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Abstract: An eco-epidemiological model interaction between hive 

and forager honeybee with consideration of varroa mite diseases 

spread in the ecosystem is represented. The model is governed by 

a new five-dimensional nonlinear system of ordinary differential 

equations to investigate the dynamics of the honeybee colony. 

The well-posedness of the model is established concerning the 

positivity and boundedness of solutions. The basic reproduction 

number (R0) was also computed, and a sensitivity analysis was 

carried out on R0. The stability of the equilibrium points was 

determined using the Jacobian matrix with the Routh-Hurwitz 

criterion. Additionally, numerical simulations were performed to 

validate the result of the recovery class and analyzed the effect of 

social inhibition and disinfestation on an infected hive honeybee 

population in an eco-epidemiological model.  
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I. INTRODUCTION 

he interaction between organisms of different species 

such as the honeybee and varroa mite is an intrinsic 

feature of the ecosystem. Honeybee and varroa mite 

interaction is the study of living organisms that are subject to 

infestation or attack by their natural enemies acting either 

directly as predators, or indirectly, by disturbing the life of the 

colony in various ways in which the honeybees of the genus 

Apis are no exception (MAAREC). The honeybee is a 

member of the genus Apis which produces and stores honey 

and constructs perennial and colonial nests from wax. The 

best-known species of the genus is the Western honeybee (Apis 

mellifera, also called European or common honeybee) which 

was domesticated for honey production and crop pollination 

or at least exploited for honey and beeswax at least since the 

time of the building of the Egyptian pyramids (Smith et al 

2000). 

Colony collapse disorder (CCD) is the phenomenon in which 

the majority of worker bees in a colony disappear and leave 

behind a queen, plenty of food, and some nurse bees to care 

for the remaining immature bees. The phenomenon was 

renamed CCD in 2006 when abnormally high die-offs (30–70% 

of hives) of common honeybee colonies have occurred in North 

America and at first, no explanation could be given (Genersch 

et al 2010). Several European countries have experienced the 

same phenomenon since 1998, and in the past few years, 

countries in Africa and Asia have also become affected by it. 

The reason seems to be a combination of factors, possibly 

including neonicotinoid pesticides or Israeli acute paralysis 

virus (Staveley et al 2014). The collapse of honeybee colonies 

has become widespread in several regions of the world and has 

been the subject of much discussion and research in recent 

years (vanEngelsdorp et al 2009, Ho et al 2007). 

Another cause of CCD is an external parasitic mite called Varroa 

mite. This mite attacks the honeybees Apis cerana and Apis 

mellifera by attaching to the body of the bee and weakens the 

bee by sucking fat bodies (Ramsey et al 2019). A significant 

mite infestation can lead to the death of a honeybee colony and 

usually occurred in the late (rainy, dry, etc.). The Varroa mite is 

the parasite with the most pronounced economic impact on the 

beekeeping industry. Also, it is considered to be one of the 

multiple stress factors contributing to the higher levels of bee 

losses around the world (Goulson et al 2015). Varroa mites 

are carriers for many viruses that are damaging to bees, 

including Kashmir bee virus, sac-brood virus, acute bee 

paralysis virus, Israeli acute paralysis virus, and deformed 

wing virus (Rosenkranz et al 2010). 

Several methods of treatment are currently applied to control 

these mites, which can be divided into chemical and 

mechanical controls. Usual chemical controls include “hard” 

synthetic chemicals such as amitraz, fluvalinate, and 

coumaphos, while “soft” chemical controls (organic acids, 

essential oils) include thymol, sucrose octanoate esters oxalic 

acid, and formic acid. Mechanical controls are usually based on 

disruption of some aspect of the mites’ life cycle and they are 

generally intended not to eliminate all mites, but to keep the 

infestation at a tolerable level. Examples of mechanical 

controls include the sacrifice of drone brood as Varroa mites 

most commonly attach to the drone brood, powdered sugar 

dusting which encourages cleaning behavior and dislodges 

part of the mites, screened bottom boards which allow 

dislodged mites to fall through the bottom and away from the 

colony, brood interruption, application of heat to isolated 

brood combs or whole colonies and downsizing of the brood 

cell size. Another possibility in fighting the infestations is 

breeding more resistant colonies: several families of bees can 

coexist with Varroa mites (e.g. Africanized bees and Russian 

honeybees show a higher natural resistance against mites 

(Rosenkranz et al 2010, Buchler et al 2010)).  

In this work, we incorporate five-dimensional honeybees and 

varroa mite model to gain further insights into the dynamics 

of eco-epidemiological interaction on hive and forager with 

the spread of the virus on the honeybee colony. The analysis 

of the model is extended to investigate the impact of the 

recovery class, namely as an effect of social inhibition and 

disinfestation on a hive honeybee species from infection and 

infestation in the ecosystem model. The rest of the work is 
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organized as follows: The model is formulated and its well-

posedness is established in Section 2. In Section 3, the 

existence and stability of possible equilibria including a 

derivation of the basic reproduction number are investigated. 

In Section 4, the sensitivity analysis and numerical 

simulations of the model with graphical illustrations and their 

discussion, Section 5 is devoted to concluding remarks. 

II. MODEL FORMULATION 

Our mathematical model is based on the presence of a mite 

species which is a vector for a disease as well and transmitted 

to a susceptible host only upon adequate contact with an 

infected host. 

Following Dénes and Mahmoud (2019), which proposed the 

following model to study global dynamics of mathematical 

model for a honeybee colony infected by varroa mite disease. 

The model is given below  
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Based on the above model we propose the new model for the 

study of the honeybee population which is divided into five 

compartments depending on the presence of the vector and the 

disease transmitted by them as follows. 

i. Susceptible: those who can be infested by the vector. 

The healthy bee population is divided into hive bees 

and foragers. We denote by M the compartment of 

susceptible hive bees and the compartment of 

susceptible forager bees. 

ii. P  denotes hive bees infested by non-infectious 

vectors. 

iii. Q  denotes hive bees infested by infectious vectors 

and thus infected with the disease. 

iv. R denotes the hive honeybee that recovered from 

infection and infestation. 

The model is then formulated as follows:  

 
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Where 1A is the natural birth rate of hive bees and 2A

immigration rate of forager bees, then 21 AAA   

Where the term S represents the effect of social inhibition on 

the recruitment rate and is formulated as  

NM

N
S


 21   

Where the parameter is the maximum rate at which hive bees 

develop into foragers when there are no foragers present in the 

colony. The term represents social inhibition, that is, the 

process whereby a surplus of foragers causes the foragers to 

revert to being hive bees. We assume that social inhibition is 

directly proportional to the forager population present in the 

colony. 

In our model, it was assumed that the following assumptions 

hold. 

1. Hive bees (from P ) infested by non-infectious 

vectors can transmit the disease to susceptible (hive 

and forager bees), hive bees infested by infectious 

vectors (from Q ) can transmit the disease to 

susceptible (hive and forager bees). 

2. It was assumed that once infected or infested, forager 

bees are forced to stop their foraging duties because 

of the infestation or infection and become hive bees. 

3. A hive-bee infested by infectious vectors can 

transmit the infection to a hive bee infested by non-

infectious vectors, i.e. a member of the compartment 

can move to a compartment upon adequate contact 

with an individual from the compartment Q . 

4. Suppose, upon adequate contact with a susceptible 

bee, an individual P can transmit the (non-

infectious) mites carried by it at the same rate to 

susceptibles ( M and N ), and we donate the 

transmission rate for non-infectious vectors P to 

susceptibles by 1 . 

5. It was assumed that, upon adequate contact with a 

susceptible bee or a bee with non-infectious 

parasites, an individual can transmit the mite 

carrying the virus at the same rate to susceptibles (

M and N ) and to those who are already infested by 
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non-infectious vectors. We denote this transmission 

rate by 2 . 

6. It was assumed that the disinfestation rates from the 

compartments to the susceptible compartment M  

are the same and denoted by .  

7. It was denoted by the natural birth rate of healthy 

hive bees and by the death rate for the compartments. 

8. It was assumed that only infected hive bees due to 

the mites transmitting viral infection. So, we assume 

that the death rate of infected hive bees Q is equal to

d  where  is the death rate caused by mites. 

9. By (Betti et al., 2014), it was assumed that the 

proportion of recruitment of susceptible hive bees to 

become forager bees and the rate of healthy forager 

bees that are reverting to hive duties following social 

inhibition has the same proportion S. We formulate 

this process of recruitment and social inhibition as a 

Holling-type II functional response, see (Ratti et al., 

2017, David et al., 2011, 2013). 

Table 1: Variables and parameters of the model (2.2) 

Variables Description 

)(tM  Susceptible hive bees 

)(tN  Susceptible forager bees 

)(tP  
Hive bees infested by non-

infectious vectors 

)(tQ  
Hive bees infested by infectious 

vectors 

)(tR  Recovered/Removed hive bees 

)(tT  Total Population of honeybee 

Parameter Description 

1A  The natural birth rate of hive bees 

2A  
The  immigration rate of forager 

bees 

1  
The transmission rate for non-

infectious vectors 

2  
Transmission rate infested by non-

infectious vectors 

  Death rate caused by mites 

d  Natural death rate 

  Disinfestation rate 

S  Social inhibition 

2.1. Well-posedness of the model 

The mathematical and eco-epidemiological relevance of the 

honeybee-varroa mite system depends on the well-posedness 

of the model. Keep in mind that all the parameters of the 

model are non-negative. Here, the boundedness and positivity 

of solutions of the model are investigated to establish the 

well-posedness of the model. 

2.1.1. Boundedness of solutions 

The following result is required to establish the boundedness 

of solutions of the model (2.2). 

Theorem 2.2:  Every solution in the solution set of the 

model given by (2.2) is positively invariant and attracting.  

This implies that every solution approaches and remains in the 

solution set as. 

Proof: 

Let the total model (2.2) be represented, respectively 

)()()()()()( tRtQtPtNtMtT   

Then it follows that  

)(
)(

tdTA
dt

tdT
                                               (2.3) 

Solving the nonlinear first-order differential inequality of 

Bernoulli type (2.2) yields 

dte
d

A
TA
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A
tT 









 )0()(                                (2.4) 

As ,T  
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A
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This implies that 
d

A
tT  )(0 at any time ,0t and so 

every solution with initial conditions in 
5

 approaches 

remains in the region for all .0t  

Hence, the region 

})(:)(),(),(),(),({ 5

d

A
tTtRtQtPtNtM   is 

positively invariant and attracting. This end ends the proof. 

2.1.2. Positivity of solutions 

Theorem 2.2: The solution set of the eco-epidemiological 

model (2.2) with non-negative initial conditions and remains 

non-negative for all time t ˃0. 

Proof:  The first equation of the model (2.2), implies that 

  0))(( 21  MSdQtP
dt

dM
                   (2.5) 

Which on using integrating factor yields 
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






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(2.6) 

Further integration of (2.6) yields  
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 (2.7) 

All other variables can be proved to be positive in a similar 

approach. 

Hence, we can say the positivity of the Solution of the model 

(2.2) 

})()(),(),(),(),({ 5

 tTandtRtQtPtNtM  of 

eco-epidemiologically is well-posed. 

This ends the proof  

III. ANALYSIS OF THE MODEL 

In this section, the hive and forager honeybee model is 

analyzed around the possible equilibrium points. 

The existence of equilibrium points 

The hive and forager honeybee model (2.2) has the following 

possible equilibrium points: 

3.1.1 Trivial equilibrium points ( 0E ) 

This is a steady state in the absence of honeybee colony. 

Hence, no interactions exist. The equilibrium point is given by 

 0E = (0, 0, 0, 0, 0 )                                        (3.19) 

3.1.2 Disease Free and infestation Free Equilibrium Point 

 1E  

This is simply the point where there is no existence of the 

disease in the honeybee colony, such that the colony has no 

threat of infestation. The equilibrium point is given by 
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                                                                         (3.20) 

3.1.3 Disease Free with Infestation equilibrium Point 2E  

This is a steady state where there is no form of the disease 

with infestation. Here, the honeybee colony lives freely 

without fear of infestation while the infection is absent in the 

colony. The equilibrium point is given as
      

 

       
 

      

,,0,,

2

2

2

221221

2

2212

2

2

2

1

2















































dAd

AAAAddAAd

dA

dAAAdA

A

Ad

A

Ad

E

 

                                                                        (3.21) 

3.1.4 Endemic and Infestation with Infectious Vectors 

Equilibrium Point   

This is the state when there is endemic and infestation with 

infections vectors in the colony. Here, the honeybee colony is 

already affected by an infection. The equilibrium point is 

given by  
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3.1.5 Endemic and Infestation with Infectious and Non-

Infectious Vectors Equilibrium Point 

This is the state when there is an endemic and infestation with 

infections a non-infectious vector in the colony. The 

equilibrium point is given by 
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3.2 Stability analysis  

The Jacobian matrix of the honeybee and varroa mite system 

(2.2) is given by 
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  (3.24) 

Where  

SdQPJ  211   

SdQPJ  212    

dQNMPJ   2113
 

  dPNMJ 2224
 

 

The stability of each of the equilibrium points is analyzed by 
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finding the eigenvalues of the Jacobian matrix (3.24) 

evaluated at each point. 

3.2.1. Stability of 0E    

The Jacobian matrix (3.24) is evaluated at the trivial 

equilibrium point (3.19). Hence, solving the corresponding 

characteristic equation |J(E0) − λI5)| = 0, where λ is the 

eigenvalue and I5 is the identity matrix of order five, the 

following eigenvalues are obtained: 


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A

AAdA 221
2,1


 , 

  ddd  543 ,,)(   

Now, all the eigenvalues are negative, if 

  221 AAdA   . Hence, the trivial equilibrium 0E  is 

locally asymptotically stable, provided that 

  221 AAdA   . 

3.2.2 Stability of 1E  

The characteristic equation of the Jacobian matrix (3.24) 

evaluated at the disease-free and infestation free equilibrium 

point 1E  is given by |J(E1) − λI5)| = 0, which gives the 

following eigenvalues:  



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



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A

A
d 22

12,1


 ,

   22113 )( AdAd    , 

dd  54 ,)(   

Now, all the eigenvalues are negative, if 
A

A
d 22

1


   

and 12211 )()(  AdAd  . Hence, the 

Disease and infestation free equilibrium 1E  is locally 

asymptotically stable, provided that 
A

A
d 22

1


   and 

12211 )()(  AdAd  . 

3.2.3 Stability of 2E  

The characteristic equation of the Jacobian matrix (3.24) 

evaluated at the disease-free infestation equilibrium point 2E  

is given by |J(E2) − λI5)| = 0, which gives the following 

eigenvalues:  

VdV  3221 ,,    ,  

2

4
,

2

4 3

2

5

3

2

4

VVVVVVVV 



   

Not all the eigenvalues are negative. Hence, the disease-free 

with infestation equilibrium point 2E is unstable. 

3.2.4 Stability of 3E   

The characteristic equation of the Jacobian matrix (3.24) 

evaluated at the endemic and infestation with infectious 

vectors equilibrium point 3E  is given by |J(E3) − λI5)| = 0, 

which gives the following eigenvalues:  

61 U , d2 , U3 , 
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  

Not all the eigenvalues are strictly negative. Hence, the 

endemic and infestation with infectious vectors equilibrium 

point 3E are unstable. 

3.2.5 Stability of 4E   

The Jacobian matrix (3.24) is evaluated at the endemic and 

infestation with infectious and non-infectious vectors 

equilibrium point 4E  hence, solving the corresponding 

characteristic equation |J(E4) − λI5)| = 0 gives one eigenvalue 

and the remaining four eigenvalues are obtainable from 

Where 
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Applying The Routh Hurwitz criterion, the root of (3.25) will 

have negative real parts the Hurwitz matrices satisfy the 

following conditions. 

All the eigenvalues are negative satisfying the Routh Hurwitz 

condition. Hence, the endemic and infestation with infectious 

and non-infectious vectors 
4E equilibrium points are locally 

asymptotically stable. 

3.2.6 Global Stability of Disease-Free and Infestation-Free 

Equilibrium  1E  

Consider the model (2) non-infective and non-infectious sub-

system, it follows as: 

Where,  YXF
dt

dX
,  and of infective and infestation sub-

system     00,,,  XGYXG
dt

dY
 Where 
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3.2.7 Theorem: The disease-free and infestation-free 

equilibrium point,  0,*

1 XE    is globally asymptotically 

stable (GAS) provide the 10 R  (i.e. 1E is locally 

asymptotically stable) and the assumption and below are 

satisfied. 

 1H : For   *,0, XXF
dt
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stable 

 2H : is an M-Matrix and is the region where the model is 

biologically feasible. 

Proof: the model (2), it follows:  RNMX ,,  and 
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Now, if and    0,2 
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Hence the disease-free and infestation-free equilibrium is 

globally asymptotically stable, provided that .1oR  

otherwise it is unstable. 

3.2.8 Global Stability of Endemic and Infestation with 

Infectious and Non-Infectious Vectors Equilibrium Point 4E  

3.2.9 Theorem: The equilibrium point is globally 

asymptotically stable if given a Lyaponov function, the time 

derivative of which is semi-negative definite. 
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Taking the time derivative of, we have  
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At equilibrium, the time derivative of each class is zero. This 

implies that from equation model (2) 
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Now, the equilibrium being the globally minimum of implies 

that NNMM  ** , and .* RR   Therefore from (3.51),

0
dt

dL
 if and only if and. Thus the largest compact 

invariant set in is the singleton set, which is the endemic and 

infestation with infectious and non-infectious vectors 

equilibrium for honeybee with varroa mite colony. Hence, 

 *****

4
,,,, RQPNME  is globally asymptotically stable in 

the region. This completes the prove  

3.3 Basic Reproduction Number 

Considering that there are only two disease classes in the hive 

bees infected by noninfectious vector and hive bees infected 

by infectious vector-virus system model (2.2 c-d), then using 

the notations in the next generation operator method, it 

follows that  
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Therefore the basic reproduction number of the honeybee 

colony system (2.2) is given by.  

          dAdAdAdAMaxR 22212122110 ,

  

IV. SENSITIVITY ANALYSIS 

Sensitivity analysis of basic reproduction number 

Eco-epidemiological sensitivity analysis is an important 

notion that determines the impact of each parameter on 

disease transmission. The normalized forward sensitivity 

indices of 0R  that depends differentially on a parameter P  is 

defined as  

0

00

R

P

P

RR

p 



  

Table 2: Sensitivity Indices of the Basic Reproduction Number 

Parameters Baseline Values Sensitivity Indices 

1  
5105   000000.1  

1A  625 570175.0  

2A  500 048387.0  

1  0.25 008065.1  

2  0.75 048387.0  

d  0.01 016129.0  

  01.0  024194.0  

Sensitivity indices of 0R  

Using where 

      dAdAAR   12211210  

and is any given parameter. Then,  

The result of the sensitivity analysis showed that maximum 

growth of foragers 1 and the transmission rate, 1  are the 

most sensitive parameters to the reproduction number with 

positive sensitivity indices. 

For example, 000000.10

1


R


  means that increasing (or 

decreasing) 1  by 10% increases (or decreases) 
0

R by 10%; 

while means that increasing (or decreasing) 2 by 10% 

decreases (or increases) by 0.24194%. The interpretation of 

the sensitivity indices of other parameters follows a similar 

manner as that of 1  and 1 . 

4.1 Numerical Simulations and results 

 The numerical simulation of the Eco-epidemiological 

model was carried out by Maple 18.0 software using direct 

substitution methods to show the results model of the 

P
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equations, the global stability of the equilibria, and the effects 

of parameters like the effect of social inhibition S 

disinfestation, transmission rate and recovered. We used some 

of the parameter values compatible with varroa mite disease 

as given in Table3: below, and by considering the initial 

conditions:  

Table 3: Parameter Values used in the model 

Parameter Value Sources 

1A  625  13  

2A  500  13  

1  
5105    2  

2  
5105    2  

d  01.0   9  

  14.0  Assumed 

1  25.0   4  

2  75.0   4  

  0.01 Assumed 

4.2 Recommendation 

The efforts such as social inhibition (σ2) and disinfestation (α) 

that enhance the recovery of hive honeybee species from 

infection and infestation in the ecosystem should be 

encouraged. 

4.3 Contributions to Knowledge 

The contributions of this study to the existing body of 

knowledge are as follows:     

1. The formulations and analysis of a new eco-

epidemiological model for varroa mite disease spread 

in honeybee colonies by incorporating the 

recovery/removal of infected hive honey bees 

population due to immunity. 

2. The establishment of conditions that will prevent the 

extinction of hive and forager honeybees populations 

in an ecosystem where there are epidemics to ensure 

a disease-free state.  

Results 

 

Fig. 1: Plot of the numerical solution of the model showing the behavior of all 

compartment 

 

Fig. 2: Plot of the effect of transmission rate, 1 on the susceptible hive 

 

Fig. 3:   Effect of transmission rate, 1 on the hive bees infested by 

infectious vectors 

 

Fig. 4: Plot of the effect of transmission rate, 2  on the susceptible forager 

bees 
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Fig. 5: Plot of the effect of transmission rate, 2  on the hive bees infested 

by non-infectious vectors 

 

Fig. 6: Plot of the effect of disinfestation rate,   on the hive bees infested 

by non-infectious vectors 

 

Fig. 7: Plot of the effect of disinfestation rate,   on the hive bees infested by 

infectious vectors 

 

Fig. 8: Plot of the effect of disinfestation rate,   on the Recovered class 

 

Fig. 9: Plot of the effect of social inhibition, S on the susceptible hive bees 

 

Fig. 10: Plot of the effect of social inhibition, S on the hive bees infested by 

infectious vectors 
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Fig. 11: Plot of the effect of social inhibition, S on the recovered class 

3.8 Discussion of Results 

From the numerical simulation that was carried out on the 

eco-epidemiological model, it was observed from (Figure 2): 

the effect of transmission rate was investigated on the 

susceptible hive bees. The plots showed that the population of 

susceptible hive bees decreased with time as the transmission 

rate 1 increased. Also, from (Figure 3): the effect of 

transmission rate was investigated on the plot showed that the 

population increased with time as the transmission rate 

increased.  

From Figures (4 and 5): the effect of transmission rate 2 was 

investigated on the susceptible forager bees and, the plot 

showed that the population of susceptible forager bees and 

hive bees infested by non-infectious vectors decreased with 

time as the transmission rate 2 increased. 

From Figures (6 and 7): the effect of the disinfestation rate 
was investigated and, the plot showed that the population of 

hive bees infested by infectious vectors and hive bees infested 

by non-infectious vectors decreased with time as the 

disinfestation rate  increased. 

Conversely, in Figure (8): the effect of disinfestation rate,  

was investigated on the )(tR  Recovered/Removed hive bees, 

the plot showed that the population of )(tR  

Recovered/Removed hive bees increased with time as the 

disinfestation rate  increased. 

From Figures (9 and 10): the effect of social inhibition was 

investigated on the susceptible hive bees )(tM and hive bees 

infested by infectious vectors, the plot showed that the 

population of susceptible hive bees and hive bees infested by 

infectious vectors )(tQ decreased with time as the social 

inhibition S increased. 

Finally, Figure (11): the effect of social inhibition, S  was 

investigated on the )(tR  Recovered/Removed hive bees, the 

plot showed that the population of )(tR  Recovered/Removed 

hive bees undergoes some stability in their increased with 

time as the social inhibition S increased. 

3.9 Conclusion 

In this work, an eco-epidemiological model of the honeybee 

with varroa mite interacting populations has been studied. 

Qualitative and quantitative analyses were carried out on the 

formulated model to provide insights into the behavior of the 

honeybee colony system in the presence of varroa mite 

disease with recovery class. The well-posedness of the model 

has been established by using the basic theory of positivity 

and boundedness solutions. Further, five equilibria (such as 

trivial, disease-free and infestation free, disease-free with an 

infestation, endemic and infestation with infectious vectors, 

and endemic and infestation with infectious and non-

infectious vectors) were derived. 

Investigation of the local stability of the equilibrium points 

was determined using the Jacobian matrix with the Routh-

Hurwitz criterion. Also, global stability analysis of the 

equilibria was investigated. The impacts of some parameters 

of the model were also investigated through sensitivity 

analysis, revealed that the maximum growth rate of foragers, 

σ1 and the transmission rate β1 are the most sensitive 

parameters with positive indices, while σ2 and α have negative 

indices. Moreover, the numerical simulations showed that an 

increase in the transmission rates β1 and β2 decreased the 

populations of the susceptible hive and forager bees, but 

increased the populations of hive bees infested by both 

infectious and non-infectious vectors. 
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