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Abstract: - In the theory of differential equation and probability, Probabilistic Hermite polynomials  rH x  0,1, 2,...,r n  are 

the polynomials obtained from derivatives of the standard normal probability density function (pdf) of the form  
21
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. These polynomials played an important role in the Gram-Charlier series expansion of type A and the Edgeworth’s form of the type 

A series (see [18]). 

In this paper, we obtained new Probabilistic Hermite polynomials by considering a standard normal distribution with probability 

density function (pdf) given as   
21
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x

x e




 . The generating function, recurrence relations and orthogonality properties are 

studied. Finally, a differential equation governing these polynomials was presented which enables us to obtain the expression of the 

polynomial in a closed form. 

Keywords: Generating Function, recurrence relation, differential equation, Power series, Orthogonality. 

I. Introduction and Preliminary 

Special functions and polynomials are solutions of special differential equations; they appear in mathematics, statistics, Lie group 

theory, and number theory. Probabilistic Hermite polynomials  rH x
 
are also special polynomials that occur in the theory of 

advanced statistics and are given by the series expansion 
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The polynomials are obtained by the series of differentiations of the standard normal distribution function of the form 

  
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(1.2) 

The generating function of the polynomial is given as 

 
   21
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tx tr r
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H x
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 


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(1.3) 

and the polynomials satisfy the second order differential equation 

 0y xy ry   
         

(1.4) 

[18] gave the following results on the Probabilistic Hermite polynomials 

𝐻0(𝑥) = 1𝐻1(𝑥) = 𝑥 

𝐻2(𝑥) = 𝑥2 − 2𝐻3(𝑥) = 𝑥3 − 3𝑥 

𝐻4(𝑥) = 𝑥4 − 6𝑥2 + 3𝐻5(𝑥) = 𝑥5 − 10𝑥3 + 15𝑥 

𝐻6(𝑥) = 𝑥6 − 15𝑥4 + 45𝑥2 − 15𝐻7(𝑥) = 𝑥7 − 21𝑥5 + 105𝑥3 − 105𝑥 

                          𝐻8(𝑥) = 𝑥8 − 28𝑥6 + 210𝑥4 − 420𝑥2 + 105  
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CF. Charlier (1931) proved that the equation in x, Hr(x) = 0, has r real roots, each not greater in absolute value than  1 1C r r 

[18]. 

J.P. Gram (1879) considered a series of the form 

      
0

r r

n

f x c H x x




                        (1.5)                                                                                               

where    r rc f x H x dx



   

This series (1.5) is called Gram-Charlier series of type A, although it appeared in the work of  P. L. Chebyshev and L. H. F. 

Oppermann before that of J.P. Gram in 1879, Thiele (1903) and CF Charlier (1931) [18]. 

II. Main Results 

In this section, the results on generating function, recurrence relations for the new Probabilistic Hermite polynomials (H*
n (x)) and 

their proofs will be presented. The special differential equation governing these polynomials will also be obtained. 

2.0.1 Generating Function 

As for other special differential equations, generating functions are used to generate the polynomials in series form and are also 

used to deduce the recurrence relations. We now start by considering the standard normal distribution of the form 

  
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On differentiating (2.1) severally, we have 
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where  *

nH x  represents the Probabilistic Hermite polynomials. Evidently  *

nH x  is a polynomial of degree n in x and the 

coefficient of xn is one. 

Considering also  
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By using Taylor’s series of function of two variables,  x t   can also be written as 
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Substituting (1) and (2) in (3) and simplifying, yields 
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(2.2) is called the generating function of the polynomial  *

nH x . 

2.0.2 Recurrence Relations for  *

nH x  

Differentiating (2.2) with respect to x, we obtain 
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Equating the coefficients of tn from both sides yields 

          * * * *

1 2and   1n n n nH x nH x H x n n H x 
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(2.3) 

Also, differentiating (2.2) w.r.t t yields 
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Equating the coefficients of tn – 1 from both sides and simplifying yields 

        * * *

2 12 1 0n n nn H x xH x H x           (2.4) 

Equations (2.3) and (2.4) are the recurrence relations of the polynomial  *

nH x . 

Now, substituting (2.3) in (2.4), we get 
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Simplifying yields 

       * * *2 0n n nH x xH x nH x         (4)   

(4) shows that  nA x  satisfies the second order differential equation 

  2 0y xy ny            (2.5) 

(2.5) is the required differential equation governing the new probabilistic Hermite polynomials  *

nH x . 

2.0.3 Power Series Solution of the Equation (2.5) 

In this section the power series solution of the differential equation obtained in (2.5) will be provided which will enable us to 

represent the polynomial is closed-series form. 

Now, since there is no solution using the ascending order power series solution method, then we solve it using descending order 

power series solution method. 

Let     1 2

0 0 0

  and    1c r c r c r

r r r

r r r

y a x y a c r x a c r c r x
  

    

  

          

Plugging these into (2.5) and simplifying, we have 
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Equating the coefficient of xc in the second summation of (5) to zero gives 

  0 00 since 0.a n c n c a      

Now, replacing r by (r – 2) in the first summation yields 
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Equating the coefficient of xc – r and simplifying gives the recurrence relation as 
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Putting r = 1, 3, 5…(2r – 1) in the recurrence relation, we will have that 
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Hence the general solution becomes 
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Let 0 1a   and that (6) can only exists (or be polynomial) if 2 0 or 2
2
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where    
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(2.6) is the closed form representation of the polynomial  *

nH x . 

A few of the polynomials are as follow; 
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2.0.4 Orthogonality Properties of the polynomials 

The orthogonality properties for  *

nH x  is given as 

   

            (2.7) 

 

Proof: Case 1: If m   n 

Since    * *andm nH x H x  satisfy (3.4), we must then have that 
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Multiplying (i) by  *

nH x  and (ii) by  *

mH x , subtracting the two new equations and simplifying yield 
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Case 2: If m = n  

Squaring both sides of the generating function (3.2), we obtain 
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Multiplying both sides by  
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Now, equating the coefficients of t 2n from both sides of (7) gives 

            * * * *1
1 2 !.

2 !

n

n n n nn
x H x H x dx x H x H x dx n

n
 

 

 
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This completes the proof. 

III. Methodology 

The methods employed in proving the results in this paper are the same methods adopted in the proof of other special differential 

equations. Taylor series of function of two variables, differentiations and manipulations are all employed to deduce the generating 

function and recurrence relations. Descending power series solution method was adopted to obtain the series solution of 

differential equation governing the new probabilistic Hermite polynomials  *

nH x . Finally, integrating factor method of solving 

first order differential equation was used to obtain the orthogonality properties of the polynomial 

IV. Conclusion 

The results obtained here are related to the well-known special differential equation called Probabilistics Hermite equation. It is of 

special interest to extend these results to application in engineering as other special differential equations; this will be presented in 

our further research work. We conclude that all the results obtained in this paper are entering into the literature for the first time. 

V. Further Research 

In our further research, we aim to consider the following 

1. A series of the form      *

0

n n

n

f x a x H x




   

2. Integral and confluent hypergeometry representations of the polynomial  *

nH x  

3. Application of the polynomial  *

nH x . 

4. Relationship to the Probabilistic Hermite Polynomials  rH x . 
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