
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Since the flow is steady, equation (19) results to 

𝜌𝐶𝑝𝑣°
𝜕𝑇

𝜕𝑦
= 𝐾

𝜕2𝑇

𝜕𝑦2 + 𝜇  
𝜕𝑢

𝜕𝑦
 

2

                          (20) 

Effecting electrical resistance of the fluid due to Ohmic 

heating which is 
𝐽2

𝜎
  equation (20) gives 

𝜌𝐶𝑝𝑣°
𝜕𝑇

𝜕𝑦
= 𝐾

𝜕2𝑇

𝜕𝑦2 + 𝜇  
𝜕𝑢

𝜕𝑦
 

2

+
𝐽2

𝜎
                  (21) 

From equation (13) 

𝐽 = 𝜎𝑈𝐵𝑦                                                        (22) 

So 

𝐽2

𝜎
=

𝜎2𝑈2𝐵𝑦
2

𝜎
= 𝜎𝑈2𝐵𝑦

2                                 (23) 

However 𝐵𝑦
2 = 𝜇𝑒

2𝐻𝑦
2, therefore, Ohmic heating is given by 

𝐽2

𝜎
= 𝜎𝜇𝑒

2𝐻𝑦
2𝑈2                                            (24) 

Substituting equation (24) to equation (21) results to 

𝜌𝐶𝑝𝑣°
𝜕𝑇

𝜕𝑦
= 𝐾

𝜕2𝑇

𝜕𝑦2 + 𝜇  
𝜕𝑢

𝜕𝑦
 

2

+ 𝜎𝜇𝑒
2𝐻𝑦

2𝑈2  (25) 

The initial boundary conditions used in this study are 

 
t = 0, u = 0        T = 0 at – a ≤  y ≤  a
t > 0, 𝑢 = 0        𝑇 = 𝑇𝑤  when y = −a
t > 0, 𝑢 = 𝑈           𝑇 = 𝑇∞  when y = a

      (26) 

Where 𝜌 is the density of the fluid, 𝑢, 𝑣, 𝑤  is the velocity 

components in x, y, z axis, 𝑥, 𝑦, 𝑧 are the Cartesian 

coordinates, P is the pressure, U is the characteristic velocity, 

𝜎 is the electrical conductivity, 𝜇𝑒  is the magnetic 

permeability, 𝐻    is he magnetic field strength, 𝐶𝑃 is the 

specific heat capacity, T is the temperature, K is the thermal 

conductivity, 𝜇 is coefficient of viscosity, 𝑡  is time, 𝑇∞  is the 

characteristic free stream temperature, 𝑇𝑊  is the characteristic 

temperature on the plate, 𝑣° is the suction velocity of upper 

plate and 𝑎 is the distance between plates.  

To non- dimensionalize the equation (17), equation (25) and 

also the initial boundary conditions in equation (26), we use 

transformations below where the values with asterisks 

represented the dimensionless variables, 

𝑋∗ =
𝑋

𝐿
 ,  𝑌∗ =

𝑌

𝐿
 ,  𝑃∗ =

𝑃

𝜌𝑢2 ,  𝑢∗ =
𝑢

𝑈
  ,  𝑇∗ =

𝑇−𝑇∞

𝑇𝑊−𝑇∞

 ,   

𝑡∗ =
𝑡𝑈

𝐿
 ,𝐸𝐶 =

𝑈2

𝐶𝑝∆𝑇
 ,  𝑃𝑟 =

𝐶𝑝𝜇

𝐾
 , 𝐻𝑎 = 𝐿𝜇𝑒𝐻 

𝜎

𝜇
 ,  𝑅𝑒 =

𝜌𝑢𝐿

𝜇
, 

𝑆° =
𝑣°

𝑢
,  𝑀 =

𝜎𝜇𝑒
2𝐻𝑦

2𝐿

𝜌𝑈
=

𝐻𝑎
2

𝑅𝑒
                                          (27) 

Where 𝐿 is characteristic length, 𝐸𝐶 is Eckert parameter, 𝐻𝑎  is 

the Hartmann number, 𝑅𝑒  is the Reynolds number, 𝑆° is the 

Suction parameter, 𝑀 is the magnetic numer. 

Substituting equation (27) into equations (17), (25) and (26) 

and simplifying, we obtain 

𝑆°
𝜕𝑢∗

𝜕𝑦∗ =  −
𝜕𝑃∗

𝜕𝑋∗ + 
1

𝑅𝑒

𝜕2𝑢∗

𝜕𝑦∗2 − 𝑀𝑈∗                      (28) 

𝑆°
𝜕𝑇∗

𝜕𝑦∗ =
1

𝑅𝑒𝑃𝑟

𝜕2𝑇∗

𝜕𝑦∗2 +  
𝐸𝐶

𝑅𝑒
 

𝜕𝑢∗

𝜕𝑦 ∗ 
2

+
𝐸𝐶𝐻𝑎

2

𝑅𝑒
𝑈∗2       (29)  

 
𝑡∗ = 0, 𝑢∗ = 0, 𝑇∗ = 0 , at − 1 ≤ 𝑦∗  ≤ 1

𝑡∗ > 0, 𝑢∗ = 0, 𝑇∗ = 1 𝑎𝑡 𝑦∗ = −1
𝑡∗ > 0, 𝑢∗ = 1, 𝑇∗ = 0 𝑎𝑡𝑦∗ = 1

       (30)  

III. METHODOLOGY 

The governing partial difference equations are presented in 

their finite difference approximations and solved using finite 

difference method. For simplicity we consider one dimension 

domain (space). The finite difference expressions for U and T 

in equations are 

𝜕𝑢∗

𝜕𝑦∗ =
𝑈𝑗

𝑘+1−𝑈𝑗−1
𝑘+1+𝑈𝑗

𝑘−𝑈𝑗−1
𝑘

2∆𝑦
                                         (31) 

𝜕2𝑢∗

𝜕𝑦∗2 =
𝑈𝑗+1

𝑘+1−2𝑈𝑗
𝑘+1+𝑈𝑗−1

𝑘+1+𝑈𝑗+1
𝑘 −2𝑈𝑗

𝑘+𝑈𝑗−1
𝑘

2 ∆𝑦 2                    (32) 

𝜕𝑇∗

𝜕𝑦∗ =
𝑇𝑗

𝑘+1−𝑇𝑗−1
𝑘+1+𝑇𝑗

𝑘−𝑇𝑗−1
𝑘

2∆𝑦
                                            (33) 

𝜕2𝑇∗

𝜕𝑦 ∗2 =
𝑇𝑗+1

𝑘+1−2𝑇𝑗
𝑘+1+𝑇𝑗−1

𝑘+1+𝑇𝑗+1
𝑘 −2𝑇𝑗

𝑘+𝑇𝑗−1
𝑘

2 ∆𝑦 2                         (34) 

Equations (31) and (32) are substituted to equation (28) to get  

 

𝑆°  
𝑈𝑗

𝑘+1−𝑈𝑗−1
𝑘+1+𝑈𝑗

𝑘−𝑈𝑗−1
𝑘

2∆𝑦
 =

 
𝜕𝑃∗

𝜕𝑋∗ +  
1

𝑅𝑒
 

𝑈𝑗+1
𝑘+1−2𝑈𝑗

𝑘+1+𝑈𝑗−1
𝑘+1+𝑈𝑗 +1

𝑘 −2𝑈𝑗
𝑘+𝑈𝑗−1

𝑘

2 ∆𝑦 2  − 𝑀𝑈𝑗
𝑘      (35) 

Making 𝑈𝑗
𝑘+1 the subject of the formula yields 

𝑈𝑗
𝑘+1 =

 −
𝜕𝑃∗

𝜕𝑋∗ − 𝑆°  
𝑈𝑗

𝑘−𝑈𝑗−1
𝑘+1−𝑈𝑗−1

𝑘

2∆𝑦
 +

 
1𝑅𝑒𝑈𝑗+1𝑘+1+𝑈𝑗−1𝑘+1+𝑈𝑗+1𝑘−2𝑈𝑗𝑘+𝑈𝑗−1𝑘2∆𝑦2−𝑀
𝑈𝑗𝑘÷𝑆°2∆𝑦+1𝑅𝑒∆𝑦2  

(36) 

Similarly, equations (33) and (34) are substituted to equation 

(29)  

𝑆°  
𝑇𝑗

𝑘+1−𝑇𝑗−1
𝑘+1+𝑇𝑗

𝑘−𝑇𝑗−1
𝑘

2∆𝑦
 =

1

𝑅𝑒𝑃𝑟
 

𝑇𝑗 +1
𝑘+1−2𝑇𝑗

𝑘+1+𝑇𝑗−1
𝑘+1+𝑇𝑗+1

𝑘 −2𝑇𝑗
𝑘+𝑇𝑗−1

𝑘

2 ∆𝑦 2   +

  
𝐸𝐶

𝑅𝑒
 

𝑈𝑗+1
𝑘+1−2𝑈𝑗

𝑘+1+𝑈𝑗−1
𝑘+1+𝑈𝑗+1

𝑘 −2𝑈𝑗
𝑘+𝑈𝑗−1

𝑘

2 ∆𝑦 2  + 
𝐸𝐶𝐻𝑎

2

𝑅𝑒
 𝑈𝑗

𝑘 
2
    (37) 

 Making  𝑇𝑗
𝑘+1 the subject of the formula 

𝑇𝑗
𝑘+1 =

 −𝑆°  
𝑇𝑗

𝑘−𝑇𝑗−1
𝑘+1−𝑇𝑗−1

𝑘

2∆𝑦
 +

1

𝑅𝑒𝑃𝑟
 

𝑇𝑗−1
𝑘+1+𝑇𝑗+1

𝑘+1+𝑇𝑗−1
𝑘 −2𝑇𝑗

𝑘+𝑇𝑗+1
𝑘

2 ∆𝑦 2   +
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𝐸𝐶

𝑅𝑒
 

𝑈𝑗 +1
𝑘+1−2𝑈𝑗

𝑘+1+𝑈𝑗−1
𝑘+1+𝑈𝑗+1

𝑘 −2𝑈𝑗
𝑘 +𝑈𝑗−1

𝑘

2 ∆𝑦 2  + 
𝐸𝐶𝐻𝑎

2

𝑅𝑒
 𝑈𝑗

𝑘 
2
 ÷

 
𝑆°

2∆𝑦
+

1

𝑅𝑒𝑃𝑟 ∆𝑦 2                                                                (38) 

Equations (36) and (38) are the final set of equations solved 

simultaneously using a computer code in MATLAB (R2018b) 

computer software.  

IV. RESULTS AND DISCUSSION 

Effects of variable pressure gradient on 

Magnetohydrodynamic flow between parallel plates 

considering variable transverse magnetic fields are analyzed 

and presented graphically for different parameters. Default 

values are chosen and used to observe the effect on varying 

various parameter values. 

 

Figure 2a: Effect of Reynolds number on the fluid velocity profile 

 

Figure 2b: Effects of Reynolds number on the fluid temperature profile 

 

 

Figure 3a: Effects of pressure gradient on the fluid velocity profile 

 

Figure 3b: Effects of pressure gradient on the fluid temperature profile 

 

Figure 4a: Effects of magnetic number on velocity profile 
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Figure 4b: Effects of magnetic number on the fluid temperature profile 

 

Figure 5a: Effects of suction number on the fluid velocity profile 

 

Figure 5b: Effects of suction number on the fluid temperature profile 

Figures 2a, 3a, 4a and 5a show that increase in suction 

number, magnetic number, pressure gradient and Reynold 

number decreases velocity profile. Increase in Reynold 

number implies that viscous forces decrease as inertial forces 

increase hence reduced velocity. It is observed that, at the 

bottom stationary plate the flow assumes the velocity of the 

plate. Gradually, the velocity rise to maximum as it reaches 

the center of the plates and then decrease as it approaches the 

top plate. Also Lorentz force acting normally to the fluid due 

to magnetic fields causes resistance to the fluid flow 

consequently slowing the fluid motion hence reducing the 

velocity of the flow. Pressure of the fluid reduces due to the 

convection of the fluid particles caused by suction on the 

surface of the plates. Reduced pressure results to decreased 

velocity. 

 In figures 3b, 4b and 5b, increase in magnetic number, 

pressure gradient and suction number leads to increase 

temperature. From figure 2b, it can be observed that increase 

in Reynold number decreases temperature profile. Decreased 

viscous forces imply that friction force reduces and hence 

temperature of the fluid decreases. Also, increase in 

electromagnetic forces results to increase in joule dissipation 

leading to increase in fluid temperature. Increase in suction 

number decreases boundary layer region hence increasing 

temperature gradient of the fluid at the surface.  

V. CONCLUSIONS 

Effects of variable pressure gradient on 

Magnetohydrodynamic flow between two parallel plates 

considering variable transverse magnetic fields were studied. 

The results obtained in this research provide useful 

information to different fields especially in designing and 

modeling of systems in dyeing industries, cooling of 

automobile moving parts, purifying crude oil, sprays as well 

as in extraction of metal industries. 
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