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Abstract:Severe Acute Respiratory Syndrome is the primary cause of the current pandemic coronavirus disease (COVID-19). 

The first case was reported in Wuhan, China, on December 30th, 2019 with the first case on 13thMarch, 2020 in Kenya. This 

contagious disease has become a global issue because it has resulted in millions of deaths, economic disruption leading to loss 

of employment and economic instability. Researchers have fitted time series models but using a short data length and without a 

transition. There was therefore a need to model a longer data period of daily COVID-19 cases with a transition in Kenya using 

theAutoregressiveIntegrated Moving Average (ARIMA) model and forecast. Secondary data from the World Health 
Organization from 13thMarch, 2020 to 30thApril, 2023 was analyzed using R software. The data was found to be non-stationary 

using the Augmented Dickey Fuller test and regular differencing was done to make it stationary. The Box-Jenkins methodology 

was used to fit the model of the data and afterwards forecasting was done. The ARIMA (3,1,2) was selected as the best model 

since it had the least Akaike Information Criterion and Bayesian Information Criterion among the possible models. Model 

validation using test data was done by comparing the MAE, and RMSE of the model’s forecasts and it was the best amongst the 

possible models with MAE = 2.77 and RMSE =2.88. The model was fitted to the daily COVID-19 data and forecasting was 

then done for ninety days into the future. 
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I. Introduction 

The novel coronavirus disease, named COVID-19 by the WHO on February 11th, 2020, is a contagious disease caused by a 

Severe Acute Respiratory Syndrome Coronavirus 2 known as the SARS-CoV-2 virus. This virus is from the large family of 

coronavirus (CoVs) which cause Severe Acute Respiratory Syndrome (SARS). 

The name SARS-CoV-2 was adopted after the genetically related SARS-CoV by the International Committee on Virus 

Taxonomy on February 11th, 2020. WHO uses COVID-19 to refer to SARS-CoV-2 to avoid confusion with the SARS disease 
which sounds almost the same.PolymeraseChain Reaction (PCR) reversetranscriptase is used to confirm the presence of the 

virus in an individual. Most of the infected people experience minimal to moderate symptoms and fully recover with no 

treatment. However, some experience severe symptoms and require medical consultation. Older people and those having 

underlying conditions have a higher chance of developing this illness but any individual can be infected with COVID-19 

despite their age. Symptoms appear in five to six days on average, but it can take up to fourteen days for a person to become 

infected with the virus [12]. 

Frequent mild signs and symptoms include a high fever, cough, exhaustion, and loss of taste or smell while other mild 

symptoms include; sore throat, headache, aches and pains, diarrhea, a rash on the skin, discoloration of fingers or toes, and red 

or irritated eyes [22]. Patients with severe symptoms like breathing difficulty or shortness of breath, loss of speech or mobility 

and chest pain are advised to consult a doctor. The constant evolution of SARS-CoV-2 is a fact that cannot be disputed. Since 

the start of the pandemic, a number of notable variants have emerged which are, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), 

Delta (B.1.617.2) and Omicron (B.1.1.529) [10]. 

The virus can spread from an infected person’s mouth in minute droplets [11]. Then one can catch the virus by breathing 

them in or by touching their eyes, nose, or mouth after touching a contaminated surface. This virus spreads in enclosed spaces 

and more rapidly in open spaces especially when the virus is in the air and there is wind blowing [7]. 

The number of confirmed positive cases were usually recorded on a daily basis and made available for researchers to analyze 

and find its characteristics as secondary data [23]. Time series models are usually fitted to data recorded over a period of time. 

Time series data is said to be stationary when there is no systematics change in mean and variance or non- stationary when it 

contains trend, seasonality, cyclic effect or a combination of any of these components. 

When using non-stationary data, differencing is done to make the data stationary which results to an ARIMA model. The 

general ARIMA model is simply the ARMA model including the differencing part to make the time series data stationary. 
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Researchers have fitted most of time series models to the COVID-19 data then forecast the COVID-19 cases but they can be 

easily affected by overfitting. ARIMA model is the most fitted model but the aims of different researchers might be different. 

Globally, the COVID-19 pandemic is one of the most dangerous diseases to world public health, posing an unsettling 

scenario with more than six million deaths. The negative impacts of COVID-19 did not spare the Big 4 agenda and the SDG’s 

in Kenya. In previous studies, most researchers analysed the COVID-19 data then forecasted the disease cases using ARIMA 

models in Kenya. However, data over a long period of time with a transition point has not been analysed using an ARIMA 

model in Kenya. 

Forecasting is simply using historical COVID-19 data to predict or estimate the future values. In this study, the ARIMA 

model is fitted to the daily COVID-19 data with an aim of estimating the best model that will fit the data then use the model to 

forecast for future 90 days. 

II. Method And Analysis 

A. Source of Data 

The target population comprised of the total number of COVID-19 positive cases in Kenya which was recorded from March 

2020 to April 2023. These secondary data was sourced from the WHO’s website and was analyzed using R software. 

B. ARIMA Model Formulation 

1) Autoregressive (AR) Model:An autoregressive model is where the current observation can be written as linear 

combination of its p past observations together with the white noise (error terms). It is useful for prediction and inferencing. A 

process Xt is said to be an auto-regressive process of order p denoted by AR(P) if 

1 1 2 2 ...t t t p t pX X X X          (1) 

2) Moving Average (MA) Model: The MA model, also known as the MA process is a basic time series model which is 
finitely stationary and is mostly used to model univariate time series data. We can generally say that it is a linear combination of 

present and past values of a white noise error term. A process Xt is said to be a moving average process of order q denoted by 

MA(q) if 

0 1 1 2 2 ....t t t t q t qX e e e e           (2) 

3) Autoregressive Moving Average (ARMA) Model: This is a mixture of two models, the AR and MA models. Both the 

past observations and unexpected errors are considered. It was majorly introduced because it reduces the number of parameters 

used and it is defined by ARMA (p, q) where p and q are the orders of the AR and MA models respectively [6]. It can be written 

as 
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4) Stationarity: A time series is said to be stationary if it has no systematic change in the mean i.e no trend, no systematic 

change in variance (homoscedasticity) and if there are no periodic variations. One way to check for stationarity is by observing 

the time plot and the correlogram [9]. The ADF is also used to test the stationarity of data and it test ensures to reject the null 

hypothesis (the time series is not stationary) since it assumes that the process is not stationary. For this to be achieved, the p-

value should be less than the level of significance hence the inference to be made will be that the process is stationary.  

5) Differencing: If a time series is not stationary, it can be made stationary by differencing. This was done by subtracting 

one value from another successive value once to achieve stationarity. According to [14], when differencing is used to account 

for trend it is known as regular differencing and when it is used to account for seasonality it is known as seasonal differencing. 

6) Autoregressive Integrated Moving Average (ARIMA) Model: To remove the parameters causing non-stationarity we 

perform differencing [24].  An ARMA model when subjected to differencing becomes an ARIMA (p, d, q) model where (p, d, 

q), explains the order of the model. According to[18], ARIMA (p, d, q) model is used on the non-seasonal data to predict future 

values based on past observations only. 

Where; 

p is the order of the AR model 
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d is the order or the number of differencing  

q is the order of MA model. 

The model is 
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Where Wt= ▽(d)Xtis the difference 

C. Box Jenkins Methodology 

This method was majorly used for model identification, estimation and prediction [8]. The procedure was as follows; 

1) Model Identification: 

i.Data Preparation: A time series plot was plotted and data transformation using logarithm was performed to ensure variance 

stability. Test for stationarity was done and differencing was done once and data was stationary. 

ii.Model Selection:During this stage, ACF and PACF were plotted to identify the appropriate models. The Akaike 

Information criterion (AIC) and the Bayesian Information criteria (BIC) estimates the quality of each model and the model with 

the least value was selected and assumed to be the best model. 

Akaike Information Criterion:Given a set of models, it provides a means for selecting models as it estimates the quality of a 

model compared to the others. It ensures that the selected model is generalizable, and offers a balance between goodness of fit 

and parsimony.The model with the least AIC value is selected as the best model. 

Bayesian Information Criterion: It was introduced by [19] for independent and identically distributed observations and linear 

models whose likelihood was assumed to be from the exponential family. It seeks to find the perfect model by strictly 
penalizing models with many parameters.BIC is majorly used in finite models and the model with the lowest or the smallest 

BIC is considered to be the best one [16]. 

2) Parameter Estimation: Estimation of parameter values will be done using the Maximum Likelihood Estimator method 

[17]. This is because it is the most suitable and feasible method as there will be the error terms which can be classified as 

missing/unobserved data. Hence the likelihood can be easily obtained. Considering the daily COVID-19 cases, e.g X1, X2, X3, 

..., Xn is from a density function f (x, θ) where θ is the unknown parameter. The likelihood function was given by; 

L(θ)=
1

( , )
n

i

i

f x 


      (5) 

3) Diagnostic checking:In this step, there was checking and testing whether the model is adequate. 
IfthemodelwiththelowestAICandBICandalsohasnormallydistributedresiduals then it was selected as the best model. The 

residuals’ autocorrelation was testedusing the Ljung-Box test in which if the p-value was less than 0.05, then thenull hypothesis 

that there is no autocorrelation was to be rejected.The Ljung-Box test is used to test the presence of 

autocorrelationintheresidualsofamodelhencetestingthegoodnessofamodel[20]. 

4) Forecasting: The best selected model was then to be used to forecast the future COVID-19 cases. In case the model 

was found to be inadequate in step 3 for some reasons, the researcher was then to proceed to construct and test the ARIMA 

model again until a satisfactory model is found. 

D. Checking the Selected Model’s Accuracy 

Forecast accuracy also known as the forecast error is the difference between actual cases and forecasted cases [21]. The 

methods of Root Mean Squared Error and Mean Absolute Error were used to check the accuracy ofCOVID-19 forecasted 

number of cases because it is measured in the same units as the variables [5].They are calculated using the following formulae, 

 

MAE=(6) 
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Where, 

Xi = the actual number of cases 

Xˆi= the forecasted number of cases 

p= the number of observed COVID-19 cases 

III.Results And Discussion 

In this section, we discuss the results of the estimated ARIMA model and its accuracy in forecasting the model. The following 

is the time series plot of the data. 

 

Fig. 1.Plot of COVID-19 cases. 

 

Fig. 2.ACF and PACF plot of COVID-19 cases. 

The slow decaying pattern of the ACF showed that the time series was non-stationary. The data had significant positive 

correlations and therefore the time series data was not random since there were many non-zero spikes in the ACF plot. Since the 

data revealed that it had different variances in Fig.1, log transformation was applied to the data to stabilize the variance.  
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Fig. 3.Plot and Histogram of log-transformed COVID-19 cases. 

Both the plot and the histogram showed that the variance of the data had been stabilized. 

A. Testing for Stationarity 

The ADF test was done to confirm whether the data was stationary hence the need for differencing or not. In the results, p-

value = 0.1141 which was greater than 0.05 hence the null hypothesis that the data is stationary was not rejected indicating that 

the data was non-stationary and therefore differencing was required. Differencing was done and the following are the plots of 

the resulting log-differenced data. 

 

Fig. 4.Plot, ACF and PACF of log-differenced COVID-19 cases. 

 

Fig. 5.Histogram of log-differenced COVID-19 cases. 
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After differencing, the COVID-19 cases had a stable variance and constant mean. ADF test was carried out again to evaluate the 

data’s stationarity and the result was a p-value = 0.01 hence the null hypothesis that the data was not stationary was rejected 

indicating that the data was stationary after 1st differencing. 

B. Fitting the ARIMA Model 

The model was fitted by generating the possible ARIMA models of the data picked from the ACF and PACF plots of the log-

transformed data and the results were as shown in TableI. 

Table I. Possible ARIMA models 

ARIMA Order AIC BIC RMSE 

(1,1,1) 1680.07 1694.759 0.5636 

(1,1,2) 1675.17 1694.761 0.5617 

(2,1,1) 1672.25 1691.837 0.5608 

(2,1,2) 1605.70 1630.185 0.5416 

(3,1,1) 1668.03 1692.514 0.5590 

(3,1,2) 1583.18 1612.558 0.5349 

ARIMA(3,1,2) was selected as the best model since it was the model with the least AIC, BIC and RMSE values.  These 

results implied that the parameters of the ARIMA model were as follows, 

p = 3 (order of AR model) 

d = 1 (order of differencing)  

q = 2 (order of MA model) 

C. Diagnostic Checking 

The residuals of the ARIMA (3,1,2) were tested using Ljung-Box test and the results were that the residuals had no auto-

correlation hence independent from each other. This was deduced from the resulting p-value of 0.2561 which was greater than 

5% level of significance which meant that there was no autocorrelation in the residuals as the null hypothesis that the residuals 

had no autocorrelation was not rejected. 

 

Fig. 6.  ACF and PACF plots of ARIMA(3,1,2) residuals 

The above figure is the ACF plot of the ARIMA(3,1,2) residuals. Although the ACF did not indicate perfect non 

autocorrelation, the Ljung-Box test proved that the there was no autocorrelation in the residuals. 
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Fig. 7.  Histogram and Q-Q plots of ARIMA (3,1,2) residuals 

The histogram above and the Q-Q plot indicated that the residuals were normally distributed and hence confirmed that the 

model was a good fit to the data. 

D. Model Validation 

The back testing and eye testing tests were done to validate the model. Eye testing was done by observing the forecasts and 

they seemed reasonable compared to the actual values. Back testing was done using MSE and the RMSE of the forecast errors 

for the test data. The models were used to forecast for 51 dayswhich were then compared to 51 observations test dataset. The 

MAE, MSE and RMSE values of the different model’s forecasts were compared as follows; 

Table II. Model Validation Statistics 

ARIMA Order MAE MSE RMSE 

(1,1,1) 3.0435 9.9932 3.1617 

(1,1,2) 3.0477 10.0141 3.1645 

(2,1,1) 3.0516 10.0339 3.1676 

(2,1,2) 2.9179 9.1314 3.0218 

(3,1,1) 3.0544 10.0458 3.1695 

(3,1,2) 2.7690 8.3079 2.8823 

From Table II above, the model ARIMA (3,1,2) was the model with the least validation statistics hence confirming that it was 

the best model that fit the data could be used for forecasting. The model was then written as; 

Xt=0.8317Xt−1−0.3824Xt−2−0.2377Xt−3+et−1.3931et−1+0.7084et−2       (7.1) 

The model ARIMA (3,1,2) forecasts for 51 days against the test data set of 51 days are shown in the plot below. 

 

Fig. 8.  Plot of ARIMA (3,1,2) forecasts for test dataset 
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E. Future Forecasting 

The model was then used for future forecasting of 90 days and the plot of forecasts was as shown below. 

 

Fig. 9.  Plot of ARIMA (3,1,2) future forecasts 

IV. Conclusion 

The COVID-19 data used had different variances data transformation was required to stabilize the variance, the differencing 

was also carried out to stabilize the mean. The estimated model was found as ARIMA (3,1,2) since it had the least AIC, BIC 
and RMSE values amongst the possible models. The model was then validated using MAE, MSE and RMSE of the forecast 

errors from the test set. The ARIMA (3,1,2) model was found to be the best model since its forecasts were closest to the actual 

COVID-19 cases. Therefore, it was used for future forecasting.  

Due to the lifting of restrictions by the government in March 2022, one can try and fit different models before and after the 

restrictions due to possible change in probabilistic structures of the data. The data having been collected on a daily basis was 

found to have weekly seasonality. This was found in the ACF of ordinary differenced data. Having weekly seasonality would 

also imply presence of monthly seasonality. The presence of two types of seasonality disqualified ARIMA time series modeling. 

One can use the BATS and TBATS models to model such data. 
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