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Abstract: This paper introduces the Weighted Inverse Weibull 

distribution as inverse weighting of the Inverse Weibull 

distribution. Its various basic statistical properties were explicitly 

derived and the method of maximum likelihood estimation was 

used in estimating the model parameters. The model was applied 

to two real life data sets and its performance and flexibility was 

assessed with respect to existing distribution using the log-

likelihood and Akaike Information Criteria as basis for 

judgment. 
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I.  INTRODUCTION 

he exponential distribution has been considered in 

literature to be effective to analyse lifetime data as a 

result of its analytical tractability. Although, one-parameter 

exponential distribution has a lot of interesting properties such 

as memoryless; one of the major disadvantages of this 

distribution is that it has a constant hazard function. 

Moreover, the graph of its probability density function (PDF) 

is a decreasing function. As a result of this reason several 

generalizations and weighting of the exponential and Weibull 

distributions have been developed in the literature. For 

instance, generalized exponential (GE) distribution as 

considered by Gupta and Kundu, (2000) is different extension 

from the exponential distribution. The generalized exponential 

distribution has increasing or unimodal PDFs, and monotone 

hazard functions Kanpur, (2015). 

Weighted distribution theory gives unified approach to 

dealing with problem of specifying an appropriate and 

effective distribution, when the existing distribution is not 

suitable to capture the entire behaviour of a data set. The 

concept of weighted distribution was introduced by Fisher 

(1934) and latter put in unifying form by Rao (1965). Let X 

denote a non negative continuous random variable with its 

probability density function  f x , then the probability 

density function of the weight random variable  wf x  is 

given by  

 
   

w

D

w x f x
f x

w
  

where  w x is the weight function and  

   
0

Dw w x f x dx



   

A random variable x is said to have an Inverse Weibull 

distribution with parameters &   if its PDF and CDF are 

given respectively by: 
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II. THE WEIGHTED INVERSE WEIBULL (WIW) 

DISTRIBUTION 

Let X denote a continuous random variable, considering the 

weight function   1w x x and the two-parameter 

Inverse Weibull distribution as given in equation 1 and 2, then 

the pdf and cdf of the Weighted Inverted Generalized 

Exponential distribution are: 
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and 

1
1 ,
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and  is a scale parameter and α is the shape parameter 

Derivative of WIW Distribution 
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where  f x is pdf of IW and    
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Let t x    then
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 Equation 6 is the pdf of the Weighted Inverse Weibull 

distribution. 

Its associated CDF is obtained as follows: 
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Proof of validity of WIW Distribution 

For the PDF to be valid, it suffices that;  
0

1wf x dx
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Figure 1: Plot of probability density function of WIW distribution 

The plot in Figure 1 show that the shape of the WIW 

distribution is unimodal (inverted bathtub) and decreasing 

shapes depending on the value of the shape parameter. 
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2.1 Reliability Analysis 

Survival Function: The Survival function is given by: 
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Hazard function: The Hazard function is also given by:  
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2.2 Moment of WIW Distribution 

The moment of distribution is very important, it will help us 

to determine the mean, dispersion, coefficients of skewness 

and kurtosis. The kth moments of a non negative random 

variable X is defined as 
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The Mean, Variance, Coefficient of Variation (CV), 

Coefficient Skewness (CS) and Coefficient Kurtosis (CV) are 

derived as follows: 
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2.3 Moment Generating Function of WIW Distribution 

Following (Cordeiro, 2011) the expression for moment 

generating function is given as 
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The moment generating function is the expected value of 

exponential function of tX, i.e, the moment generating 

function of random variable X is given as: 
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and  rE X is defined in 13 above, then 

 
0

1

! 1
1

r

rn

x

r

r

t
M t

r

 








   
  
  

  
   
   


 20 

2.4 Parameter Estimation of WIW distribution 

The Estimation of Weighted Inverse Weibull distribution is 

obtained using the Method of Maximum Likelihood 

Estimation (MLE). The formula of MLE contains the 

unknown parameters of the distribution. The values of these 

parameters that maximize the sample likelihood are known as 

the ML estimates (Elgarhy, 2017)  
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Let 
1 2, ,..., nx x x  be a random sample of size “n” from 

Weighted Inverse Weibull distribution defined in equation (3) 

and (4), the Likelihood function ( / , )L x   is given by 
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Differentiating equation (21) with respect to α  

 

1

1
1

n

i

n
dl

x
d

 

 





 
 

  
  22 

Differentiating equation (21) with respect to   
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Setting equation (22) and (23) to zero and solving the 

resulting non-linear equations simultaneously will give the 

maximum likelihood estimates of parameters  and  .  

III. APPLICATION TO DATA SETS 

The application to real life data sets of the Weighted Inverse 

Weibull Distribution is provided. The performance of the 

WIW distribution was compared with that of existing Inverse 

Weibull distribution using log-likelihood and Akaike 

Information Criterion as selection criteria. The distribution 

that corresponds to the highest log-likelihood value and 

lowest AIC value is selected as the best for the data set used. 

Data Set I: The first data set has been previously used by Lee 

and Wang (2003).The data represents the remission time 

(months) of a random sample of 128 bladder cancer patients. 

Table 2:  Summary of Remission time (Months) of Cancer Patient’s 

N mean Med. Var. Skewness Kurtosis 

128 9.365 6.395 110.433 3.286 18.483 

 

 

 

3:  Analysis of the performance of the competing distributions on 
Remission time (Months) of Cancer Patients 

Models Estimates LL AIC 

WIWD 

6.20806(0.32313)

0.44408(0.03869)












 

-428.6478 861.2956 

IWD 

 2.43039(0.21867)

0.75207(0.04243)












 

-443.9773 891.9547 

Data Set II for WIW & WR Distributions 

The second data set has been previously considered by 

Alqallaf et al, (2015).  

The data set represents waiting time before being served of 

100 bank customers 

Table 5: Summary of waiting time before being served of bank Customers 

N Mean Med. Var. Skewness Kurtosis 

100 9.877 8.100 52.3741 1.4727 5.5403 

Table 6:  Analysis of the performance of the competing distributions 

Models Estimates LL AIC 

WIWD 

8.92778 (0.80856)

0.76940(0.07370)












 

-327.8677 659.7354 

IWD 

6.53228(0.87686)

1.16291(0.0799)












 

-334.3810 672.7620 

Remark: From Table 3, the WIW distribution has the highest 

log-likelihood value and the lowest AIC value, therefore, it 

can be concluded that it fits the data set better than the Inverse 

Weibull distribution. 

IV. CONCLUSION 

The Weighted Inverse Weibulll distribution has been 

successfully derived. The model has unimodal (inverted 

bathtub) and decreasing shapes (depending on the value of the 

parameters). Explicit expressions for its basic statistical 

properties such as reliability analysis, Moment and Moment 

Generating Function have been successfully derived. The 

Weighted Inverse Weibull distribution exhibits unimodal and 

decreasing failure rates, this implies that the distribution will 

be suitable to describe and model real life phenomena with 

unimodal or decreasing failure rates. In the real life 

application considered, the proposed Weighted Inverse 

Weibull distribution performs better than the existing Inverse 
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Weibull distribution; hence, it is a good and competitive 

distribution. 
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