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ABSTRACT 

Recently, a new geometrical model was proposed to solve the problem of “time”. Moreover, the proposed 

model offers a solution for the dark matter enigma. In this work, we explain how Newton’s law of rotation is 

an immediate consequence of the proposed “time” model. Furthermore, a more general formula is required 

for the acceleration of a particle to be more accurate. This explains our need for the Einstein theory of 

gravitation.  
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INTRODUCTION 
 

The majority of the energy stuff in the cosmos cannot be regular matter, which was one of the fascinating 

scientific discoveries of the 20th century. It is another type of matter that interacts with classical matter 

through its gravitational effect. Scientists have called this new stuff “Dark matter” (DM). The type and 

physical properties of DM are enigmatic (Young 2017). We cannot see DM, but we can know it is there by 

its gravitational impact on seen matter. 

 

In previous work (Kallel-Jallouli 2018; 2021a,b,c), Saoussan Kallel proposed the existence of invisible 

unusual stuff, named “Zaman”, responsible for the variations of “time” by its rotational motion (Kallel-

Jallouli, 2023a,b). The proposed model led to the formation of rings, or multiple images of the same object, 

then, to the self-evident conclusion that “Zaman” exists, and it solves the DM enigma. In this work, using the 

new definition of “time”, we shall explain how to recover Newton’s law of rotation. Let us begin by recalling 

the new geometrical model. 

 

THE “ZAMAN” GEOMETRICAL MODEL  
 

2.1 Introduction 

 

The concept of time is complex. For many decades, the difficulty of giving a complete account of "time" 

remained unresolved (DeWitt 1967; Earman 1987; Isham 1993; Kuchǎr 1999; Merali 2013; Rovelli 1991; 

Smolin 2014; Wheeler 1968). Most scientists just see time as what clocks measure, so we may as well 

disregard it (Barbour 2001; Magueijo and Smolin 2019; Smolin 2001). The problem of “time” remained 
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unsolved until the new revolutionary idea proposed by Pr. kallel in 2018 (Kallel-Jallouli 2018). She believed 

time is not simply a question of order of events (Rovelli 2018), or a real or complex variable. She succeeded, 

using the Dark Matter strong lensing effect, to demonstrate the existence of an unusual kind of unseen staff 

called “Zaman” responsible for the variations of “time” by its spin (Kallel-Jallouli 2021). 

 

The idea proposed in the new theory is very interesting and helps scientists obtain a better understanding of 

our physical universe. We shall see how, using the new physical perception of “time”, things are more 

rigorous. 

  

2.2 A new geometrical model 

 

2.2.1 Definition of U-day (Kallel-Jallouli 2018, 2021, 202) 

 

U will be a spinning sphere (generally called “universe” or “halo”), automatically filled with “Zaman”. 

Assume U has a solid body rotation and that, in comparison to its non-rotating (inertial) state UI, it takes T 

units of clock-time, for U, to complete one rotation in the positive direction about its axis. If the rotational 

speed of U is constant and repeatable, then T is the length of the U-day. One U-day is equal to one full 

rotation of U in the positive direction around its axis. The U-day's length is determined using a chosen clock 

(habitually expressed in seconds). Evidently, the clock is an instrument used just to fix the length T of the 

physical U-day.  

 

2.2.2 Definition of U-time inside U  

 

Let us choose the spherical coordinate system (r,θ,φ), given by figure 1 

 

 
 

Figure 1. A. Spherical Coordinates. B. Isotime-discs (Kallel-Jallouli 2021) 

 

U-time will be the same for a solid body rotation over each semidisc limited by the axis of rotation and a 

meridian (figure 1).  
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Figure 2. U-time inside U 

 

Let us select the isotime-disc enclosed in the plane (Oxz) as the semidisc of U-time 0 (tU ≡ 0). It is called 

the U-prime meridian (figure 2). Any certain point P in UI with coordinates (r, θ, φ) concurrently indicates 

the space position (r, θ, φ) and the U-time variation in relation to the U-prime meridian, provided for the first 

day by (Kallel-Jallouli 2021b,c,d):  

 

tU = T −
T

2π 
θ    (from 0 to T).               (2.1) 

 

This is how internal U-time varies, in one U-day. For the nth day, U-time is provided by: 

 

tU = nT −
T

2π
θ    (between (n-1)T  and nT).    (2.2) 

 

The value of U-time inside UI is tU 

 

2.2.3 U-time difference between two points inside the UI. 

 

The following formula is used to determine the U-time difference between two sites inside of U for the same 

day based on the difference in longitude: 

 

∆tU = −
T

2π
∆θ       (2.3) 

 

2.2.4 A particular example: the classical time 

 

When 𝑇=24 hours, then 
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tc = 24h − 24h
θ

2π
= 24h −  θ       (2.5) 

 

The classical variation of time is the variation of U-time: 

 

∆tc = −∆θ                              (2.6) 

   

Remarks.  

 

1. In this classical case, 

 

* 360 degrees corresponds to one U-day of length 24 hours 

 

* 180 degrees corresponds to half a U-day of length 12 hours 

 

* 15 degrees corresponds to 1 hour 

 

Let us call this “universe”, the classical “universe”, and the corresponding U-time, the classical time.  

 

2.  if T > 24 hours, then ∆tU > ∆tc, and U-time is stretched, with respect to the classical time. If T <
24 hours, then ∆tU < ∆tc and U-time is shrunken with respect to the classical time. 

 

Actual physical rules inside of U must be based on U-time, which is tied to the actual spin of U, rather than 

clock time, which has no physical relation with the U-spin. 

 

NEWTON’S LAWS FOR ROTATION 

 

3.1 U-celerity 

 

Let ‘s consider a spinning spherical halo U0 with rigid body rotation, with constant angular velocity Ω0 

(remember that angular velocity is related to the length of the U0-day by : Ω0 =
2π

T0
), about a fixed axis (z-

axis) passing through its centre O, relative to its nonrotating inertial frame of reference. According to 

Newton's first law of rotation, U0 will continue to rotate at the same angular velocity unless it experiences an 

external torque. If a tracer particle P is placed inside U0, at a distance r from the origin, then it follows 

circular orbits around the central axis with tangential velocity  given by Newton’s law of rotation:  

 

𝐕𝟎𝐍(𝐫) = 𝛀𝟎 × 𝐫      (3.1) 

 

Now, we seek to retreeve this formula using our revised concept of U-time.: 

 

Theorem 1 

 

The U0-velocity of P given by (using our new definition of U0-time): 

 

𝐕0(P) = 𝐕U0
(P) =

d𝐫

dt𝐔0

       (3.2) 
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satisfies the relation: 

 

𝐕𝟎(P) = 𝛀𝟎 × 𝐫     (3.3) 

 

Proof 

 

P will rotate in a circle of fixed radius (rsinφ). This circle has the U0-axis of rotation as the axis. Note that if 

the particle completes one revolution, θ will not become zero again, but 2π rad, corresponding to one U0-

day. Consider the particle to be at point Pi, which corresponds to angular position θi, at U0-time ti. Once a 

U0-time  ∆tU0
 passed, the particle changed to point Pf, which represents the angular position θf, at U0-time tf. 

Its angular displacement given by ∆θ = θf − θi is positive for counterclockwise rotation (increasing θ). The 

U0-time it takes for the particle to pass from Pi to Pf must be based on the difference in “time” between the 

two points, so, using relation (2.4), we must have: 

 

∆tU0
= tf − (ti −

T0

2π
∆θ) = tf − ti + (

T0

2π
∆θ) 

 

When tf − ti → 0, ∆tU0
→

T0

2π
dθ, and we obtain: 

 

dtU0
=

T0

2π
dθ             (3.4) 

 

By definition (3.2) of the U0 −radial velocity of a particle P inside U0, 

 

𝐕𝟎 = 𝐕U0
=

d𝐎𝐏

dtU0

 

 

Using relation (3.4), we can write, with O’ the projection of P on the z-axis: 

 

d𝐎𝐏

dtU0

=
2π

T0

d𝐎𝐏

dθ
=

2π

T0

d(𝐎𝐎′ + 𝐎′𝐏)

dθ
=

2π

T0
(

d𝐎𝐎′

dθ
+

d𝐎′𝐏

dθ
) =

2π

T0

d (
O′Pcosθ
O′Psinθ

0

)

dθ
=

2π

T0
O′P (

−sinθ
cosθ

0
)

=
2π

T0
O′P𝐞𝛉 = 𝛀𝟎 × 𝐫 

 

Finally, we can deduce: 

 

 𝐕0N(𝐫) = 𝐕U0
(𝐫)             (3.5) 

 

This means the equality between the known Newton’s tangential velocity 𝐕0N given by (3.1), and the U0-

velocity 𝐕U0
 given by (3.2) (based on U0-spin) of a test particle living inside U0. 

 

3.2 U-acceleration 

 

For the test particle P, Newton’s acceleration using U𝑐-time is given by: 
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𝒂𝑵 =
𝑑𝑽𝟎

𝑑𝑡𝑐

(𝒓) =
𝑑

𝑑𝑡𝑐

(𝜴𝟎 × 𝒓) =
𝑑𝜴𝟎

𝑑𝑡𝑐
× 𝒓 + 𝜴𝟎 ×

𝑑𝒓

𝑑𝑡𝑐
          

 

By applying relation (3.1), we obtain 

 

𝒂𝑵 =
𝑑𝜴𝟎

𝑑𝑡𝑐
× 𝒓 + 𝜴𝟎 × (𝜴𝟎 × 𝒓 )      (3.6) 

 

The tangential component:  

 

𝒂𝑵𝒕 =
𝑑𝜴𝟎

𝑑𝑡𝑐
× 𝒓       (3.7) 

 

The radial component:  

 

𝒂𝑵𝒓 = 𝜴𝟎 × (𝜴𝟎 × 𝒓 )       (3.8)  
 

Let us denote: 𝑑𝑡0 ≡ 𝑑𝑡𝑈0
. If the spherical halo 𝑈0 rotates with constant angular velocity 𝛺0, then, based on 

our new definition of 𝑈0-time, a tracer particle P will have an 𝑈0- acceleration defined by: 

 

𝒂𝟎(𝒓) =
𝑑2𝒓

𝑑𝑡0
2 =

𝑑𝑽𝟎

𝑑𝑡0
=

𝑑

𝑑𝑡0

(𝜴𝟎 × 𝒓) =
𝑑𝜴𝟎

𝑑𝑡0
× 𝒓 + 𝜴𝟎 ×

𝑑𝒓

𝑑𝑡0
 

 

Since, for constant angular velocity, we have 
𝑑𝜴𝟎

𝑑𝑡0
= 0, then we conclude that 

 

𝒂𝟎(𝒓) = 𝜴𝟎 × (𝜴𝟎 × 𝒓)     (3.9) 

 

We find the same relation (3.8) of the radial acceleration given by Newton’s law.  

 

If 𝛺0 varies with time, then, 𝑈0-time inside 𝑈0 varies. We will have  

 

Theorem 2 

 

The 𝑈0-acceleration of a test particle P inside 𝑈0 defined by 

 

𝒂𝟎(𝒓) = 𝒂𝑈0
(𝒓) =

𝑑2𝒓

𝑑𝑡0
2            (3.10) 

 

satisfies: 

 

𝒂𝟎(𝒓) =
𝑇𝑐

𝑇𝑈0

𝑑𝜴𝟎

𝑑𝑡𝑐
× 𝒓 + 𝜴𝟎 × (𝜴𝟎 × 𝒓 )      (3.11) 

 

In the particular case 𝑇𝑈0
= 𝑇𝑐, we obtain the equality between the 𝑈0-acceleration and Newtonian’s 

acceleration:  
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𝒂𝟎(𝒓) = 𝒂𝑵(𝒓) 

 

Proof 

 

Using our 𝑈0-time definition, 𝑈0-acceleration is given by: 

 

𝒂𝟎(𝒓) =
𝑑

𝑑𝑡0
𝜴𝟎 × 𝒓 = (

𝑑

𝑑𝑡0
𝜴𝟎) × 𝒓 + 𝜴𝟎 ×

𝑑𝒓

𝑑𝑡0
 

 

Using (3.3), we get 

 

𝒂𝟎(𝒓) = (
𝑑

𝑑𝑡0
𝜴𝟎) × 𝒓 + 𝜴𝟎 × (𝜴𝟎 × 𝒓 )    (3.12)        

 

This is the same formula (3.6) given by Newton, where the clock time 𝑡𝑐 is replaced by the new physical 𝑈0-

time 𝑡𝑈0
. However, we do not have equality of the two quantities (3.6) and (3.12). More precisely, using 

(3.4), we obtain the immediate relation 

 

𝑑𝑡𝑐 =
𝑇𝑐

𝑇0
𝑑𝑡0 =

𝛺0

𝛺𝑐
𝑑𝑡0          (3.13) 

 

Formula (3.12) can then be written as: 

 

𝒂𝟎(𝒓) =
𝛺0

𝛺𝑐

𝑑𝜴𝟎

𝑑𝑡𝑐
× 𝒓 + 𝜴𝟎 × (𝜴𝟎 × 𝒓 )       (3.14) 

 

Or equivalently, the relation (3.11). 

 

Here, this 𝑈0-acceleration (3.14) is a generalization of the approximation formula (3.6) given by Newton. 

However, we do not have equality of the 𝑈0-acceleration with the Newtonian acceleration, in the case  

𝛺𝑐 ≠ 𝛺0. 

 

CONCLUSION 
 

Finally, the tangential velocity formula (3.3) applies inside any “halo”, without the need to care about U-time 

inside U (or U spin). Using any time definition leads to the same formula (3.3). So, the choice of 

“international atomic Time” TAI (or classical time, as measured by the atomic clocks) by the International 

Commission of Time, which itself was part of the International Astronomical Union (IAU), in 1967, could be 

explained. Contrariwise, if we need to apply the 𝑈0-acceleration formula (3.12), it is very important to know 

the 𝑈0-spin, since the first term of our formula (3.11) (3.14) depends clearly on the length T of the 𝑈0-day (or 

𝑈0-spin).  

 

The tangential 𝑈0-acceleration 

 

𝒂𝟎𝒕(𝒓) =
𝑇𝑐

𝑇𝑈0

𝑑𝜴𝟎

𝑑𝑡𝑐
× 𝒓      (4.1) 
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depends on the length 𝑇𝑈0
 of the day. Its modulus is greater for a shorter length of the day. Since we live 

inside a “halo” with an increasing length of the day (Gross 2007), Newtonian’s classical acceleration 

formula, based on classical clock time, is no longer accurate. We have an increasing term  "𝑇𝑈0
" that will 

have very interesting impacts on physical, geological, and astronomical sciences.  

 

The tangential force created by this tangential acceleration, on a particle of mass m, will be given by: 

 

𝑭𝒕 = 𝑚
𝑇𝑐

𝑇𝑈0

𝑑𝜴𝟎

𝑑𝑡𝑐
× 𝒓          (4.2) 

 

For an increasing rate of rotation 𝜴𝟎, this tangential force will push ahead any particle moving inside a 

spinning “halo” in the positive direction (𝜴𝟎 and the z-axis have the same orientation). The particle will then 

spiral outward. In the case 𝜴𝟎 is decreasing, corresponding to an increasing length of the 𝑈0-day, this force 

will try to push back any test particle. The particle will spiral inward. This will have very interesting 

applications, especially in physics and astronomy.  

 

Finally, if we hope to obtain accurate laws of nature that can apply at all levels and do not change either 

when the length of the day changes, we must use in our laws the physical U-time (U-days) related to the spin 

of U, and not the classical clock time, with no physical relation. Variations in U-time can be measured 

through longitudinal variations (3.4). A chosen clock serves only to determine the length T of the U-day.  If 

𝑇 ≈ 24 hours, then, in the “halo” U, our Newtonian classical laws apply. If 𝑇 ≉ 24 hours, we just have to 

use the generalized relation (3.11) for acceleration. We have just to understand that the physical “time” (U-

time) inside a “halo” has a feeble chance to coincide with classical time. Therefore, Newtonian’s acceleration 

has a feeble chance to be accurate. Our need for the Einstein theory of gravity becomes then understandable.  

Farther the particle is from the axis of rotation of 𝑈0, the greater the error. The heavier the particle is, the 

greater the error.  

 

The relation (4.2) can also be written as: 

 

𝐅𝐭 = mΩc

d ln Ω0

dtc
�̂� × 𝐫          (4.3) 

 

For a light particle, not far from the axis of rotation, (4.3) can be neglected provided that 
d ln Ω0

dtc
 is small 

enough. Newtonian’s theory remains then a good approximation. Finally, we want to mention that the U 

solid body rotation is a very special case. The more general differential rotation case will be studied 

elsewhere [Kallel-Jallouli 2024a,b]. 
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