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Abstract: The practice of finding instances of semantic objects of 

a certain class, including people, cars, and traffic signs, in digital 

photos and videos is known as object identification or detection. 

Due to the development of high-resolution cameras and their 

widespread usage in everyday life, the detection is one of the 

most difficult and rapidly expanding study fields in computer 

science, particularly in computer vision. For automatic object 

recognition, several researchers have experimented with a 

variety of techniques, including image processing and computer 

vision. In this research, we employed a deep learning based 

framework YOLOv3 using Python, Tensorflow, and OpenCV to 

identify objects in real time.  We do a number of tests using the 

COCO dataset to verify the effectiveness of the suggested 

strategy. The results of the experiments show that our suggested 

solution is resource and cost effective since it uses the fewest 

frames per second. 

Index Terms: Object recognition, Realtime, YOLOv3, Tensor- 

flow, COCO dataset 

I. INTRODUCTION 

ver the past several years, object detection has had a 

significant impact on how the world has adapted to artifi-   

cial intelligence. Real-time object detection is essential in 

autonomous systems that are Computer Vision (CV) capable. 

Its precision and speed are equally crucial for ensuring reliable 

functioning. Although object recognition for static images has 

been extensively investigated, real-time object detection 

presents a number of distinct difficulties, including motion 

blur produced on by moving objects, focusing issues, and real- 

time speed limitations for autonomous agents. Real-time object 

identification, however, also creates fresh opportunities that 

may be taken advantage of. The key findings is that when it 

comes to image scaling, accuracy and speed should not always 

be traded off. Our findings demonstrate that occasionally real- 

time object recognition accuracy is improved by downscaling 

the image to a lower resolution. Future autonomous agents 

like self-driving vehicles, drones, and robots need real-time 

object detection as a crucial building component for visual 

cognition. Therefore, it is crucial for the detectors to be quick 

and precise in order to construct systems with trustworthy 

performance. Real-time object detection is becoming more and 

more necessary, and automated feature analysis has generated 

a lot of interest in object recognition methods. The ability      

to identify moving objects in live streaming is essential for      

a range of computer vision topics that are now of interest. 

Deep learning-based object identification techniques includ- 

ing Region-based Convolutional Neural Networks (R-CNN), 

Spatial Pyramid Pooling Networks (SPPNet), Region-based 

Fully Convolutional Networks (R-FCN), and You Only Look 

Once (YOLO) outperform more established techniques. One 

of the quickest object detection techniques, YOLO has been 

enhanced since it was first presented, including YOLO-V1, 

YOLO-V2, and YOLO-V3. It has good real-time performance 

and high accuracy. In order to further deepen the network 

layer and achieve a breakthrough in accuracy, YOLO-V3 

makes advantage of the residual structure. Running on the 

robust GPU platform has allowed YOLO and its upgrades to 

achieve excellent accuracy and quick speed. Tinier-YOLO is 

utilized to minimize the model size while obtaining increased 

detection accuracy and real-time performance, resulting in a 

more effective object identification model for confined 

situations that was derived from Tiny-YOLO-V3. In order to 

make the model smaller, Tinier-YOLO reduces the amount of 

model parameters. This seeks to extract certain object type 

info from image datasets. To address the issues with real-time 

object detection, the object detection model YOLO-V3 using 

Python, Tensorflow, and OpenCV for image processing and 

discussion of findings was presented. Darknet-53, a backbone 

also created by the YOLO founders Joseph Redmon and Ali 

Farhadi [1], is used by YOLOv3. Darknet-53 is more potent 

than Darknet-19 and more effective than rival backbones since 

it uses 53 convolutional layers as opposed to the preceding 19 

layers (ResNet-101 or ResNet-152). Figure 1 shows the layerd 

architecture of YOLOv3. 

When compared to other classification methods, the YOLO 

algorithm is quicker. Although the YOLO algorithm has 

localization flaws, it anticipates fewer false positives in the 

background. 

These algorithms are not adequately validated with data sets 

that were randomly collected; instead, they were trained using 

academic data sets like ImageNet, COCO, and VOC. Images 

taken in a real setting typically include the following problems: 

1. The photographs may be captured blurry due to the 

camera’s instability.  

2. The photos may also not be sufficiently clear if the 

item is blocked.  

3. The photographs might be of inferior quality due to 

inadequate lighting, overexposure, or low resolution. 

The rest of the paper is organized as follows: SectionII pro- 

O 



International Journal of Research and Innovation in Applied Science (IJRIAS) |Volume VII, Issue VIII, August 2022|ISSN 2454-6194 

www.rsisinternational.org                                                                                                                                                    Page 61  

vides an overview of existing works related to our methodolo- 

gies. SectionIII discusses the proposed machine learning based 

YOLO framework. Next, SectionIV illustrates and analyzes 

 

Fig. 1: YOLOv3 layer architectures 

the experimental result from our machine learning models. 

Finally, SectionV gives a brief conclusion and future research 

directions in this field of research. 

II. RELATED WORK 

YOLO is employed in many applications because of its 

higher object recognition performance and usability, however 

there are still issues with real-time video object detection that 

have been the subject of several research. 

A real-time embedded pedestrian detection system was also 

suggested by Jin et al. [2]. The suggested method combined 

MobileNet with YOLO, and it was run on the Jetson TX2 

machine. An enhanced YOLO network was suggested by 

Chen et al. [3]. To lessen the complexity of computing in 

embedded devices, the suggested technique quantified the 

network parameters and customized the YOLOv3-tiny network 

layer structure. 

Additionally, research has been done on how to implement 

YOLO’s object detection function in hardware with less re- 

sources. On non-GPU systems, Md. Bahar Ullah presented 

CPU Based YOLO [4], a real-time object detection paradigm. 

Sparse-YOLO [5], which is based on hardware/software co- 

design of an FPGA accelerator for YOLOv2, was proposed   

by Wang et al. 

The You Only Look Once v2 (YOLOv2) technique is one of 

the unified pipeline framework-based approaches that 

researchers have presented in recent years [6]. Anchor boxes 

are used by YOLOv2 to forecast bounding boxes and enhance 

convergence and avoid overfitting, while batch normalization 

boosts recall. Other developments that improve detection ac- 

curacy include a high-resolution classifier, direct position pre- 

diction, dimension cluster, and multi-scale training. A shallow 

real-time detection method based on the YOLOv2 method was 

recently proposed by Pedoeem and Huang [7]. Their method 

reduces the size of the input image by half in order to speed up 

detection and eliminates batch normalization of shallow layers 

in order to reduce the number of model parameters. 

Juan Du’s Understanding of Object Detection Using CNN 

Family and YOLO. They generally discussed object detection 

families such CNN and R-CNN in this study, compared their 

efficacy, and presented the YOLO technique to improve it [8]. 

Matthew B. Blaschko’s Learning to Localize Objects using 

Structured Output Regression. The topic of this essay is object 

localization. To get around the limitations of the sliding 

window approach, they adopted the bounding box method for 

object localisation in this [9]. 

The Fast YOLO approach, developed by Shafiee et al., uses 

an evolutionary deep intelligence framework to provide an 

efficient network architecture when applied to embedded 

devices [10]. The motion-adaption inference framework may 

utilize the optimized network architecture to accelerate the 

detection process and, as a result, lower the embedded device’s 

energy consumption. In order to estimate multi-class 3D boxes 

in Cartesian space for detecting RGB pictures, Simon et al. 

devised the complex-YOLO approach [11]. The authors claim 

that this method significantly increases the speed of 3D object 

identification. 

The Single Shot MultiBox Detector (SSD) approach [12] 

was created by Liu et al. to identify items of various sizes     

by creating multi-scale feature maps. This approach carefully 

balances detection speed and accuracy, however in the shallow 

layer, the feature map’s expressive power is insufficient. Fu et 

al. have suggested the Deconvolutional Single Shot Detector 

(DSSD) approach [13] to increase the expression ability of 

shallow feature maps. This method utilizes a skip connection, a 

deconvolution layer, and the ResNet extraction network (which 

produces superior features) [14]. 

A novel SSD approach based on the feature pyramid has 

been presented by Qin et al. to increase the detection accuracy 

of the SSD method for tiny objects [15]. Their approach 

widens the convolution network to learn low-level location 

information while using a deconvolution network at the top   

of the feature pyramid to extract semantic information. To 

increase the accuracy of finding tiny items, their technology 

builds a multi-scale detection framework. In order to increase 

the detection accuracy for small objects, Redmon and Farhadi 

have suggested adopting the YOLOv3 approach for binary 

cross-entropy loss for class predictions [16], which uses scale 

prediction to forecast boxes at various sizes. 

III. METHODOLOGIES 

A. YOLO Architecture 

Object identification is regarded as a regression problem   

by the YOLOv3 approach. With a single feed-forward con- 

volution neural network, it directly predicts class probabilities 

and bounding box offsets from entire pictures. In order to 

create a real end-to-end detection system, it totally does away 

with feature resampling and region proposal creation and 

incorporates all phases into a single network. The input image 

is divided into S × S tiny grid cells via the YOLOv3 algorithm. 

The grid cell is in charge of detecting the object if the center of 

the object falls inside the grid cell. Each grid cell calculates 
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the objectness scores related to the B bounding boxes and 

forecasts the location information of the boxes. These results 

may be achieved for each objectness score: 

 

whereby  is the objectness score of the  th bounding box in 

the  th grid cell.  ( Object ) is merely a function of the 

object. The  reflects the anticipated box and the 

ground truth box's intersection over union (IOU). Binary 

cross-entropy of anticipated objectness scores and true 

objectness scores is one of the loss functions used by the 

YOLOv3 approach. It may be said in the following way: 

 

whereby  is the number of grid cells of the image, and  is 

the number of bounding boxes. The  and  are, 

respectively, the projected abjectness score and the truth 

abjectness score. The position of each bounding box is based 

on four predictions: , on the assumption that 

 is the distance the grid cell is displaced from the 

image's top left corner. The top left corner of the image is 

displaced from the center of the final anticipated bounding 

boxes by . Those are computed as follows: 

 

whereby  is a sigmoid function. The width and height of 

the predicted bounding box are calculated thus: 

 

whereby  are the bounding box's preceding width and 

height. By using dimensional clustering, they are obtained. 

The ground truth box consists of four parameters  

and , which correspond to the predicted parameters 

 and , respectively. Based on (3) and (4), the truth 

values of  and  can be obtained as follows: 

 

The square error of coordinate prediction is one of the loss 

functions used by the YOLOv3 algorithm. It may be said in 

the following way: 

 

Initially, the YOLOv3 algorithm divides a picture into a grid. 

Each grid cell foretells the presence of a specific number of 

boundary boxes (also known as anchor boxes) around items 

that perform well in the aforementioned predetermined 

classifications. Only one item is detected by each border box, 

which has a corresponding confidence score indicating how 

correct it expects that prediction to be. The ground truth 

boxes’ dimensions from the original dataset are clustered to 

identify the most typical sizes and shapes before being used to 

create the border boxes. YOLO is taught to do classification 

and bounding box regression simultaneously, unlike systems 

like R-CNN and Fast R-CNN. The diagrammatic 

representation figure 2, illustrates a solution model to a given 

problem. 

 

Fig. 2: Flow diagram of the YOLO framework 

B. System Design 

      We get data for our system from the camera. Following 

the frame separation and picture pre processing, the input 

video data is then collected. Following the pre processing, a 

standard scale is measured and the data is entered into the 

YOLO framework. The COCO dataset is then compared to 

the marked object data, and an object score is calculated. The 

item is then recognized with the appropriate frame size after 

being categorised using class confidence. The result displays 

the detected item together with the appropriate confidence 

level and frame. The diagrammatic representation of the 

system is delineated in figure 3. 

 

Fig. 3: System Diagram 
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IV. EXPERIMENTAL RESULTS 

      The performance and analysis of the experiment were its 

most crucial components. This section details how our tests 

went, and the analytical data are also outlined in detail here. 

Through output figure 4 analysis and graphical comparison, 

the analytical result is displayed. 

      We can see in the image above that the system is 

identifying every conceivable object that is present in the 

input image. Additionally, the FPS (frames per second) is 

displayed on the image’s side. Given that it is relatively low, 

the FPS is excellent. And our original strategy for real-world 

object detection with a low frame rate is successful. With the 

label frame and confidence level in the image above, an object 

has been correctly identified. 0.451 frames per second (FPS) 

is the average. 

 

Fig. 4: Results obtained the camera view 

Figure 5 is graphically displaying performance comparison 

for Yolo-v3, Inception, and Faster RCNN. We can observe that 

because it is quite high and far to the left, YOLOv3 is good. 

YOLOv3 operates far more quickly than competing detection 

techniques of equivalent capability. 

 

Fig. 5: comparison of Yolo-v3 and others 

 

IV. CONCLUSIONS AND FUTURE WORK 

We propose a detailed investigation of the potential for 

YOLOv3 to enhance both speed and accuracy with a low 

frame rate in video object recognition given the significance 

of real-time object detection. The trained item produced good 

detection and tracking results, and this model may be used in 

other contexts to find, follow, and react to the targeted objects 

in the video surveillance. Increasing the scope of the 

investigation to look for weapons and ammunition to raise the 

alert in the event of a terrorist attack. Additionally, more effort 

is required to evaluate and speed up the performance of the 

current classifiers. 
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