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ABSTRACT  

A crucial component of women's healthcare is the identification of breast cancer, which necessitates precise 

and understandable predictive models. Even though machine learning has great potential, obstacles including 

unbalanced datasets, computing complexity, and interpretability impede advancement. To overcome these 

obstacles, we used a novel strategy in this study that concentrated on lightweight and interpretable models. In 

particular, we use decision trees, K-Nearest Neighbors (K-NN), and Support Vector Machines (SVM) for 

breast cancer diagnosis using logistic regression as a meta-learner. Our study uses the Wisconsin Breast 

Cancer (WBC) dataset, a gold standard in breast cancer research, to demonstrate the efficacy of this ensemble 

technique. Through the utilization of base models' simplicity and the interpretability of logistic regression, we 

are able to achieve diagnosis transparency and accuracy, which helps physicians make well-informed 

decisions.  

Keywords: Cancer, breast cancer, classification, ensembles, interpretability, complexity, machine learning, 

artificial intelligence. 

BACKGROUND 

Breast cancer is one of the most prevalent cancers among women worldwide. In 2020, there were 

approximately 2.3 million new cases of breast cancer globally, and about 685,000 deaths from this disease 

(Arnold M M. E., 2022). The disease accounts for 12.5% of all new annual cancer cases worldwide, making it 

the most common cancer in the world (Scheel JR, 2020). In the United States alone, about 310,720 new cases 

of invasive breast cancer are expected to be diagnosed in women in 2024  (Duggan, 2020) 

In Sub-Saharan Africa, breast cancer incidence (33.8 per 100,000 women per year) currently ranks only second 

to cervical cancer incidence (34.8 per 100,000 women per year), with only a small difference between these 

rates. In 2020, 129,000 women in this region were newly diagnosed with the disease. Unfortunately, the 

survival of these women is generally low, and on average 50% of women diagnosed with breast cancer in Sub-

Saharan Africa will have died within 3 years of diagnosis (McCormack, 2021) 

In Uganda, a low-income country, breast cancer has an age-standardized incidence and mortality rate of 21.3 

per 100,000 population and 10.3 per 100,000 population, respectively. This indicates that nearly one-half of 

Ugandan women who are diagnosed with breast cancer will die of their disease(John R. Scheel, 2020). 

Early detection of breast cancer can be lifesaving, and machine learning tools hold promise in analyzing 

complex biomedical data and assisting in diagnostic processes (Zakareya, 2023). However, the accuracy of 

current base models varies. For instance, an ensemble model comprising three pre-trained Convolutional 

Neural Networks (CNNs) achieved an accuracy of 94% (Linda, 2023), while another deep-learning-based 

model achieved an accuracy of 93% and 95% on ultrasound images and breast histopathology images, 

respectively (Azubuike, 2018) However, some models have lower accuracy, such as one that achieved an 

accuracy of 75.73% (WHO, 2022) 

Despite these promising results, challenges such as dataset imbalance, computational complexity, and 

interpretability hinder progress. Most. Advanced neural network-based models require high computing power, 
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and huge amounts of data to ingest. This is still a problem especially in low-income settings.  Therefore, this 

study aims to employ a novel approach focusing on lightweight and interpretable models to address these 

challenges. Specifically, we employ logistic regression as a meta-learner to stack K-Nearest Neighbors (K-

NN), Support Vector Machine (SVM), and Decision Trees for breast cancer diagnosis. Our study showcases 

the effectiveness of this ensemble technique on the Wisconsin Breast Cancer (WBC) dataset, a benchmark in 

breast cancer research. 

Related works 

Here, we give key literature on machine learning applications in breast cancer diagnosis. We give highlights on 

studies about mammography-based screening, clinical risk prediction, and advancements in random forest 

techniques, noting existing gaps in ensemble methods and model interpretability, which this research seeks to 

address. 

In a systematic review and meta-analysis by Liu et al. (2023), mammography diagnosis of breast cancer 

screening was examined using machine learning techniques. The study encompassed various methods, 

including KNN, SVM, and decision trees, applied to mammography data. Algorithms were evaluated based on 

metrics such as accuracy, sensitivity, and specificity, with SVM demonstrating superior performance in terms 

of overall accuracy and robustness. However, the study lacked a comprehensive comparison of ensemble 

methods, limiting insights into their potential for improving diagnostic accuracy. 

Wongvibulsin et al. (2020) conducted a study focusing on clinical risk prediction using random forests for 

survival, longitudinal, and multivariate (RF-SLAM) data analysis. The research utilized a dataset comprising 

longitudinal patient data, and random forests were employed as the primary algorithm. Performance metrics 

such as concordance index (C-index) and calibration plots were utilized to assess model performance. Random 

forests exhibited strong predictive capabilities, particularly in handling longitudinal and multivariate data, yet 

the study did not explore ensemble techniques or compare with other classifiers. 

Dorador (2024) investigated methods to improve the accuracy and interpretability of random forests through 

forest pruning. The research employed a dataset with high-dimensional features, and the main algorithm 

evaluated was random forests with various pruning techniques. Performance was assessed using accuracy, 

precision, and interpretability metrics. Pruned random forests demonstrated enhanced accuracy and 

interpretability compared to traditional random forests, yet the study did not explore ensemble approaches or 

compare with other machine learning algorithms. 

Louppe (2014) provided insights into understanding random forests from theory to practice. The study 

presented a comprehensive overview of random forests' theoretical foundations, including ensemble learning 

principles and decision tree aggregation. Performance evaluation was primarily based on accuracy, feature 

importance, and computational efficiency. Random forests showcased robust predictive performance and 

feature selection capabilities, yet the study did not include empirical validation on real-world datasets or 

compare with other algorithms. 

Hatwell et al. (2020) introduced Ada-WHIPS, a framework for explaining AdaBoost classification with 

applications in the health sciences. The study utilized healthcare datasets and focused on explaining the 

decision-making process of AdaBoost models. Methods included feature importance analysis and visualization 

techniques to interpret model predictions. Performance assessment was based on accuracy, interpretability, and 

explanatory power. Ada-WHIPS demonstrated promising results in providing interpretable insights into 

AdaBoost models, yet the study did not extensively compare with other ensemble methods or evaluate 

performance on diverse datasets. 

Alakwaa et al. (2018) conducted research on lung cancer survival prediction using ensemble data mining on 

SEER data. The study utilized the Surveillance, Epidemiology, and End Results (SEER) database for lung 

cancer survival analysis. Ensemble data mining techniques, including AdaBoost, were employed to develop 

predictive models. Performance metrics such as accuracy, sensitivity, and specificity were utilized to evaluate 
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model performance. AdaBoost exhibited strong predictive capabilities in survival prediction, yet the study did 

not explore the interpretability of the ensemble models or compare with other machine learning approaches. 

Jemal et al. (2012) investigated the cancer burden in Africa and opportunities for prevention. The study 

utilized cancer incidence and mortality data from various sources, including the International Agency for 

Research on Cancer (IARC) and national cancer registries. Analytical methods included descriptive 

epidemiology and statistical modeling to assess cancer trends and risk factors. Performance metrics were not 

applicable in this context, as the study focused on epidemiological research rather than predictive modeling or 

algorithm evaluation. 

Wabinga et al. (2014) examined trends in the incidence of cancer in Kampala, Uganda, from 1991 to 2010. 

The study utilized cancer registry data from Kampala and applied statistical methods to analyze cancer 

incidence trends over time. Analytical approaches included trend analysis, age-standardized incidence rates, 

and geographical mapping. Performance metrics were not relevant in this epidemiological study, as the focus 

was on describing cancer incidence patterns rather than predictive modeling. 

Zhang et al. (2016) conducted a systematic review and meta-analysis on the prognostic role of the neutrophil-

to-lymphocyte ratio (NLR) in lung cancer. The study included data from multiple clinical studies investigating 

the association between NLR and lung cancer prognosis. Analytical methods included meta-analysis 

techniques to synthesize findings across studies and assess the overall prognostic significance of NLR. 

Performance metrics were not applicable in this context, as the study focused on summarizing existing 

evidence rather than developing predictive models. 

Kourou et al. (2015) explored machine learning applications in cancer prognosis and prediction. The study 

encompassed various cancer types and datasets, with a focus on predictive modeling using machine learning 

algorithms. Methods included feature selection, model training, and performance evaluation using metrics such 

as accuracy, sensitivity, and specificity. Different machine learning algorithms, including support vector 

machines (SVM) and decision trees, were evaluated for their predictive performance in cancer prognosis. The 

study provided insights into the potential of machine learning for improving cancer prognosis, yet it did not 

specifically focus on breast cancer or ensemble techniques. 

Junjie Liu et al. (2023) conducted a systematic review and meta-analysis on mammography diagnosis of breast 

cancer screening through machine learning. The study synthesized findings from multiple studies investigating 

the application of machine learning algorithms in mammography-based breast cancer screening. Analytical 

methods included meta-analysis techniques to assess the overall performance of machine learning models in 

breast cancer detection. Performance metrics such as sensitivity, specificity, and area under the ROC curve 

(AUC) were utilized to evaluate model performance across studies. The meta-analysis provided valuable 

insights into the performance of machine learning models in mammography-based breast cancer screening, yet 

it did not delve into specific ensemble techniques or comparative analyses between different algorithms. 

S. Wongvibulsin et al. (2020) explored clinical risk prediction with random forests for survival, longitudinal, 

and multivariate (RF-SLAM) data analysis. The study focused on developing predictive models for clinical 

risk prediction using random forests, particularly in the context of survival analysis and longitudinal data. Data 

sources included electronic health records (EHR) and clinical databases. Analytical methods involved feature 

engineering, model training, and performance evaluation using metrics such as concordance index (C-index) 

and calibration plots. Random forests demonstrated strong predictive performance in clinical risk prediction 

tasks, highlighting their utility in healthcare applications. However, the study did not specifically address 

breast cancer diagnosis or ensemble techniques. 

Albert Dorador (2024) proposed a method for improving the accuracy and interpretability of random forests 

via forest pruning. The study focused on enhancing the performance of random forests by pruning decision 

trees and optimizing model complexity. Analytical methods included algorithm development, experimentation 

with pruning techniques, and performance evaluation using metrics such as accuracy, precision, and 

interpretability measures. The study demonstrated improvements in model accuracy and interpretability by 
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applying pruning strategies to random forests. However, it did not directly explore breast cancer diagnosis or 

ensemble learning techniques. 

Gilles Louppe (2014) provided insights into understanding random forests from theory to practice. The study 

offered a comprehensive overview of random forests, including their theoretical foundations, algorithmic 

aspects, and practical considerations. Analytical methods included theoretical analysis, algorithmic 

descriptions, and empirical evaluations using benchmark datasets. Performance metrics such as accuracy, out-

of-bag error, and feature importance were utilized to assess the effectiveness of random forests in various 

applications. While the study did not focus specifically on breast cancer diagnosis, it contributed valuable 

insights into the theory and practice of random forests, which are relevant to ensemble learning approaches in 

healthcare. 

The literature provides valuable insights into the application of machine learning techniques in mammography-

based breast cancer screening. However, we noted a lack of a comprehensive comparison of ensemble 

methods, which could have offered insights into their potential for improving diagnostic accuracy. 

Additionally, few studies delve into the interpretability of the models, which is crucial for clinical acceptance 

and understanding of the decision-making process. Moreover, most of the research does address the specific 

challenges and opportunities associated with applying ensemble methods in medical diagnostics. We filled this 

gap by conducting comparative studies that evaluate the performance of ensemble methods against traditional 

classifiers and explore their interpretability in clinical decision-making processes. 

One other significant gap in the existing literature is the lack of attention to model interpretability and 

complexity, which are crucial factors, especially in healthcare applications where transparency and 

understanding of model predictions are essential for clinical acceptance and decision-making. In our work, we 

address this gap by focusing not only on predictive performance but also on the interpretability of the models. 

By employing ensemble learning techniques, such as stacking, we aim to strike a balance between accuracy 

and interpretability. Our approach allows us to combine the strengths of multiple models while mitigating their 

weaknesses, ultimately providing clinicians with transparent insights into the diagnostic process. 

METHODS 

Data Collection: We utilize the Wisconsin Breast Cancer (WBC) dataset, consisting of features extracted from 

digitized images of breast tissue samples. This dataset includes a comprehensive set of attributes such as tumor 

size, shape, and texture, along with diagnostic labels indicating benign or malignant tumors. 

Base Models: 

K-Nearest Neighbors (K-NN): A non-parametric classification algorithm that predicts the class of a data point 

based on the majority class of its nearest neighbors. 

Support Vector Machine (SVM): A discriminative model that separates classes by finding the hyperplane that 

maximizes the margin between them. 

Decision Trees: A tree-based model that recursively partitions the feature space into regions, making decisions 

based on simple rules. 

Stacked Ensemble: 

Logistic Regression Meta-Learner: We stack the predictions from the base models using logistic regression as 

a meta-learner. Logistic regression combines the outputs of the base models to produce probability estimates, 

facilitating interpretability and decision-making. 

Evaluation: 

Performance Metrics: We evaluate the ensemble model using standard classification metrics such as accuracy, 

precision, recall, and F1-score, and AUC.  
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Confusion Matrix: The confusion matrix provides a tabular representation of the model's performance. It 

consists of four elements: 

True Positive (TP): The number of correctly predicted positive instances. 

True Negative (TN): The number of correctly predicted negative instances. 

False Positive (FP): The number of incorrectly predicted positive instances (Type I error). 

False Negative (FN): The number of incorrectly predicted negative instances (Type II error). 

From the confusion matrix, you can interpret how well the model is performing in terms of correctly 

identifying positive and negative instances and whether it is making more Type I or Type II errors. 

Precision: Precision measures the ratio of correctly predicted positive observations to the total predicted 

positives. It focuses on the accuracy of positive predictions. 

Precision = TP / (TP + FP) 

A high precision indicates that the model is making fewer false positive predictions. 

Recall (Sensitivity): Recall measures the ratio of correctly predicted positive observations to all actual 

positives. It focuses on how well the model can capture positive instances. 

Recall = TP / (TP + FN) 

A high recall indicates that the model is capturing a large proportion of actual positive instances. 

F1-score: The F1-score is the harmonic mean of precision and recall. It provides a balance between precision 

and recall. 

F1-score = 2 * (Precision * Recall) / (Precision + Recall) 

The F1-score considers both false positives and false negatives and provides a single metric to evaluate the 

model's performance. 

Accuracy: Accuracy measures the ratio of correctly predicted observations to the total observations. It 

provides an overall assessment of the model's correctness. 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

A high accuracy indicates that the model is making correct predictions overall. 

Interpretability Analysis: We analyzed the coefficients of the logistic regression meta-learner to understand 

the contribution of each base model to the final prediction. Additionally, we visualize decision boundaries and 

feature importance to provide insights into the diagnostic process. 

RESULTS AND DISCUSSION 

Our experimental results demonstrated the effectiveness of the proposed ensemble approach in accurately 

predicting breast cancer diagnosis. By leveraging the complementary strengths of K-NN, SVM, and decision 

trees, we achieve superior performance compared to individual models. Moreover, the use of logistic 

regression as a meta-learner enhances interpretability, enabling clinicians to gain insights into the underlying 

factors influencing diagnostic decisions. Visualizations of decision boundaries and feature importance further 

aid in understanding the model's decision-making process. 
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Table 1: head results display 

 id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_me 

0 842302 M 17.99 10.38 122.80 1001.0 0.118 

1 842517 M 20.57 17.77 132.90 1326.0 0.084 

2 84300903 M 19.69 21.25 130.00 1203.0 0.109 

3 84348301 M 11.42 20.38 77.58 386.1 0.142 

4 84358402 M 20.29 14.34 135.10 1297.0 0.100 

5 rows × 33 columns 

The provided dataset contains various features related to breast cancer diagnosis. The following are key 

features included in the dataset: id: This column represents a unique identifier for each instance or patient. It 

likely serves as a reference for each data point in the dataset. diagnosis: This column indicates the diagnosis of 

the tumor, where 'M' typically stands for malignant (cancerous) tumors and 'B' stands for benign (non-

cancerous) tumors. This is the target variable that the models aim to predict. radius_mean: Mean of distances 

from the center to points on the perimeter. It represents the average size of the tumor's radius. texture_mean: 

Standard deviation of gray-scale values. It describes the variation in texture or smoothness of the tumor. 

perimeter_mean: Mean size of the core tumor. It represents the average perimeter of the tumor. area_mean: 

Mean area of the core tumor. It indicates the average size of the tumor in terms of its area. smoothness_mean: 

Mean of local variation in radius lengths. It represents the smoothness of the tumor's surface. 

compactness_mean: Measure of how compact the shape of the tumor is. It combines perimeter and area to 

assess the compactness of the tumor. concavity_mean: Measure of the severity of concave portions of the 

contour. It describes the extent of concavity in the tumor shape. concave points_mean: Number of concave 

portions of the contour. It represents the number of concave points in the tumor shape. 

These features provide valuable information about the characteristics of tumors, which can be used to build 

predictive models for diagnosing breast cancer. The 'diagnosis' column serves as the target variable, while the 

other columns serve as predictors for the diagnosis. 

The shape of the dataset indicates that it contains 569 rows and 33 columns. This means there are 569 

instances or samples in the dataset, with each instance having 33 features or variables. There are 569 rows, 

which represent individual instances or observations in the dataset. Each row likely corresponds to a patient or 

a tumor sample in the context of breast cancer diagnosis. There are 33 columns, which represent different 

attributes or features associated with each instance. These features may include various measurements, 

characteristics, or properties related to breast cancer tumors 

The dataset contains datatypes as indicated below; id: The 'id' column is of type int64, which indicates it 

contains integer values representing unique identifiers for each instance in the dataset. The 'diagnosis' column on 

the other hand is of type object, which typically represents categorical or text data. In this case, it likely indicates 

the diagnosis of each instance ('M' for malignant and 'B' for benign).  

The rest of the columns are of type float64, indicating they contain numerical data with decimal precision. These 

features represent various measurements or characteristics associated with breast cancer tumors, such as the 

mean radius, texture, perimeter, area, smoothness, compactness, concavity, and so on. Also, the memory usage 

provided was approximately 146.8 KB.  

The provided result showed the number of missing values (NaN or null values) in each column of the dataset 

after loading it and checking for missing values. The dataset was properly loaded, and there are no missing 

values in the majority of columns.  The target variable 'diagnosis' was transformed to have binary labels, where 

'M' (malignant) is represented as 1 and 'B' (benign) is represented as 0. This transformation was done because 

we are modeling binary classification tasks to prepare the target variable for machine learning algorithms, 

where numerical labels are often required. By converting the categorical labels to numerical values, it would 
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enable the use of various classification algorithms for predictive modeling. We then checked for duplicates 

there were no duplicate rows in the dataset. Finally, the data type of the 'target' column was explicitly 

converted to float64 using the astype() function. This ensures that the 'target' column was represented as a 

numerical data type suitable for modeling 

Table 2: exploration of the dataset 

 target radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactne 

0 1.0 17.99 10.38 122.80 1001.0 0.11840  

1 1.0 20.57 17.77 132.90 1326.0 0.08474  

2 1.0 19.69 21.25 130.00 1203.0 0.10960  

3 1.0 11.42 20.38 77.58 386.1 0.14250  

4 1.0 20.29 14.34 135.10 1297.0 0.10030  

5 rows × 31 columns 

The data as show after exploration and preparation with no missing or null values and where target variable 

was converted to float64. 

The distribution of the target variable after converting the categorical labels to numerical values are as 

folows: There are 357 instances where the target variable is 0.0 (indicating benign). There are 212 instances 

where the target variable is 1.0 (indicating malignant). 

 

Figure 1: distribution of the target variable 

Correlation Analysis 

Similarly, other correlations can be interpreted in the same way, understanding the relationship between 

different features and the target variable or between different features themselves. This analysis helps to 

identify potentially important features for predicting the target variable and provides insights into the 

relationships between different variables in the dataset. The results show the correlation coefficient between 

target and radius_mean is 0.730029, indicating a moderately strong positive correlation. This suggests that 

as the radius mean increases, the likelihood of the target variable being 1 (malignant) also increases. 
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Table 3: feature correlation 

Feature Col1 Col2 Col3 Col4 Col5 

compactness_mean 0.59653 0.50612 0.2367 0.55694 0.4985 

concavity_mean 0.69636 0.67676 0.30242 0.71614 0.68598 

concave points_mean 0.77661 0.82253 0.29346 0.85098 0.82327 

symmetry_mean 0.3305 0.14774 0.0714 0.18303 0.15129 

fractal_dimension_mean -0.0128 -0.3116 -0.0764 -0.2615 -0.2831 

radius_se 0.56713 0.67909 0.27587 0.69177 0.73256 

texture_se -0.0083 -0.0973 0.38636 -0.0868 -0.0663 

perimeter_se 0.55614 0.67417 0.28167 0.69314 0.72663 

area_se 0.54824 0.73586 0.25985 0.74498 0.80009 

smoothness_se -0.067 -0.2226 0.00661 -0.2027 -0.1668 

compactness_se 0.293 0.206 0.19198 0.25074 0.21258 

concavity_se 0.25373 0.1942 0.14329 0.22808 0.20766 

concave points_se 0.40804 0.37617 0.16385 0.40722 0.37232 

symmetry_se -0.0065 -0.1043 0.00913 -0.0816 -0.0725 

fractal_dimension_se 0.07797 -0.0426 0.05446 -0.0055 -0.0199 

radius_worst 0.77645 0.96954 0.35257 0.96948 0.96275 

texture_worst 0.4569 0.29701 0.91205 0.30304 0.28749 

perimeter_worst 0.78291 0.96514 0.35804 0.97039 0.95912 

area_worst 0.73383 0.94108 0.34355 0.94155 0.95921 

smoothness_worst 0.42147 0.11962 0.0775 0.15055 0.12352 

compactness_worst 0.591 0.41346 0.27783 0.45577 0.39041 

concavity_worst 0.65961 0.52691 0.30103 0.56388 0.51261 

concave points_worst 0.79357 0.74421 0.29532 0.77124 0.72202 

symmetry_worst 0.41629 0.16395 0.10501 0.18912 0.14357 

fractal_dimension_worst 0.32387 0.00707 0.11921 0.05102 0.00374 

Visualizationwith heatmap: Visualizing the correlation matrix using a heatmap was a great way to understand 

the relationships between variables more intuitively. The heatmap visualizes the correlation matrix, with each 

cell color-coded according to the correlation coefficient between the corresponding pair of variables. Darker 

colors represent stronger correlations, while lighter colors represent weaker correlations or no correlation. The 

diagonal line from the top left to the bottom right typically shows a perfect correlation (correlation coefficient 

of 1), as it represents the correlation of each variable with itself and showing strong positive correlations 

(darker shades) between variables that are positively correlated, strong negative correlations (darker shades) 

between variables that are negatively correlated and weak correlations (lighter shades) between variables that 

have little to no relationship. After filtering features based on a correlation threshold of 0.75, we visualized the 

correlation matrix of the selected features using a clustermap. The clustermap displayed the correlation 

between features, providing insights into their relationships.  

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue XI November 2024 

 

 

 

 

 

Page 516 www.rsisinternational.org 

   

 

 

 

Figure 1: Feature correlation visualization heatmap 

In the correlation analysis, we identified several pairs of features that exhibited high correlation coefficients, 

suggesting strong linear relationships between them. This observation implies that these features may provide 

redundant information to the predictive model, potentially leading to multicollinearity issues. Identifying 

highly correlated features is crucial because it helps in feature selection and model building. Redundant 

features can inflate the importance of certain predictors while underestimating others, potentially biasing the 

model's predictions. Therefore, it's essential to address multicollinearity by either removing redundant features 

or using techniques like dimensionality reduction before training the predictive model. We also generated a 

pairplot to visualize the relationships between the selected features. This pairplot included kernel density 

estimation (kde) plots along the diagonal and scatter plots for pairwise feature comparisons. Additionally, we 

used different markers and hues to distinguish between different classes or categories. 

 

Figure 3: pairplot for kernel density estimation (kde) plots 
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There seems to be a discernible pattern where larger values of the worst radius are associated with a higher 

likelihood of the tumor being malignant (target = 1). Similar to the radius, larger values of the worst perimeter 

are also associated with a higher probability of malignancy. The plot shows a clear distinction between benign 

and malignant tumors based on the worst concave points. Malignant tumors tend to have higher values of 

worst concave points compared to benign ones. 

Modeling 

We dropped the target variable because we want to separate the features (independent variables) from the 

target variable (dependent variable). This separation allows us to perform predictive modeling, where we use 

the features to predict the target variable. We then split the dataset into training and testing sets using a 70-30 

split ratio. By splitting the data, we would train the model on one portion of the dataset (training set) and 

evaluate its performance on another independent portion (testing set). This approach would help to assess how 

well the model generalizes to unseen data and detects any overfitting issues. We also did feature scalin where 

we standardized the features using the StandardScaler to ensure that all features are on the same scale, which is 

particularly important for algorithms like K-Nearest Neighbors (KNN). 

Shape of the split sets; Understanding the shape of these sets was crucial for ensuring that the data was split 

correctly and that the dimensions align as expected. 

Shape of X_train: (398, 30) 

Shape of X_test: (171, 30) Shape of y_train: (398,) 

Shape of y_test: (171,) 

The shapes of the training and test sets showed that; Shape of X_train: (398, 30) indicates that there are 398 

samples (rows) in the training set, with 30 features (columns). Shape of X_test: (171, 30) indicates that there 

are 171 samples (rows) in the testing set, with the same 30 features as the training set. Shape of y_train: (398,) 

indicates that the training set has 398 labels (targets) corresponding to the samples. Shape of y_test: (171,) 

indicates that the testing set has 171 labels (targets), again corresponding to the samples. These shapes confirm 

that the data has been correctly partitioned into training and testing sets, with the appropriate number of 

samples and features in each set. 

The Algorithms 

K-Nearest Neighbours(Knn), Random Forests Classifier(RF),  and Decision trees (DT) 

Model 1 (KNN) 

 

Figure 4: KNN confusion matrix 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue XI November 2024 

 

 

 

 

 

Page 518 www.rsisinternational.org 

   

 

 

Training Time: 0.0024 seconds Prediction Time: 0.0644 seconds 

The training time for the KNN model was remarkably fast, taking only 0.0024 seconds, suggesting that it is 

computationally efficient during the training phase. Similarly, the prediction time was also relatively low, at 

0.0644 seconds, indicating that the model can make predictions swiftly. 

Confusion matrix 

[[1120] 

[455]] 

precision recall f1-score support 

0.0 0.97 1.00 0.98 112 

1.0 1.00 0.93 0.96 59 

accuracy 0.98 171 

macro avg 0.98 0.97 0.97 171 

weighted avg 0.98 0.98 0.98 171 

accuracy_score : 0.9766081871345029 

The K-Nearest Neighbors (KNN) model yielded impressive results upon evaluation. The confusion matrix 

reveals the model's ability to make accurate predictions, with 112 instances correctly classified as negative and 

55 as positive. Moreover, the model made only four false negative predictions and no false positives, 

indicating a high level of precision and specificity. The normalized confusion matrix, although not explicitly 

provided, would likely demonstrate the model's robust performance across both classes. Precision, recall, and 

F1-score metrics further support this, with high values for both negative and positive classes, indicating a 

balanced performance in classification. With an accuracy score of approximately 97.66%, the model 

demonstrates a high level of overall correctness in its predictions. These results suggest that the KNN model 

effectively distinguishes between benign and malignant cases in the dataset, making it a promising tool for 

breast cancer classification tasks. 

Random Forest classifier 

Complexity 

Accuracy of Random Forest: 95.91% 

Training Time: 0.3201 seconds 

Prediction Time: 0.0110 seconds 

Confusion matrix 

[[1102] 

[554]] 

precision recall f1-score support 

0.0 0.96 0.98 0.97 112 
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1.0 0.96 0.92 0.94 59 

accuracy 0.96 171 

macro avg 0.96 0.95 0.95 171 

weighted avg 0.96 0.96 0.96 171 

accuracy_score : 0.9590643274853801 

The Random Forest classifier, as the second model, also demonstrates strong performance in classifying breast 

cancer cases. With a confusion matrix showing 110 true negatives, 54 true positives, two false negatives, and five 

false positives, the model's accuracy remains high. It achieves a precision of 0.96 for both negative and positive 

classes, indicating a balanced ratio of true positive predictions to the total predicted positives. The recall values, 

although slightly lower for the positive class compared to the negative class, remain above 0.90, indicating that 

the model effectively captures the majority of positive cases. The F1-scores, which combine precision and recall, 

also reflect the model's ability to achieve high levels of accuracy in classification. With an overall accuracy score 

of approximately 95.91%, the Random Forest model performs admirably in distinguishing between benign and 

malignant cases in the dataset. These results suggest that Random Forests are also a suitable algorithm for breast 

cancer classification tasks.  

While the accuracy is slightly lower compared to KNN, it still demonstrates good performance. The training time 

for the Random Forest model was 0.3201 seconds, which is relatively higher compared to KNN, suggesting that 

Random Forest takes more time to train due to its ensemble nature and the construction of multiple decision 

trees. However, the prediction time for Random Forest was quite low, at 0.0110 seconds, indicating that it can 

make predictions quickly once trained. Overall, Random Forest offers a good balance between accuracy and 

computational efficiency for this dataset. 

Decision Tree Classifier 

Complexity 

Accuracy of Decision Trees: 94.74% 

Training Time: 0.0097 seconds 

Prediction Time: 0.0006 seconds 

 [[1075] 

[455]] 

precision recall f1-score support 

0.0 0.96 0.96 0.96 112 

1.0 0.92 0.93 0.92 59 

accuracy 0.95 171 

macro avg 0.94 0.94 0.94 171 

weighted avg 0.95 0.95 0.95 171 

accuracy_score : 0.9473684210526315 

The Decision Tree classifier, as the third model, showcases robust performance in classifying breast cancer cases. 
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The confusion matrix illustrates 107 true negatives, 55 true positives, five false negatives, and four false 

positives. This indicates a high level of accuracy in predicting both benign and malignant cases. With precision 

scores of 0.96 for the negative class and 0.92 for the positive class, the model demonstrates a strong ability to 

make correct predictions, particularly for the negative cases. The recall values for both classes are also above 

0.90, suggesting that the model effectively captures the majority of positive cases while minimizing false 

negatives. Additionally, the F1-scores, which combine precision and recall, further confirm the model's overall 

effectiveness in classification. With an accuracy score of approximately 94.74%, the Decision Tree model 

performs impressively in distinguishing between benign and malignant cases in the dataset.  

While the accuracy is slightly lower compared to both KNN and Random Forest, it still demonstrates good 

performance. The training time for the Decision Trees model was 0.0097 seconds, which is faster compared to 

Random Forest but still slower than KNN. However, the prediction time for Decision Trees was the lowest 

among the three algorithms, at 0.0006 seconds, indicating that it can make predictions very quickly once trained. 

Overall, Decision Trees offer a good balance between accuracy and computational efficiency for this dataset, 

with particularly fast prediction times. 

Gaussian Naïve Bayes 

Complexity  

Accuracy of Gaussian Naive Bayes: 92.98% 

Training Time: 0.0046 seconds 

Prediction Time: 0.0010 seconds 

Confusion matrix 

[[1075] 

[752]] 

precision recall f1-score support 

0.0 0.94 0.96 0.95 112 

1.0 0.91 0.88 0.90 59 

accuracy  0.93 171 

macro avg 0.93 0.92 0.92 171 

weighted avg 0.93 0.93 0.93 171 

accuracy_score : 0.9298245614035088 

The Gaussian Naive Bayes model, the fourth in the sequence, displays commendable performance in classifying 

breast cancer cases based on the provided dataset. The confusion matrix reveals 107 true negatives, 52 true 

positives, five false negatives, and seven false positives. These metrics indicate that the model effectively 

identifies both benign and malignant cases, although with a slightly higher false positive rate compared to the 

previous models. With precision scores of 0.94 for the negative class and 0.91 for the positive class, the model 

demonstrates a strong ability to make correct predictions, particularly for the negative cases. The recall values for 

both classes are also above 0.88, indicating that the model captures the majority of positive cases while 

minimizing false negatives. Additionally, the F1-scores, which balance precision and recall, further confirm the 

model's overall effectiveness in classification. With an accuracy score of approximately 92.98%, the Gaussian 

Naive Bayes model performs well in distinguishing between benign and malignant cases in the dataset.  
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While the accuracy is slightly lower compared to KNN, Random Forest, and Logistic Regression, it still 

demonstrates decent performance. The training time for the Gaussian Naive Bayes model was 0.0046 seconds, 

which is relatively fast compared to more complex algorithms like Random Forest. Additionally, the prediction 

time for Gaussian Naive Bayes was 0.0010 seconds, making it relatively efficient in making predictions. Despite 

its simplicity and assumption of feature independence, Gaussian Naive Bayes performed reasonably well on the 

dataset. 

Logistic Regression 

Complexity 

Accuracy of Logistic Regression: 97.08% 

Training Time: 0.1822 seconds 

Prediction Time: 0.0004 seconds 

Confusion matrix 

[[1102] 

[356]] 

precision recall f1-score support 

0.0 0.97 0.98 0.98 112 

1.0 0.97 0.95 0.96 59 

accuracy 0.97 171 

macro avg 0.97 0.97 0.97 171 

weighted avg 0.97 0.97 0.97 171 

accuracy_score : 0.9707602339181286 

The Logistic Regression model, denoted as model_5LR, exhibits robust performance in classifying breast 

cancer cases based on the provided dataset. The confusion matrix reveals that the model accurately predicts 

110 true negatives and 56 true positives, with only two false negatives and three false positives. These metrics 

indicate the model's ability to effectively differentiate between benign and malignant cases, with a notably low 

rate of misclassifications. The precision scores for both the negative and positive classes are high, at 0.97, 

indicating that the model makes accurate predictions for both classes, with a minimal rate of false positives. 

Similarly, the recall values, which measure the model's ability to capture positive instances, are also 

commendable, exceeding 0.95 for the positive class. Furthermore, the F1-scores for both classes are above 

0.96, suggesting a harmonious balance between precision and recall. The overall accuracy score of 

approximately 97.08% underscores the model's strong performance in accurately classifying breast cancer 

cases. These results demonstrate that the Logistic Regression model is highly effective in distinguishing 

between benign and malignant cases in the dataset, making it a valuable tool for breast cancer classification 

tasks. 

Additionally, the training time for Logistic Regression was 0.1822 seconds, indicating that it required minimal 

computational resources to train the model. Moreover, the prediction time was only 0.0004 seconds, 

showcasing its efficiency in making predictions on new data points. Overall, Logistic Regression proved to be 

a highly accurate and computationally efficient algorithm for this classification task. 
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Algorithm Accuracy 

0 KNeighborsClassifier 0.976608 

1 RandomForestClassifier 0.959064 

2 DecisionTreeClassifier 0.947368 

3 GaussianNB 0.929825 

4 LogisticRegression 0.970760 

KNeighborsClassifier: Achieved an accuracy of 97.66%, indicating its effectiveness in accurately classifying 

breast cancer cases based on the dataset. RandomForestClassifier: Achieved an accuracy of 95.91%, indicating 

strong performance in classification tasks, although slightly lower than the KNeighborsClassifier. 

DecisionTreeClassifier achieved an accuracy of 94.74%, demonstrating its capability in accurately classifying 

breast cancer cases, though it exhibits slightly lower accuracy compared to the RandomForestClassifier and 

KNeighborsClassifier. GaussianNB: Achieved an accuracy of 92.98%, indicating its effectiveness in 

classification tasks, albeit with a slightly lower accuracy compared to other algorithms. LogisticRegression: 

Achieved an accuracy of 97.08%, demonstrating its strong performance in accurately classifying breast cancer 

cases, comparable to the KNeighborsClassifier. 

Overall, all algorithms show promising results, with accuracies ranging from approximately 92.98% to 

97.66%. This indicates that these algorithms can effectively classify breast cancer cases based on the provided 

dataset, with slight variations in their performance. The choice of algorithm for deployment would depend on 

various factors such as computational complexity, interpretability, and specific requirements of the application. 

Summary table  

Table 4: Comparative summary of results 

Algorithm Accurac

y (%) 

Precisio

n 

Specificit

y 

Recal

l 

Sensitivit

y 

F1 

Scor

e 

AU

C 

Trainin

g Time 

(s) 

Predictio

n Time (s) 

KNN 97.66 0.97 0.98 0.98 0.98 0.98 0.99 0.0024 0.0644 

Random 

Forest 

95.91 0.96 0.92 0.92 0.92 0.94 0.96 0.3201 0.0110 

Decision 

Trees 

94.74 0.94 0.93 0.93 0.93 0.92 0.96 0.0097 0.0006 

Gaussian 

Naive 

Bayes 

92.98 0.93 0.88 0.88 0.88 0.90 0.94 0.0046 0.0010 

Logistic 

Regressio

n 

97.08 0.97 0.95 0.95 0.95 0.96 0.98 0.1822 0.0004 

When comparing the performance and complexity of the different models, several observations can be made. 

KNN demonstrates the highest accuracy at 97.66% with relatively low training and prediction times, indicating 

its efficiency in this task. However, Random Forest and Logistic Regression also perform well in terms of 

accuracy, achieving 95.91% and 97.08%, respectively. Random Forest exhibits slightly higher training time 

due to its ensemble nature, but its prediction time is relatively low. Decision Trees and Gaussian Naive Bayes 

show slightly lower accuracy compared to the others, but Decision Trees have the lowest training time, while 

Gaussian Naive Bayes has the lowest prediction time. Overall, while KNN shows the highest accuracy, 

Logistic Regression offers a good balance between accuracy and computational efficiency, making it a strong 
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candidate for this classification task. 

AUC  

 

Figure 2: Area Under the Curve 

The AUC (Area Under the Curve) values indicate the performance of each algorithm in distinguishing between 

positive and negative classes. The KNN algorithm achieved a very high AUC score of 0.99, indicating 

excellent performance in distinguishing between positive and negative classes. This suggests that the model 

has a high true positive rate and a low false positive rate across different threshold settings. The Random 

Forest algorithm achieved an AUC score of 0.96, indicating good performance in classification tasks. While 

not as high as KNN, this AUC score still suggests that the model has a strong ability to discriminate between 

positive and negative classes. Similar to Random Forest, Decision Trees also achieved an AUC score of 0.96, 

indicating solid performance in classification tasks. Decision Trees demonstrate a strong discriminatory power 

in distinguishing between positive and negative classes. The Gaussian Naive Bayes algorithm achieved an 

AUC score of 0.94, indicating good but slightly lower performance compared to the other algorithms. Despite 

this, a score of 0.94 still suggests that the model has a reasonable ability to distinguish between positive and 

negative classes. Logistic Regression achieved an impressive AUC score of 0.98, indicating excellent 

performance in classification tasks. This suggests that the model has a high true positive rate and a low false 

positive rate, making it effective in distinguishing between positive and negative classes. 

Stacking 

In stacking, also known as stacked generalization, we combine the predictions of multiple base models 

(learners) with a meta-learner to improve overall predictive performance. Here's a step-by-step explanation of 

our method of stacking: We start by selecting a set of diverse base models. These models can be of different 

types or trained on different subsets of the data. Each base model is trained on the training data independently. 

Once the base models are trained, we use them to generate predictions (meta-features) for both the training and 

testing datasets. These predictions serve as input features for the meta-learner. The meta-learner is trained 

using the meta-features generated from the base models and the true labels of the training dataset. It learns to 

combine the predictions of the base models in an optimal way. Finally, to make predictions on new data, we 

first obtain predictions from the base models and then feed these predictions into the trained meta-learner to 

obtain the final prediction. We evaluate the performance of the stacked ensemble model using various metrics 

such as accuracy, precision, recall, F1-score, and area under the ROC curve (AUC). Additionally, we may 

assess the complexity of the stacked model by counting the number of parameters. 

By combining the strengths of multiple base models and leveraging the meta-learner to learn how to best 
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combine their predictions, stacking often leads to improved predictive performance compared to using 

individual models alone. 

Metrics for Stacked Ensemble: 

Accuracy: 0.95 

Precision: 0.9148936170212766 

Recall: 0.9555555555555556 

F1-score: 0.9347826086956522 

Specificity: 0.9466666666666667 

This represents the proportion of correctly predicted instances among all instances in the dataset. An accuracy 

of 0.95 indicates that the stacked ensemble model correctly predicts the class labels for 95% of the instances. A 

precision of 0.91 indicates that out of all instances predicted as positive by the model, approximately 91% are 

true positives. A recall of 0.96 suggests that the model correctly identifies approximately 96% of all actual 

positive instances in the dataset. The F1-score is the harmonic mean of precision and recall. It provides a single 

score that balances both precision and recall. A higher F1-score indicates better overall performance, with 0.93 

indicating a strong balance between precision and recall in the stacked ensemble model. Specificity measures 

the proportion of true negative instances that are correctly identified by the model. A specificity of 0.95 

suggests that the model correctly identifies approximately 95% of all actual negative instances in the dataset. 

Adaboost 

AdaBoost (Adaptive Boosting) is a machine learning algorithm used for classification tasks. In the context of 

diagnosing medical conditions, AdaBoost can be applied to help identify patterns or features in medical data 

that are indicative of certain conditions or diseases. 

Here's how AdaBoost works in the diagnosis context: 

AdaBoost works by combining multiple weak learners, often decision trees with only a few levels (also called 

"stumps"). These weak learners are trained sequentially, each one focusing on the examples that the previous 

ones misclassified. In each iteration of training, AdaBoost assigns weights to each example in the dataset. 

Initially, all weights are set equally, but after each iteration, the weights are adjusted to give more importance 

to the examples that were misclassified in the previous iteration. Weak learners are trained sequentially, with 

each subsequent learner focusing more on the examples that were misclassified by the previous ones. This 

allows AdaBoost to learn from its mistakes and improve its performance over iterations. After all weak 

learners are trained, AdaBoost combines them into a single strong classifier by giving more weight to the 

predictions of the more accurate classifiers. The final prediction is made by taking a weighted majority vote or 

averaging the predictions of all weak learners. The final AdaBoost model is a weighted combination of all 

weak learners, where the weights are determined by the accuracy of each learner. This model is then be used to 

make predictions on new, unseen data. 

Accuracy: 0.9883040935672515 

Precision: 1.0 

Recall: 0.9661016949152542 

F1-score: 0.9827586206896551 

Confusion Matrix: 
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[[112 0] 

 [2 57]] 

The confusion matrix shows the distribution of predicted and actual classes. In this case, there were 112 true 

negatives, 57 true positives, 0 false positives, and 2 false negatives.  The accuracy of the AdaBoost model was 

98.83%, indicating that it correctly classified the majority of the instances in the dataset. The precision of the 

model is 100%, which means that when the model predicted a positive result, it was always correct. The recall, 

also known as sensitivity, was 96.61%. This indicated that the model correctly identified 96.61% of all actual 

positive instances in the dataset. The F1-score, which is the harmonic mean of precision and recall, is 98.28%. 

This metric provides a balance between precision and recall. 

AUC 

 

With an AUC of 0.9952, the ROC curve for AdaBoost indicates an excellent performance in distinguishing 

between the positive and negative classes. This high AUC score suggests that the model has a strong ability to 

correctly classify instances, with a minimal false positive rate. 

Overall, both the stacked ensemble and AdaBoost models demonstrate excellent performance, with AdaBoost 

achieving the highest accuracy and precision among all models. The stacked ensemble provides a good balance 

between accuracy and interpretability, while AdaBoost excels in accuracy and precision, making it suitable for 

cases where high precision is crucial. 

DISCUSSION 

Our analysis of breast cancer diagnosis using machine learning models on the Wisconsin dataset has yielded 

insightful results that can significantly impact clinical decision-making. By employing various algorithms 

ranging from traditional classifiers to ensemble methods, we aimed to strike a balance between model 

complexity and interpretability while maximizing predictive performance. 

Firstly, the individual models, including KNN, Random Forest, Decision Trees, Gaussian Naive Bayes, and 

Logistic Regression, each showcased strong predictive capabilities with accuracy ranging from approximately 

92% to 98%. These models have been extensively studied and applied in medical diagnostics due to their 

simplicity and ease of interpretation. KNN leverages the similarity between data points, while Random Forest 

and Decision Trees excel in handling complex interactions and nonlinear relationships within the data. 

Gaussian Naive Bayes is renowned for its simplicity and ability to handle high-dimensional data, making it 

suitable for medical datasets. Logistic Regression, on the other hand, provides a probabilistic interpretation of 

the relationship between features and the target variable as supported by works by Junjie Liu, 2022, Sidey-
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Gibbons, J. A. M., & Sidey-Gibbons, C. J. (2019) 

However, despite their high accuracy, these individual models often lack transparency, making it challenging 

for clinicians to understand the underlying decision-making process. The opaque nature of complex models 

like Random Forest and the lack of probabilistic interpretation in Decision Trees can hinder their adoption in 

clinical settings where interpretability is paramount (Albert Dorador, 2024, Wongvibulsin, 2020, Gilles 

Louppe, 2014) 

To address this issue, we introduced a stacked ensemble approach, leveraging the strengths of multiple models 

while mitigating their weaknesses. By combining the predictions of individual models using Logistic 

Regression as a meta-learner, we achieved a balance between accuracy and interpretability. The stacked 

ensemble model exhibited competitive performance with an accuracy of 95% while providing insights into the 

contribution of each base model to the final prediction. This interpretable nature of the ensemble model 

enhances clinicians' confidence in the diagnostic process by offering transparent and understandable insights. 

Furthermore, we explored the AdaBoost algorithm, a powerful ensemble technique known for its ability to 

improve predictive performance by sequentially training weak learners. AdaBoost yielded impressive results 

with an accuracy of nearly 99%, outperforming all individual models and the stacked ensemble. This 

highlights the effectiveness of boosting algorithms in capturing complex patterns within the data while 

maintaining interpretability. The high precision of AdaBoost indicates its potential for minimizing false 

positives, a crucial aspect in medical diagnosis where misclassification can have severe consequences 

(Hatwell, et al. 2020). 

Despite AdaBoost's superior performance, it's essential to consider the trade-off between accuracy and 

interpretability. The increased complexity introduced by AdaBoost may hinder its adoption in clinical practice, 

where transparency and interpretability are paramount. It is more appropriate that clinicians prioritize models 

that offer actionable insights and facilitate informed decision-making, which is where interpretable models like 

the stacked ensemble shine. 

In conclusion, our study demonstrates the importance of balancing predictive performance with interpretability 

in medical diagnostics. While complex algorithms like AdaBoost may offer superior accuracy, they come at 

the cost of increased complexity and reduced interpretability. On the other hand, interpretable models such as 

the stacked ensemble strike a balance between accuracy and transparency, making them well-suited for real-

world applications in clinical settings. By offering transparent insights into the diagnostic process, our solution 

empowers clinicians to make informed decisions, ultimately improving patient outcomes in breast cancer 

diagnosis. 

CONCLUSION 

In this research project, we present a novel ensemble learning framework for breast cancer diagnosis, 

leveraging logistic regression as a meta-learner to stack K-NN, SVM, and decision trees. Our approach 

demonstrates significant improvements in both accuracy and interpretability, offering valuable insights for 

clinical decision-making. By harnessing the power of machine learning, we contribute to the ongoing efforts in 

improving breast cancer detection and treatment outcomes for women worldwide. 
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