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ABSTRACT 

Semi-analytical solutions for a linear two-dimensional reactive general rate model of liquid chromatography is 

presented in this work considering cylindrical geometry. The governing model equations comprises of a 

system of advection-diffusion-reaction partial differential equations together with an algebraic expression 

representing the isothermal relation. The solutions are obtained by the application of finite Hankel and 

Laplace transforms one after the other. Moments are numerically obtained and used to describe the shapes of 

the elution profiles. A high-resolution finite volume scheme is lastly applied to obtain approximate solutions of 

the governing model equations in order to verify the accuracy of the semi- analytical solutions. Several 

test cases are carried out and both the semi-analytical and numerical results are shown to have good 

agreements. 

Key words: Reactive liquid chromatography, general rate model, semi-analytical solutions, numerical 

solutions.  

INTRODUCTION 

Liquid chromatography is a powerful technique widely used in the chemical and pharmaceutical 

industries for the separation and characterization of various substances. It is a method that allows the 

separation of a sample into its individual components based on their interactions with the mobile and 

stationary phases. The most common type of liquid chromatography is liquid-solid column 

chromatography, where a liquid mobile phase passes through a solid stationary phase to separate different 

components. Reactive liquid chromatography is a specialized technique that combines the principles of 

liquid chromatography with chemical reactions [1]. In this method, a reactive species is added to the 

mobile phase, which reacts with the analyte molecules as they pass through the column. This reaction can 

lead to changes in the analyte’s chemical properties, such as its charge or polarity, facilitating its 

separation from other components in the mixture. 

Reactive liquid chromatography offers several advantages over traditional liquid chromatography methods. 

Firstly, it allows for selective and specific separation of analytes based on their reactivity. This is 

particularly useful when dealing with complex mixtures containing closely related compounds. By 

exploiting the differences in their reactivity, reactive liquid chromatography can achieve better resolution 

and separation efficiency [2, 3]. In this cur- rent work, we study the effects of the reaction coefficient on 

elution for a single component operating under an isothermal condition. 

Mathematical modeling of reactive liquid chromatography plays a crucial role in under- standing and 

optimizing separation processes in the various industries where the techniques are applicable. This powerful 

analytical technique uses chemical reactions to enhance the separation of compounds, making it a valuable 

tool in pharmaceutical, environmental, and food analysis. By developing mathematical models, deeper 
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insights into the complex interactions occurring between the solutes, solvents, and stationary phase in 

reactive liquid chromatography columns can be gained [4–6]. Various models which are characterized by 

their level of complexities and used to describe the reactive liquid chromatography process can be found in 

the literature [7–16] 

This work extends the work recently done on one-dimensional reactive single component model by [17] to the 

two-dimensional model which considers both axial and radial concentration gradients. Analytical solutions of 

the governing model equations are derived by applying the Hankel and Laplace transformations successively 

together with the conventional solution technique for ODEs [18, 19]. These solutions are obtained for 

two kinds of boundary conditions namely Dirichlet and Danckwerts. It is not feasible to perform 

analytical inversions of the derived solutions because they contain complex functions. As a result, 

numerical Hankel and Laplace inversions are employed to convert the solutions back to their initial radial 

and time coordinates [20, 21]. In order to confirm the accuracy of the obtained solutions, numerical 

solutions are also acquired using a semi-discrete finite volume scheme (FVS) with high resolution, applied to 

the model governing equations [22, 23]. Test cases are carried out considering some kinetic parameters 

that influence the separation of solute in the column. The behavior of the chromatographic reactor is 

analyzed further by numerically calculating the moments of the concentration profile [24, 25]. 

The usefulness of the current two-dimensional model can be identified when at the time of solute injection at 

the column inlet, radial profile is introduced due to inexact injection, a non-homogeneously packed 

column and a larger column radius. These situations may occur in real life operations but are mostly 

neglected and thus, the application of a one- dimensional model. However, the current two-dimensional model 

can be a very reliable quantitative tool for more accurate predictions in liquid chromatography. 

The article is further arranged in the following manner. In Section 2, a linear two- dimensional reactive 

general rate model of liquid chromatography is formulated and closed with the required initial and suggested 

boundary conditions. In Section 3, the analytical solutions for the two boundary conditions are obtained. 

Section 4 provides the test cases carried out and lastly in Section 5, the conclusion of the findings are 

given. 

Linear two-dimensional reactive general rate model 

An isothermal adsorption column filled with spherical particles of radius Rp is considered. Here, let t, z 

and r represent the time coordinate, axial coordinate along the column length and the radial coordinate 

along the column radius respectively.  

 

The solute is taken to travel in the z-direction (see Figure 1) by means of advection and axial dispersion, 

while being dispersed along the radius of the column. The following injection types are also assumed in 

order to project the radial mass transfer effects by dividing the inlet cross section of the column into an 

inner cylindrical core and an outer annular ring with the introduction of a new parameter  r̃. This then 

leads to the possibility of injecting the solute through the inner core, the outer ring or through the whole 

cross-section. If r̃ is set equal to the radius of the column Rc, then we have the case where the injection of 

solute is carried out through the whole cross-section and this represents the scenario where there are no radial 

gradients introduced into the column, and thus can be represented by a simpler one-dimensional model, see 

[17]. The mass balance equations for the mobile phase of adsorption are g iven as  

Figure 1: Schematic representation of a chromatographic column of cylindrical 
geometry packed with uniform sized particles 
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∂c

∂t
+ u

∂c

∂z
= Dz

∂2c

∂z2 + Dr (
∂2c

∂r2 +
1

r

∂c

∂r
) −

3

Rp
Fke(c − cp|rp=Rp

),                       (1)   

where c is the concentration in the bulk of fluid, cp is the concentration in the particle pores, u is the 

interstitial velocity, Dz is the axial dispersion coefficient and F = (1 − ϵ)/ϵ is the phase ratio with ϵ as the 

external porosity. Moreover, Dr represents the radial dispersion coefficient and ke is the external mass 

transfer coefficient. Lastly, rp denotes the radial coordinate of spherical particles of radius Rp. 

The corresponding mass balance equation inside the pores of the particles is given as 

  ϵp
∂cp

∂t
+ (1 − ϵp)

∂qp

∂t
=

ϵpDp

rp
2

∂

∂rp
(rp

2 ∂cp

∂rp
) − (1 − ϵp)vqp ,                          (2) 

where Dp is the pore diffusivity, ϵp is the internal porosity and v is the reaction rate constant of the 

solid phase. The equilibrium linear adsorption isotherm used in this study is the Langmuir isotherm 

expressed as 

qp = acp                                                                                                        (3) 

where a denotes the linear adsorption or Henry’s constant. The following dimensionless variables are 

introduced: 

 x =
z

L
, τ =

ut

L
, ρ =

r

Rc
, ρ

p
=

rp

Rp
, Pez =

Lu

Dz
, Peρ =

Rc
2u

DrL
,  

ζ =
keRp

Dp
, η =

ϵpDpL

Rp
2 u

, ξ = 3ζηF, ω =
L

u
v.                                                    (4) 

L is the characteristic column length, Pez and Peρ denote the axial and radial Peclet numbers respectively, 

η and ξ, are the dimensionless constants, ζ denotes the coefficient of mass transfer and ω represents the 

dimensionless reaction rate constant. After applying the above dimensionless variables in Eqs. (1) and 

(2), the following system 

of equations is obtained 

∂c

∂τ
+

∂c

∂x
=

1

Pez

∂2c

∂x2 +
1

Peρ
(

∂2c

∂ρ2 +
1

ρ

∂c

∂ρ
) − ξ(c − cp|ρp=1),                                  (5)  

a∗ ∂cp

∂τ
=

η

ρp
2

∂

∂ρp

(ρ
p
2 ∂cp

∂ρp

) − a(1 − ϵp)ωcp,                                                      (6) 

where a∗ = ϵp + a(1 − ϵp). 

To close the system, the following initial conditions are defined for the system of equations: 

c(ρ, x, τ = 0) = 0,           0 ≤ x ≤ 1,       0 ≤ ρ ≤ 1,                                     (7) 

𝑐𝑝(𝜌𝑝, 𝜌, 𝑥, 𝜏 = 0) = 0,           0 ≤ 𝑥 ≤ 1,       0 ≤ 𝜌 ≤ 1,      0 ≤ 𝜌𝑝 ≤ 1.   (8) 

The following boundary conditions for Eq. (5), which correspond to the symmetry of radial profile and the 

impermeability of the column wall, are used along the radial coordinate of the column at ρ = 0 and ρ = 

1: 

𝜕𝑐(𝜌=0,𝑥,𝜏)

𝜕𝜌
= 0,            

𝜕𝑐(𝜌=1,𝑥,𝜏)

𝜕𝜌
= 0.                                                           (9) 

Also, for Eq. (5), the following two types of  boundary conditions are considered. 
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Danckwerts inlet boundary conditions: 

For rectangular pulse injection through the inner cylindrical core, the boundary conditions are expressed 

as: 

−
1

𝑃𝑒𝑧

𝜕𝑐

𝜕𝑥
+ 𝑐|𝑥=0 = {

𝑐𝑖𝑛𝑗   ,       0 ≤ 𝜌 ≤ �̃�         𝑎𝑛𝑑   0 ≤ 𝜏 ≤ 𝜏𝑖𝑛𝑗 ,

0 ,          �̃� ≤ 𝜌 ≤ 1         𝑜𝑟           𝜏 > 𝜏𝑖𝑛𝑗.
                      (10) 

And injecting the solute through the outer core, the boundary conditions are: 

−
1

𝑃𝑒𝑧

𝜕𝑐

𝜕𝑥
+ 𝑐|𝑥=0 = {

𝑐 ,              
𝑖𝑛𝑗 �̃� ≤ 𝜌 ≤ 1         𝑎𝑛𝑑   0 ≤ 𝜏 ≤ 𝜏𝑖𝑛𝑗 ,

0 ,          0 ≤ 𝜌 ≤ �̃�             𝑜𝑟           𝜏 > 𝜏𝑖𝑛𝑗.
                      (11) 

ρ̃ = 1  in  Eq. (10) or ρ̃ = 0 in Eq. (11) leads to inlet injection through the whole cross-section. cinj is the 

injected concentration. 

The above boundary conditions are coupled with the following Neumann conditions at the outlet of a 

finite length column  

𝜕𝑐(𝜌,𝑥=1,𝜏)

𝜕𝑥
= 0.                                                                                                   (12) 

Dirichlet inlet boundary conditions: 

When the dispersion coefficient 𝐷𝑧  is small (i.e. for large values of the axial Peclet number 𝑃𝑒𝑧), the boundary 

conditions expressed in Eqs. (10) to (12) reduces to the Dirichlet boundary conditions as the quantity 

−
1

𝑃𝑒𝑧

𝜕𝑐

𝜕𝑥
 in the Danckwerts boundary conditions tend to zero. For large axial dispersion, the Danckwerts 

boundary conditions are more reliable to account for back flow near the left boundary. 

Lastly, to take care of Eq. (6), the following boundary conditions at the  end of the radial coordinates 

of the particles ρp = 0 and ρp = 1 are expressed as 

𝜕𝑐𝑝

𝜕𝜌𝑝
|𝜌𝑝=0 = 0,        

𝜕𝑐𝑝

𝜕𝜌𝑝
|𝜌𝑝=1 = 𝜁 (𝑐 − 𝑐𝑝|𝜌𝑝=1).                                             (13) 

Semi-analytical solutions 

To obtain the solutions of the above chromatographic model together with the described initial and 

boundary conditions, the finite Hankel and Laplace transforms are applied one after the other. The zeroth-

order finite Hankel transform of c(ρ, x, τ ) is defined as [18, 19] 

𝑐𝐻(𝜆𝑛 , 𝑥, 𝜏) = 𝐻[𝑐(𝜌, 𝑥, 𝜏)] = ∫ 𝑐(𝜌, 𝑥, 𝜏)𝐽0(𝜆𝑛𝜌)𝜌𝑑𝜌
1

0
.                               (14) 

The inverse Hankel transform is given as 

𝑐(𝜌, 𝑥, 𝜏) = 2𝑐𝐻(𝜆𝑛 = 0, 𝑥, 𝜏) +
2 ∑ 𝑐𝐻(𝜆𝑛,𝑥,𝜏)∞

𝑛=1 𝐽0(𝜆𝑛𝜌)

|𝐽0(𝜆𝑛)|
2 .                                   (15) 

Applying the above Hankel transformation on Eq. (5) with respect to the coordinate ρ gives 

𝜕𝑐𝐻

𝜕𝜏
+

𝜕𝑐𝐻

𝜕𝑥
=

1

𝑃𝑒𝑧

𝜕2𝑐𝐻

𝜕𝑥2 −
𝜆𝑛

2

𝑃𝑒𝜌
𝑐𝐻 − 𝜉 (𝑐𝐻 − 𝑐𝑝,𝐻|𝜌𝑝=1).                                      (16) 

Where cH(λn, x, τ ) and cp,H(λn, x, τ ) are the zeroth-order finite Hankel transforms of c(ρ, x, τ ) and cp(ρp, ρ, 

x, τ ), respectively. Next, the Laplace transformation of Hankel transformed function cH is defined as [19] 
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𝑐�̅�(𝜆𝑛 , 𝑥, 𝑠) = ∫ 𝑒−𝑠𝑠𝑠𝑠(𝑠𝑠,𝑠,𝑠)𝑠𝑠,          𝑠 ≥ 0.
∞

0
                                                (17)                                   

Applying the Laplace transformation on Eq. (16) with respect to τ while considering  the initial  

concentration as zero to obtain 

𝑠𝑠𝑠
𝑠�̅�𝑠

𝑠𝑠
=

𝑠2�̅�𝑠

𝑠𝑠2 −𝑠𝑠𝑠(𝑠 +
𝑠𝑠

2

𝑠𝑠𝑠
)�̅�𝑠 − 𝑠𝑠𝑠𝑠(�̅�𝑠 − �̅�𝑠,𝑠|𝑠𝑠=1).                              (18) 

Here, c̄H  is the Hankel and Laplace transformed concentration. 

Applying the Laplace transform on Eq. (6) and rearranging the equation gives  

𝑠2

𝑠𝑠𝑠
2 (𝑠𝑠�̅�𝑠) −

𝑠∗𝑠

𝑠
(𝑠𝑠�̅�𝑠) +

𝑠(1−𝑠𝑠)𝑠

𝑠
(𝑠𝑠�̅�𝑠) = 0.                                                 (19) 

The general solution of Eq. (19) is o b t a i n e d  as: 

    �̅�𝑠(𝑠𝑠,𝑠,𝑠,𝑠) =
1

𝑠𝑠
(𝑠1𝑠

√𝑠(𝑠)𝑠𝑠 + 𝑠2𝑠
−√𝑠(𝑠)𝑠𝑠).                                            (20) 

where,  𝑠(𝑠) =
𝑠∗𝑠+𝑠(1−𝑠𝑠)𝑠

𝑠
. 

The constants A1 and A2  are determined  by applying  the boundary conditions stated in Eq. (13) and 

are given as: 

    𝑠1,2 = ±

𝑠�̅�

2𝑠𝑠𝑠ℎ(√𝑠(𝑠))

[(𝑠−1)+√𝑠(𝑠)𝑠𝑠𝑠ℎ(√𝑠(𝑠))]
 .                                                                    (21) 

Thus, the solution in Eq. (17) at ρp = 1, becomes 

   �̅�𝑠|𝑠𝑠=1 = �̅�ℎ(𝑠),                                                                                                (22) 

where 

  ℎ(𝑠) =
𝑠

[(𝑠−1)+√𝑠(𝑠)𝑠𝑠𝑠ℎ(√𝑠(𝑠))]
.                                                                            (23) 

The Hankel transform of Eq. (22) with respect to ρ, gives 

    �̅�𝑠,𝑠|𝑠𝑠=1 = �̅�𝑠ℎ(𝑠),                                                                                            (24) 

Putting Eq. (24) in Eq. (18), the following is obtained 

 
𝑠2�̅�𝑠

𝑠𝑠2 −𝑠𝑠𝑠
𝑠�̅�𝑠

𝑠𝑥
− 𝑠𝑠𝑠𝑠(𝑠,𝑠𝑠)�̅�𝑠 = 0 ,                                                                   (25) 

where 

𝑠(𝑠,𝑠𝑠) = 𝑠 +
𝑠𝑠

2

𝑠𝑠𝑠
+ 𝑠(1 − ℎ(𝑠)).                                                                          (26) 

The general solution of the above Eq. (22) is given below as 

�̅�𝑠(𝑠𝑠,𝑠,𝑠) = 𝑠1𝑠
𝑠1𝑠 +𝑠2𝑠

𝑠2𝑠,                                                                              (27) 

where 
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𝑠1,2 =
𝑠𝑠𝑠

2
(1 ± √1 +

4𝑠(𝑠,𝑠𝑠)

𝑠𝑠𝑠
),                                                                                  (28) 

and 𝑠1 and𝐷2 are constant to be determined from the following Hankel and Laplace transformed 

boundary conditions.  𝑠1  is obtained with the plus sign on top while 𝑠2 results from the minus sign 

below. 

Next is to obtain the Hankel and Laplace transformed Danckwerts boundary conditions by taking the 

Hankel transformation of Eqs. (10) and (12) which gives 

−
1

𝑠𝑠𝑠

𝑠𝑠

𝑠𝑠
+ 𝑠𝑠|𝑠=0 = {

𝑠𝑠𝑠𝑠 𝑠(𝑠𝑠) ,          0 ≤ 𝑠 ≤ 𝑠𝑠𝑠𝑠,

0 ,                    𝑠 > 𝑠𝑠𝑠𝑠

                                                 (29) 

and 

 
𝑠𝑠𝑠(𝑠𝑠 ,𝑠=1,𝑠)

𝑠𝑠
= 0.                                                                                                        (30) 

Where 

𝑠(𝑠𝑠) = {

�̅�
2

2   
,          𝑠𝑠     𝑠𝑠 = 0,

�̅�

𝑠𝑠
𝑠1(𝑠𝑠�̅�),      𝑠𝑠   𝑠𝑠 ≠ 0.      

and   𝑠(𝑠𝑠) = {
(

1

2
−

�̅�
2

2
)  ,    𝑠𝑠     𝑠𝑠 = 0,

−
�̅�

𝑠𝑠
𝑠1(𝑠𝑠�̅�),      𝑠𝑠   𝑠𝑠 ≠ 0.      

 

both represent inner and out core injections respectively. 

Next, applying the Laplace transformation on the boundary conditions given in Eqs. (29) and (30), 

we obtain 

−
1

Pez

∂c

∂x
+ cH|x=0 =

cinjQ(λn)

s
(1 − e−sτinj)                                                                       (31) 

and 

∂c̅H(λn,x=1,s)

∂x
= 0.                                                                                                            (32) 

Now, plugging in the values from these boundary conditions obtained in Eqs. (31) and (32) into Eq. 

(27), we obtain the solution as 

c̅H(λn, x, s) =
(b1−b2)eb1+b2x[

Q(λn)cinj

s
(1−e

−sτinj)]

b2eb2(1−
b1

Pez
)−b1eb1(1−

b2
Pez

)
.                                                       (33) 

Following a similar procedure, the solution obtained by considering the Dirichlet boundary condition is given 

as 

c̅H(λn, x, s) =
Q(λn)cinjeb2x

s
(1 − e−sτinj).                                                                (34) 

Numerical inversion approach is used to convert the above two solutions back into the original 

coordinates [20,21]. 

Numerical case studies 

In this section, several test cases are studied to verify the accuracy of the semi-analytical solutions and to 

study the effects of some parameters on the concentration profile. To obtain approximate solutions for the 
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governing model equations, the semi discrete high resolution finite volume scheme (HR-FVS) of Koren is 

implemented [22, 23, 25]. Parameters used for the test cases are taken from the ranges frequently used in 

liquid chromatography applications and are given in Table 1. 

 

Figure 2: Effects of injection on the concentration profiles for 1d and 3d plots, through the inner core and outer 

ring for Dancwerts boundary condition 

Figure 2 show one-dimensional (1d) and three-dimensional (3d) plots for the solutions resulting from injecting 

through the inner cylindrical core (Figures 2(a) and (b)) and via the outer annular ring (Figures 2(c) and (d)). 

The results were obtained using the Danckwerts boundary condition. The 1d plots show a good agreement 

between semi-analytical and the numerical solutions. The 3d plots are used to demonstrate the evolution of 

radial concentration profiles caused by slow radial dispersion. At the column outlet, due to slow radial 

dispersion (i.e. for Peρ = 15), a higher concentration can be seen at the outer region as compared to the 

inner cylindrical region due to slow radial dispersion. 

 

Figure 3: Effects of reaction rate constant ω and velocity u on the concentration profiles for inner core 

injection 

Figure 3 display the effects of the reaction rate constant ω and velocity u on the concentration profiles 

for inner cylindrical core injection. The effect of ω as seen in Figure 3(a), shows that increasing the 

value of ω causes a reduced concentration profile. This shows that chemical reaction between sample 
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components and the particle phase in the column increases. Hence the samples will be quickly converted 

to products as the reaction rate constant increases. Figure 3(b) gives the effects of increasing the velocity 

on the concentration profiles. It is evident that increasing the velocity leads to higher concentration profiles. 

This leads to faster elution and faster dispersion rates hence, causing less reaction due to less interaction 

time between the solute and the particle phase inside the column. 

 

Figure 4: Effects of Peρ on the concentration profiles for injection through the inner core 

In Figure 4, the radial dispersion coefficient Peρ effect on the concentration profile is shown for inner 

cylindrical core injection. For small Peρ = 1.5, which is the result shown in Figure 4(a), there is no visible 

effects on the concentration profile due to quicker radial dispersion. This case collapses the two-dimensional 

model to a one-dimensional model. On the other hand, the effects of slow radial dispersion (for Peρ = 150) 

can be seen as the concentration profile reduces at the middle of the column in Figure 4(b). 

 

 

Figure 5: Effects of Pez coupled with the BCs, η and ζ on the concentration profiles for inner core injection 

Figure 5 gives the effects of the axial dispersion coefficient Pez, intraparticle diffusion co- efficient η and mass 

transfer coefficient ζ on the concentration profiles plotted for inner cylindrical core injections. In Figure 5(a), 
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Pez is altered to see the effects on the con- centration profiles for the solutions obtained from the two types of 

boundary conditions considered. It is seen that for small axial Peclet number Pez = 1.5, the solutions of 

both boundary conditions tend to differ and the retention times of the solutes increases as broader profiles 

can be observed. The results in Figures 5(b) and 5(c) show similar behaviors in studying the effects of η and ζ 

respectively. It can be seen that reducing the values of each of η and ζ leads to broad tailed concentration 

profiles and hence leading to  

 

 

Figure 6: Effects of Peρ on the local moments for inner core injection 

increased retention times inside the column. 

Figures 6 and 7 show the results of the obtained numerical moments for inner cylindrical core 

injections. Moments analysis is very useful tool in describing the shapes of the concentration profiles. These 

moments were calculated numerically by using the following expressions [5] 

μ
i,av

=
∫ cav(x=1,τ)τidτ

∞

0

μ0,av

,   i = 2,3,4,                              ( 3 5 )  

where μ
i,av

 i s  g i v e n  b e lo w  f o r  i = 1 a s  

μ
0,av

= ∫ cav(x = 1, τ)dτ
∞

0
                                 ( 3 6 )  

and 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue X October 2024 

 

 

 

 

 

www.rsisinternational.org Page 196 

  

 

 

cav(x, τ) = 2 ∫ c(ρ, x = 1, τ)ρdρ
1

0
.                             ( 3 7 )  

In Figure 6, the effect of the radial dispersion coefficient Peρ on the local moments is shown. The results 

display that for the smallest value of Peρ, the moments approach constant values along the radial coordinate. 

Due to the injection of the solute via the inner cylindrical core, there are no changes in the moments near the 

center of the column. The changes are however seen in the outer region of the column. An increase in 

Peρ can be seen to cause larger changes in the higher moments. The results presented here are in good 

agreement with the results given in Figure 4. 

 

 

Figure 7: Effects of Pez on the averaged central moments for inner core injection 

Figure 7 shows the axial dispersion coefficient Pez effects on the averaged moments. The results show that no 

visible effect can be observed on the first moment. On the other hand, the effects can be seen on the other 

moments as the axial Peclet number is increased causing a reduction in the values of the moment. These results 

again are in good agreement with the results given in Figure 5(a). 

Table 1: Standard parameters used in the test problems. 

Parameter Symbol Value 

Length of column L 8.0 cm 

External porosity ϵb 0.4 

Internal porosity ϵp 0.333 
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Interstitial velocity u 2.0 cm/min 

Axial dispersion coefficient Dz, (Pez) 2.6667 × 10−2cm2/min, (600) 

Radial dispersion coefficient Dr, (Peρ) 6.6667 × 10−4cm2/min, (15) 

Henry’s constant a 2.5 

Dimensionless constant η 2 

Dimensionless constant ζ 50 

Injected concentration cinj 0.5 [g/l] 

Dimensionless time of injection τinj 2.5 

 

CONCLUSION 

A linear two-dimensional reactive liquid chromatography model was solved analytically considering two 

types of boundary conditions. Semi-analytical solutions were obtained by the successive application of 

finite Hankel and Laplace transforms. The numerical inversions of Hankel and Laplace transforms were used 

to obtain the solutions in their true domains. A high resolution semi-discrete finite volume scheme was 

subsequently applied to obtain approximate solutions of the governing model equations in order to have 

confidence on the obtained semi-analytical solutions. Both the semi-analytical and the numerical solutions 

were seen to be in good agreement, this also validates the accuracy of numerical scheme used. The 

obtained two-dimensional model solutions was shown to capture the scenario where radial gradients are 

introduced during injection of solutes inside the chromatography columns and can play a significant role in 

further the developments of reactive chromatography processes. 
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