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ABSTRACT 

The integration of advanced in-car infotainment systems raises essential concerns regarding their influence on 

the driver’s performance, particularly the cognitive aspects. To address this, our study assessed the cognitive 

workload (CWL) associated with various infotainment systems using neurophysiological tools such as 

electroencephalograms (EEG), eye tracking (ET), and galvanic skin resistance (GSR) across three task modes 

(touch, voice, hybrid), two contexts (driving and static), two infotainment system designs (different cars), and 

four user tasks (Radio Station, Temperature Change, Calling, Navigation) on a dedicated driving track. This 

empirical framework provided a realistic and accurate evaluation of cognitive workload and user experience in 

Human-Computer Interaction (HCI) designs. Fourteen participants performed 24 tasks over 50-80 minutes, 

revealing that touch-based interactions consistently led to higher cognitive load, with touch-based navigation 

leading to a 14% increase. Voice mode heightened distraction, while hybrid mode resulted in the highest 

distraction levels (48.12% higher than voice and 17.26% higher than touch mode). Systems without 

autosuggestion also demonstrated higher workload and distraction. The study recommends using hybrid modes 

for navigation, physical steering wheel switches for calling, and voice commands for radio when steering-

mounted controls are unavailable. Establishing national/international policies and standards, and industry-level 

certifications for infotainment systems is also recommended. Our limitations included moderation issues, a 

broad but shallow experimental design, and limited task trials. Future research should focus on detailed 

experimentation, cognitive load theory-based rating scales, and virtual reality (VR) setups with 

neurophysiological measurements.   

Keywords: Cognitive Workload (CWL), Infotainment Systems, Electroencephalography (EEG), Eye-tracking, 

Galvanic Skin Resistance, Human-Computer Interaction, User Experience. 

INTRODUCTION 

The rapidly evolving automotive technology in the Indian market leaves concern about its impact on driver 

attention and performance. Prior studies have repeatedly demonstrated that driver inattention and distractions 

are a leading cause of automobile accidents (Hanowski et al., 2005; Klauer and Mierke, 2005; Regan, Lee and 

Young, 2008; Lee, 2017). Driving is inherently complex, involving multitasking influenced by road 

conditions, traffic, dashboard devices, and external stimuli affecting driver performance (Di Flumeri et al., 

2018). Intelligent transport systems recognise that drivers’ cognitive demands should remain within a threshold 

due to limited human processing resources and time constraints (Solís-Marcos and Kircher, 2018). This can be 

measured via cognitive workload (CWL) – the mental effort required for task completion (Gevins et al., 1997; 

Figalová et al., 2022). It provides insights into mental fatigue, mental effort, and concentration levels as a 

function of task complexity, learning techniques, and information-processing capabilities (Plechawska-Wójcik 

et al., 2019). Elevated CWL is associated with decreased situational awareness and driving errors, raising 

collision risks (Lobo et al., 2016; Di Flumeri et al., 2018). Besides the driving tasks, vehicle navigation, and 
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vehicle control that require increased cognitive demands (Cernea et al., 2012), technological advances such as 

smartphone integration and in-car entertainment also impact driver behaviour, making it crucial to balance task 

difficulty, risk, and safety (Summala, 2007). Our study examines lapses in attention and performance during 

interactions between drivers and in-car infotainment systems amidst the rapid development of these systems in 

India. 

Rationale Behind Neurophysiological Tools for HCI Usability Studies 

Unlike the subjective methods like interviews and surveys to assess cognitive burden (Kruger and Doherty, 

2016) that fail to capture the “unconscious” phenomenon underlying human behaviour (Gopher and Braune, 

1984; Wall et al., 2004; N. Kumar and Kumar, 2016; Aricò et al., 2018), our study utilises neurophysiological 

measures of electroencephalography (EEG), galvanic skin resistance (GSR), and eye tracking (ET) for 

objective and precise usability assessments in Human-Computer Interaction (HCI) designs (Hancock and 

Chignell, 1988, 1989; J. Kumar and Kumar, 2016; N. Kumar and Kumar, 2016). They provide accurate, 

comparable findings by measuring brain psychophysiological responses (Hart, 2006) and are affordable, non-

invasive, and independent of medical training. The EEG provides a direct measure of brain activations and 

high temporal resolution (Freeman et al., 2000; Prinzel et al., 2000; Islam et al., 2020), while electrodermal 

activity (EDA) or GSR gauges skin conductance linked to arousal and attention, particularly useful for mental 

workload and driver performance assessment (Boucsein, 2012; Nourbakhsh, Wang and Cheng, 2012; Suoja et 

al., 2018). Eye-tracking metrics, including pupil dilation, blink frequency, and duration, correlate with 

cognitive exertion (Beatty and Wagoner, 1978; Klingner, 2010; Hossain and Elkins, 2016). This multimodal 

approach enhances measurement reliability, robustness, and precision by leveraging multiple sensors (Debie et 

al., 2021), reducing uncertainty, improving sensitivity, and accounting for individual variability (Wierwille and 

Thomas, 1993; Johannes and Gaillard, 2014). Additionally, it improves signal-to-noise ratio, enhances spatial 

and temporal range, and provides better resolution of driver cognitive states, essential for designing safer, more 

productive dashboards (Kohlmorgen et al., 2007; Lin, Ko and Shen, 2009; Göhring et al., 2013). 

EEG & Eye-Tracking for Real-Time Cognitive Monitoring in HCI 

The EEG is pivotal for real-time monitoring of cognitive processes such as attention, memory, and workload. 

Studies using EEG headsets for in-vehicle systems control revealed reduced errors, especially for simple 

commands, compared to touch-based manipulation (Cernea et al., 2012). EEG spectrum modulation 

demonstrated increased frontal theta activity with a higher working memory load and decreased parietal alpha 

activity with an increased task load (Lei and Roetting, 2011). Research on EEG theta power activity in high-

stress environments showed increased activity in frontal, temporal, and occipital regions under high mental 

workload (Diaz-Piedra, Sebastián and Di Stasi, 2020). Others have also demonstrated increased activity in the 

right hemisphere for theta, sensorimotor rhythm (SMR), beta, and gamma bands, indicating greater attention 

and tiredness among novice drivers than veterans (Ma et al., 2012). Complimentary to these methods, event-

related potentials (ERPs), such as N1 and P3, identified heightened cognitive demands linked to faster 

processing requirements and the introduction of visual displays (Sugimoto et al., 2020). A similar analysis 

revealed a significant decrease in P3b amplitude with increased workload levels (Lei, Welke and Roetting, 

2009). Eye-tracking (ET) also provides valuable insights into driver behaviour, with novice drivers focusing 

more on the dashboard compared to experienced drivers who prioritise the front view (Nabatilan et al., 2011). 

Increased blink frequency, pupil diameter, and horizontal vergence have also indicated cognitive load in dual 

and auditory tasks (Tsai et al., 2007). 

Multimodal Approaches for Evaluating Cognitive Load 

The multimodal approach of EEG with biosignals like skin conductance, pulse, and respiration effectively 

recognises cognitive workload. Studies using these biosignals in driving simulators have assessed stable 

workloads during multitasking (Putze, Jarvis and Schultz, 2010; Lobo et al., 2016), supporting findings that 

ERPs reveal significant differences in cognitive load between single-task and multitasking conditions (Solís-

Marcos and Kircher, 2018). Such multimodal approaches offer comprehensive assessments of mental states 

during driving tasks (Putze, Jarvis and Schultz, 2010; Ma et al., 2012; Di Flumeri et al., 2018; Pollmann et al., 

2019). 
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Cognitive Influence of Experiential & Environmental Factors 

Research shows that novice and elderly drivers experience higher cognitive workloads than experienced 

drivers under similar conditions (Nabatilan et al., 2011; Karthaus, Wascher and Getzmann, 2018). Novice 

drivers tend to focus more on the dashboard, while experienced drivers prioritise the road (Nabatilan et al., 

2011). Braking response under distractions revealed diminished cognitive control in older adults, illustrated by 

a smaller P3b component, with visual stimuli causing heightened interference (Karthaus, Wascher and 

Getzmann, 2018). Studies on the environmental factors revealed mixed impacts as one found bright blue 

lighting and reduced auditory and visual stimuli to affect driver concentration (Pollmann et al., 2019). Yet, 

another showed that ambient light did not increase mental workload, suggesting that certain environmental 

modifications can improve driver performance without adding cognitive burden (Figalová et al., 2022). 

Additionally, research on one-pedal automobile operation indicates that such systems could improve driving 

enjoyment and reduce cognitive workload (Sugimoto et al., 2020). 

Cognitive Load Assessment Challenges  

Comparative studies of simulated vs. real-world driving conditions revealed that on-road driving caused 

slightly higher arousal levels (Reimer and Mehler, 2011) and required double the attention towards the front 

compared to simulations (Ma et al., 2020). A study on emergency driving revealed comparable stress levels in 

both conditions, with GSR signals more affected by controller types than visual settings (Karthaus, Wascher 

and Getzmann, 2018). Thus, while laboratories are optimal for emergency simulations, real-world studies are 

crucial for understanding routine driving dynamics. Despite significant advancements, persistent gaps affect 

cognitive workload assessment in driving, such as the validation of simulator-based findings in real-world 

conditions (Di Flumeri et al., 2018). Future studies should focus on developing intuitive user interfaces and 

adaptive driving technologies to reduce possible cognitive load during driver-infotainment interactions. In light 

of this, our study aims to investigate the cognitive workload during driver-dashboard interactions across 

infotainment tasks, participants, and interaction modalities (touch, voice, and hybrid) using EEG, GSR, and 

ET, involving experienced drivers performing tasks in both dynamic (driving) and static (stationary) 

conditions, using two distinct vehicle types. 

RESEARCH METHODOLOGY 

Participants 

Fourteen participants from three age brackets —20-34 (8 participants), 35-44 (4 participants), and 45-58 years 

(2 participants)– were recruited to understand cognitive workload across different developmental stages. All 

participants had over four years of driving experience, normal visual acuity, and no cardiovascular or 

respiratory conditions. We developed user personas for each age group to aid recruitment and enhance 

understanding and empathy for users and stakeholders (Matthews, Judge and Whittaker, 2012; Nielsen and 

Storgaard Hansen, 2014). No within-participant differences were noted, resulting in a focus on personas and 

sample selection. This approach ensured a tailored recruitment process and improved the relevance of the 

study's findings towards a more robust real-world usage, especially in the Indian driving context. 

Experimental Devices 

Electroencephalography (EEG) 

Electroencephalography (EEG) measures the brain’s electrical activity non-invasively. We used a 64-channel 

‘acticap slim/snap’ cap with active electrodes and electrolyte gel for high fidelity and low noise. Electrode 

placement followed the international 10-20 system, with three additional accelerator channels for motion-

artefact correction (Homan, Herman and Purdy, 1987), crucial for in-car experiments. Signals were recorded at 

a sampling rate of 500 Hz (2 ms/sample) using the BrainVision Recorder software linked to the portable 

‘LivAmp’ amplifier, ensuring accurate impedance optimisation and storage of acquisition parameters. LivAmp 

is portable, has a 64-channel capacity, and can measure up to 8 bipolar channels for additional physiological 

signals. LivAmp specifications included a measurement range of ±341.6 mV, < 2 μVpp input noise, and a 24-

bit A/D conversion, providing precise and reliable Bluetooth-based wireless data capture. Due to in-car 
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constraints, GSR was measured using a wristwatch sensor instead of a bipolar channel for fidelity and 

mobility. Cognitive workload (CWL) correlates were obtained via anatomical, cognitive, and statistical source 

separation (Cohen, 2014), which provided noise-separated task-induced CWL.  

Galvanic Skin Resistance (GSR) 

Electrodermal activity (EDA), or galvanic skin response (GSR), measures skin electrical conductance via 

sensors making it a vital tool for assessing cognitive workload due to its positive correlation with it 

(Nourbakhsh, Wang and Cheng, 2012). The Empatica E4 wristband, used for its naturalistic setting, measures 

sympathetic nervous system activity and heart rate through EDA and photoplethysmography (PPG) sensors. It 

records, administers, and broadcasts data in real time to mobile apps. It comprises an internal clock, a 

thermopile for skin temperature, a 3-axis accelerometer, an event mark button, an EDA sensor, and a PPG 

sensor. Data was sampled at 4 Hz (EDA) and 64 Hz (PPG) with a range of .01 μSiemens – 100 μSiemens. 

Recent literature validated its reliability and validity (McCarthy et al., 2016; Borrego et al., 2019; Schuurmans 

et al., 2020), especially in studies requiring accessibility and portability like ours.   

Eye-Tracking (ET) 

Eye tracking measures metrics like pupil dilation, blink frequency, and blink duration that correlate with 

cognitive exertion (Beatty and Wagoner, 1978; Klingner, 2010; Hossain and Elkins, 2016). We used the Tobii 

Pro Glasses 2, an advanced eye-tracking device with high-resolution cameras sampling up to 100 Hz. Its wide 

view allows for a comprehensive analysis of visual attention and gaze patterns using geometric calculations 

and an anatomical 3D eye model (Harezlak, Kasprowski and Stasch, 2014). The glasses, lightweight and non-

invasive, allow natural gaze observation without obstruction. It offers a spatial accuracy of up to 0.5 degrees 

within a 150 cm range and includes an HD camera with a 160º angle of vision, a microphone for ambient 

sound capture, eye-lighting apparatus, and sensors for eye-gaze tracking. In our experiment, pupil dilation and 

gaze variability were observed (Sánchez-Ferrer et al., 2017; Diaz-Piedra et al., 2019) during driver-

infotainment interaction via a camera tracking near-infrared light reflections in the pupil and cornea. Pupil 

dilation (widening of pupils) indicates cognitive engagement, while gaze variability measures eye movement 

frequency, with high variability suggesting exploration and low variability indicating intense focus. 

Workflow 

The workflow diagram provided in Figure 1. concisely outlines our study’s journey, from the philosophy and 

research justification to our objectives and methodology strategy. 

 

Fig. 1. Methodology Workflow  
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Experimental Design 

The experiment followed a between-task design where drivers underwent "3 (Modes) x 2 (Contexts) x 2 (Cars) 

x 4 (User Tasks)." Fourteen participants performed 52 tasks, with interaction modes including touch, voice, 

and hybrid, on two cars (Car 1 and 2). The two contexts, static and dynamic, were further dissociated into 3 

primary conditions, viz., Car 1 (Static & Dynamic) and Car 2 (Dynamic only). The tasks encompassed 

navigation, calling, temperature adjustment, and radio operation, performed under each condition. Car 1 

included all tasks across three modes in static and dynamic conditions, while Car 2 focused solely on 

navigation tasks using two modes in the dynamic condition. Multimodal approaches (EEG, GSR, and ET) 

provided insights into the driver's perceived workload. Due to the experiment's brevity, Car 1 was prioritised 

for both contexts, maintaining the primary goal of computing the CWL gradient across interaction modes, task 

categories, car-infotainment types, and driving conditions. Inter-car designs were not feasible due to design 

complexity and the 90-minute experimental processes, including the switching of cars. Given this, the 

experiment’s stimuli were not predetermined; instead, a randomised block-based design on task types was 

analysed across the experimental dimensions. The task locations, participant selection, experimental 

conditions, and creation of personas and scenarios were meticulously planned to ensure the accuracy of 

analysis metrics. 

Task Description and Sequencing 

Four categories of tasks that participants regularly perform in their daily lives were selected. They were to be 

executed using touch, voice, and hybrid (combination of touch and voice) commands. The tasks include: 

1. Adjusting in-vehicle temperature to 18˚C, 21˚C, and 24˚C. 

2. Turning on the FM radio and tuning to stations 91.1 MHz, 92.7 MHz, and 98.3 MHz.  

3. Using navigation to search for a “unique location” versus a “non-unique location”. 

4. Making a call to a  “unique contact” versus a “non-unique contact”. 

The participants were asked to drive from the track to a specific location for the navigational task and perform 

the remaining as instructed by the experimenter in the front pillion seat. They were asked to maintain their 

focus on driving and tasks akin to their regular average drive. The tasks were pseudo-randomised by the 

experimenter using Excel’s Mersenne Twister algorithm to mitigate task expectancy (Matsumoto and 

Nishimura, 1998). The experimental duration for each participant was capped at approximately 90 minutes, 

with a scheduled natural break of 30 seconds between tasks. In instances of fatigue or exhaustion, longer 

breaks or termination of the experiment were recommended.  

Experimental Setup and Multimodal Data Collection 

Driver behaviour and task perception can differ significantly between simulated and real environments (Philip 

et al., 2005; de Winter et al., 2014). To address this, our experiment was conducted on a dedicated driving 

track, a quasi-realistic setting, to ensure the standardisation of driving tasks under consistent road conditions. 

The participants were familiarised with the track, reducing workload variability and ensuring consistent 

baseline performance. This is based on literature (Mourant and Rockwell, 1970) and the principle of ‘visual 

model and visual sampling strategy’, which states that road familiarity significantly impacts distracted driving 

behaviour, often leading to fixation, which shifts attention away from vehicle operation and thus influences 

cognitive workload (Reimer et al., 2012; Strayer et al., 2015). Hence, a familiar route for participants does not 

confound the experiment but enhances focus on evaluating in-vehicle control tasks and estimating mental 

workload during tertiary activities. 

Participants were briefed on the procedure and equipped with the multimodal setup within the vehicle. The  
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primary experimenter, responsible for task conduction and the sole interactor with the driver, was seated in the 

front passenger seat, while another in the rear seat recorded data. Two additional observers managed 

equipment and monitored experimental conditions with minimal participant interaction. Participants wore the 

Tobii Pro Glasses and an E4 watch on their wrists, while EEG electrode impedances were consistently 

maintained at approximately 10kΩ throughout the study. Data collection spanned seven days, with two 

participants per day, across three setups: Car 1 static, Car 1 dynamic, and Car 2 dynamic, in sequential order. 

Data Analysis 

Our multimodal approach adopted a complementary-cooperative configuration (Sánchez-Ferrer et al., 2017; 

Diaz-Piedra et al., 2019), capturing diverse cognitive and affective facets of CWL and integrating sensor data 

types for deeper insights. Data processing (de Winter et al., 2014) involved feature-level abstraction, extracting 

CWL feature vectors from GSR, EEG, and ET sensors and merging them for final classification. The GSR 

primarily reflected affective aspects (arousal, emotion) and some cognitive components (attention fractions, 

information processing), while the EEG targeted cognitive aspects of working memory. 

Electroencephalographic Data Processing Pipeline  

Preprocessing included average re-referencing (sans default AFz ground and FCz reference electrodes) 

followed by Butterworth Infinite Impulse Response (IIR) filtering (0.5-60 Hz, order 8), which attenuated 50 

Hz AC mains power frequency and aliased low-frequency noise from high-frequency electromagnetic sources. 

The signal-to-noise ratio was enhanced with Infomax Independent Component Analysis (ICA) for ocular 

artifact correction and Gratton-Coles correction for automated eye movement artifacts. Data segmentation, 

semi-automatic inspection, and manual artifact rejection (maximum 50 µV/ms voltage step, 200 µV peak-to-

trough difference, minimum 0.5 µV activity ) ensured quality. Fast Fourier Transform (FFT) with 0.5 Hz 

resolution, Hanning windowing, and 4096 ms zero-padded segments computed neural oscillations’ band 

powers. Python analysis using pandas, numpy, os, re, and xlrd libraries (Gupta and Bagchi, 2024), obtaining 

averaged frontal theta and parietal alpha powers across tasks and conditions to compute the CWL metric 

(frontal theta power/parietal alpha power) (Holm et al., 2009; Pušica et al., 2024), ensuring high-quality EEG 

data for neurocognitive assessments.  

GSR Analysis 

The GSR data from the E4 Empatica wristband, sampled at 4 Hz, was used to compute mean arousal for each 

task, averaging across tasks and a grand average across participants to derive the CWL metric. Libraries such 

as pandas, datetime, and numpy (Gupta and Bagchi, 2024) were used for efficient data analysis. 

Eye Tracking Analyses 

Eye tracking data, obtained using near-infrared light technology with Tobii Pro Lab Software, measured 

average pupil dilation and gaze variability across tasks, thereby aiding task performance evaluation. Raw data 

was task-wise segmented, and Python computed mean gaze event durations and pupil diameters per task 

category, enhancing CWL metric insights. Data analysis employed pandas, datetime, and numpy libraries.  

RESULTS 

EEG results 

The ratio of frontal theta power to parietal alpha power for all the tasks grand averaged across all the 

participants was calculated. The two cars cannot be compared due to experimental design limitations. 

However, Car 1 Gradient is considered, wherein the gradient is simply the CWL in the static condition 

subtracted from CWL in the dynamic condition, and it can be visualised in Figure 2. (‘x-axis’ are the tasks): 
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Fig. 2. EEG CWL Car 1 Gradient Percentage for All Tasks 

The EEG cognitive workload (CWL) analysis, categorised by task and modality, shows that the CWL during 

driving is generally higher than in static conditions. Tasks such as calling, radio change, temperature 

adjustment via voice, and temperature adjustment via touch exhibited minor negative CWL gradients (less than 

5%), indicating comparable mental workloads in both stationary and driving scenarios. Additionally, tasks like 

calling and navigation hybrid, navigation via voice, and radio hybrid showed minor positive CWL gradients 

(around or less than 5%), indicating minimal additional workload during driving. In contrast, tasks involving 

navigation-via-touch (~14%), calling-via-touch (~11%), calling hybrid (~5%), and radio-via-touch (~5%) 

resulted in significantly elevated workloads during driving. These findings suggest the need for redesign, 

especially for navigation and calling tasks, to reduce touch interaction and enhance driver safety. The analysis 

further revealed that radio-via-touch tasks imposed a greater cognitive burden than radio-via-voice tasks, 

underscoring the necessity of prioritising voice interactions. Generally, voice-based interactions demonstrated 

lower CWL across tasks, except for temperature adjustments, where touch proved more efficient, likely due to 

the straightforward nature of temperature control interfaces. 

GSR Results 

We computed mean GSR-based EDA arousal for all the tasks grand averaged over all the participants. Again, 

we can not compare and contrast the Car 1 and 2 conditions owing to experimental design limitations, 

including for GSR. However, Car 1 Gradient is considered, wherein the gradient is simply the mean arousal of 

the static condition subtracted from the mean arousal in the dynamic condition, and this can be seen in Figure 3 

(on ‘x-axis’ are the tasks): 

 

Fig. 3. Car 1 GSR Gradient Percentage for All Tasks  

The GSR CWL results indicated higher physiological arousal during driving compared to static conditions for 

all tasks, which aligns with expectations. Touch modality exhibited lower physiological arousal than voice or 
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hybrid modalities for all tasks, suggesting that touch may be less physiologically demanding but potentially be 

more cognitively taxing. This cognitive-physiological discrepancy warrants further investigation. The tasks of 

calling hybrid (~17%), navigation voice (~12%), temperature voice (~14%), and radio hybrid (~12%) induced 

significantly higher physiological arousal during driving. These tasks require redesign to mitigate heightened 

arousal, particularly for enhancing driver safety. The hybrid calling and navigation-calling voice features 

should be designed to minimise reliance on touch mode. Other tasks resulted in relatively lower arousal during 

driving conditions. The workload for these tasks should be evaluated in conjunction with other modality 

metrics. 

ET Results 

CWL prediction via ET analysis was based on mean pupil dilation and gaze variability. While pupil dilation 

during static conditions reliably indicated driver engagement, serving as a marker of involvement, the reduced 

gaze variability suggested a higher workload. 

Mean Pupil Dilation  

We computed the mean pupil dilation for all tasks, grand-averaged across participants (excluding Car 2 

Dynamic Condition). Car 1 ET Gradient was used, defined as the CWL in the static condition minus the CWL 

in the dynamic condition, differing from EEG and GSR gradients due to expected attenuated dilation during 

the driving condition. The gradient percentage across tasks and conditions is visualised in the graph presented 

in Figure 4A (the x-axis represents tasks; the y-axis refers to pupil dilation gradient percentage). 

 

Fig. 4A Pupil Dilation Gradient for Car 1 Tasks; Fig 4 B Mean Pupil Dilation Gradient Percentage for all 

Modalities 

From Figure 4A, we can infer that most infotainment interactions show higher pupil dilation gradients, 

indicating decreased ocular cognitive load, especially for radio and temperature adjustments. The only 

exception is the navigation task employing touch modality. For further clarity, cross-modality mean pupil 

dilation gradients for Car 1 were also analysed. However, gradient here refers to the mean pupil dilation in the 

dynamic condition minus that in the static condition for each modality. The gradient percentage across tasks 

and conditions can be observed in Figure 4B where the x-axis refers to the modalities and the y-axis refers to 

the pupil dilation gradient percentage. 

In all modalities, mean pupil dilation is lower for the dynamic condition, indicating decreased engagement 

while driving. In terms of gradient percentage, the largest decrease is in the voice modality (-7.14%), 

suggesting lower engagement, while the touch modality shows the smallest decrease (-5.20%), maintaining 

relatively higher engagement. 

Mean Gaze Variability 

Mean gaze variability for all tasks, grand-averaged across participants, was calculated (excluding Car 2 

conditions). The Car 1 ET Gradient was calculated as the CWL in the static condition minus the CWL in the 

dynamic condition. Again, this differs from EEG and GSR, owing to expected attenuation in variability during 
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driving. The gradient percentage across tasks is given in Figure 5A with the various tasks on the x-axis and the 

y-axis stating gaze variability gradient percentage. 

 

Fig. 5A Pupil Dilation Gradient for Car 1 Tasks and Fig. 5B Mean Gaze Variability Gradient Percentage 

Across Modalities 

We can see in Figure 5A that hybrid interactions demonstrate the highest gaze variability, particularly for 

calling and radio tasks, with a notable 101.42% increase for calling. Touch interactions generally result in 

higher gaze variability for navigation (73.89%) and calling tasks, reflecting significant engagement. Voice 

interactions, on the other hand, maintain lower variability across tasks, with the highest increase observed for 

temperature (101.42%), but generally show less engagement, especially for calling (22.95%) and radio 

(21.35%). Moreso, cross-modality mean gaze variability gradients across each modality for Car 1 were also 

analysed. The percentage across modalities (‘dynamic’ minus ‘static’) is visualised in Figure 5B, with the x-

axis referring to modalities and the y-axis to mean gaze variability gradient percentage. 

In Figure 5B, hybrid mode shows the largest decrease in engagement during driving, with a gradient 

percentage of -34.87%. The touch mode follows with a -28.86% decrease, while the voice mode has the 

smallest decrease at -18.09%, indicating relatively higher engagement. Overall, the hybrid mode exhibits the 

most significant reduction in gaze variability. 

Heat Maps 

It can be observed from the heat maps in Figure 6 that drivers focus heavily on in-car controls during static 

conditions but shift to the road, showing high engagement with the driving task and minimal interaction with 

the in-car controls during dynamic conditions. Across modalities, touch tasks demand substantial visual 

attention to the in-car console, while voice tasks let drivers keep their eyes on the road. Hybrid tasks require a 

balance between road and console attention, indicating a moderate engagement with both driving and in-car 

interactions. 

 

Fig. 6. Heat Maps: Heat maps across conditions, such as A) Car 1 Static condition and B) Car 1 Dynamic 
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condition. Cross-modality heat maps including C) Touch-task type, D) Voice-task type and E) Hybrid-task 

type 

Visual Responsivity Across Interaction Modalities in Diverse Driving Conditions 

Touch and hybrid conditions elicited higher pupil dilation due to menu interaction demands in both static and 

dynamic settings. Hybrid tasks showed increased gaze variability during static conditions, reflecting 

heightened cognitive workload from menu interaction. During driving, higher gaze variability in touch and 

voice modes suggested increased attention demands due to menu navigation and delayed voice responses. 

Moreover, average pupil dilation was higher during static conditions, indicating engagement with surrounding 

activities, while during driving, drivers were more focused on the task at hand. Higher gaze variability during 

static conditions reflected multiple points of engagement, whereas driving required sustained attention on the 

road. 

Task-Specific Analysis of Visual Attention Dynamics Across Interaction Modalities 

Task-specific observations further demonstrated that navigation required more attention, with higher pupil 

dilation in touch mode. Similarly, the temperature setting showed higher pupil dilation and gaze variability in 

touch mode. The radio channel setting task had higher pupil dilation in touch mode, with increased gaze 

variability during setup. The calling task reflected higher pupil dilation in touch mode, with higher gaze 

variability in hybrid mode.  

DISCUSSION 

In the evolving automotive landscape, assessing the impact of advanced infotainment systems on driver 

attention and performance is crucial. Given the risk of driver inattention and accidents caused by distractions 

from road conditions and dashboard devices, it is essential to enhance both driver safety and user experience. 

However, there is limited scientific data on the cognitive efficiency of different designs in Indian driving 

scenarios. This study examines the cognitive workload of touch-based, voice-based, and hybrid infotainment 

interactions using EEG, GSR, and eye-tracking in static and dynamic driving conditions. 

The data from this study reveal nuanced insights into cognitive workload during interactions with vehicle 

infotainment systems. EEG data showed that driving increased CWL compared to static conditions, with 

touch-based interactions causing the highest cognitive load—14% higher during navigation tasks. This aligns 

with research indicating that touch interfaces demand substantial visual and manual attention, contributing to 

elevated mental effort (Rydström, Broström and Bengtsson, 2012; Ferris, Suh and Miles, 2016; Suh and Ferris, 

2018). The need for precise motor control and constant visual engagement makes touch interactions 

particularly taxing for drivers. Conversely, voice-based interactions resulted in lower CWL than touch or 

hybrid modalities, with calling tasks showing the least CWL gradient in both voice and touch interactions, 

indicating a consistent level of mental effort across these modes. Despite freeing the hands, voice commands 

require considerable cognitive resources, supporting previous studies on the distraction challenges of auditory 

commands (Chaparro, Wood and Carberry, 2005; Just, Keller and Cynkar, 2008; Wu et al., 2016; Strayer et 

al., 2019). GSR results revealed higher physiological arousal during driving versus static conditions for all 

tasks. Touch tasks generally had lower arousal than voice or hybrid tasks, except for radio, suggesting touch 

may be less physiologically demanding but more cognitively taxing. Tasks like hybrid calling, voice 

navigation, and touch radio showed higher arousal, indicating potential safety concerns. Eye-tracking metrics, 

including mean pupil dilation and gaze variability, highlighted that drivers engage more with infotainment 

during static conditions but shift focus primarily to driving tasks while on the road. Specifically, pupil dilation 

showed higher gradients for touch interactions, indicating increased cognitive load, particularly for radio and 

temperature adjustments. Voice interactions exhibited moderate engagement, while hybrid interactions varied, 

with calling being less engaging and navigation more so. Gaze variability was notably higher during static 

conditions compared to driving, reflecting distinct cognitive focuses across interaction modes. Hybrid mode 

showed the highest gaze variability and distraction levels—48.12% higher than voice and 17.26% higher than 

touch—suggesting a level of complexity that overwhelms cognitive processing. 
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Our findings highlight the need for optimised infotainment designs. Using hybrid modes for navigation and 

voice commands for simpler tasks like radio tuning, especially when steering-mounted controls are 

unavailable, can balance the cognitive load by distributing tasks across different sensory modalities. Physical 

switches for calling functions on the steering wheel could also reduce cognitive demand. Our study's 

multimodal approach provided reliable CWL measurements but was limited by a broad experimental design 

with limited task trials, which affected result generalizability. Sequencing issues led to the exclusion of Car 2's 

dynamic condition due to participant fatigue, and protocol disruptions compromised data reliability. Future 

research should use more sophisticated randomisation, increase task trials, and integrate VR setups with 

neurophysiological measures for detailed insights and improved ecological validity. Developing adaptive 

infotainment systems that adjust to real-time cognitive workload, incorporating machine learning, and 

expanding participant diversity could improve safety and user experience. Establishing industry standards for 

infotainment system design will further promote safe and user-friendly interfaces. 

In conclusion, this study provides valuable insights into the cognitive workload of different infotainment 

interaction modes. Touch-based interactions are visually and manually demanding, voice-based interactions 

increase auditory distraction, and hybrid modes present the highest cognitive challenge. Designing Human-

Machine Interfaces that minimise cognitive load and enhance driver safety is essential, with future 

advancements promising more adaptive and intuitive systems. 

CONCLUSION 

Our study reveals significant cognitive workload in touch-based and hybrid infotainment interactions, with 

touch navigation tasks showing a 14% increase. Voice commands reduce manual effort but increase 

distraction, while hybrid modes amplify distraction the most. These insights are crucial for developing safer, 

intuitive vehicle interfaces. Integrating neurophysiological measurements into the design can optimise 

workload, enhancing driver safety and user experience. Establishing industry standards based on empirical 

research will promote best practices in infotainment design. Our findings underscore the importance of 

reducing cognitive load in driving contexts. Future research should explore innovative approaches to enhance 

driving safety as technologies evolve. This research contributes to advancing automotive HCI, ensuring 

intelligent and safe driving experiences that improve overall performance and safety. 
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