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ABSTRACT 

The Wave-particle duality and the Schrodinger cat paradox pose important notions on quantum mechanical 

systems, in which a quantum system can exist in two physically opposite or distinct states. This motivates 

scientists from the days of Louis de Broglie to confidently look at matter as having a dual nature, which is 

a physical particle that can also be visualized as a wave entity. This paper seeks to provide an elegant 

method of solving the time-independent Schrodinger Equation (TISE) for a quantum simple harmonic 

oscillator (QSHO).A fully algebraic method is presented, the paper explains in detail how simple algebra, 

coupled with basic quantum mechanical operator commutation algebra can be employed to solve the TISE 

without resorting to complicated mathematical methods of solving second-order differential equations. The 

construction of the Hamiltonian is explained and an analogy between the classical simple harmonic 

oscillator (CSHO) and the QSHO is drawn to develop the solution method. The action of creation and 

annihilation operators on wave functions is exploited to generate states with higher and lower energies 

respectively and to generate a Hamiltonian that can act on a system and generate required quantum states. 

The aim is to generate the ground state of the QSHO and its associated energy value. From this state, other 

higher energy states can be generated by the action of the creation operator. The use of algebraic methods 

has been seen to be versatile as it does not explicitly rely on any particular basis or coordinate system. The 

method allows operators to be manipulated in different bases for example the momentum operator can be 

given as 𝑃̂𝑥 = −𝑖ℏ
𝜕

𝜕𝑥
  in a spatial coordinate basis or as a pure number 𝑝̂ = 𝑝 in the momentum basis. 

Keywords: quantum harmonic oscillator, quantum operators, commutator, normalization, Schrödinger 

equation, algebraic solution 

INTRODUCTION 

This paper serves to present a simple method of solving the TISE for the QSHO. The QSHO draws its 

analogy to the classical simple harmonic oscillator(CSHO). Common examples of CSHOs are the simple 

pendulum and the mass-spring system. The potential energy expression of the mass-spring system is 

employed in the quantum model outlined in this paper. Complicated mathematical manipulations have been 

avoided in preference to simpler algebraic mathematical methods to assist all students with different 

mathematical backgrounds to be able to follow and understand the solution. The constructivist learning 

theory is employed throughout the discussion, that is we start from the known and build up knowledge 

towards what we want to know which is at present unknown(Schunk,2012). Efforts have been made to 

bring out the ideas of quantum mechanics without clouding the student or reader with too much 

mathematics. This paper also seeks to bring out the unity and relationship between several topics in Physics 

so that it is clear that Physics as a discipline is one unified body of knowledge and not a collection of 

independent scientific ideas. 

It would be misleading to claim that mathematical methods can be used to accurately describe a physical 

system. To construct a mathematical model of a physical system, several assumptions and conditions are 

made to make the system mathematically solvable. These assumptions may not make sense or may not be 

applicable physically. On this note, this paper does not claim to provide a 100% accurate solution. 
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Mathematical models presented are tools that help to explain the solution of the TISE for the QSHO by 

drawing an analogy with a physical CSHO (Slavnov, 2006). 

The paper has been broken down into several sub-topics that build up to the ultimate goal of solving the 

TISE. The Hamiltonian operator and the ladder operators are introduced and later the Hamiltonian is 

expressed in terms of the ladder operators and applied to a normalised wave function to obtain the ground 

state, excited states and their associated energies. 

THE HAMILTONIAN 

The Hamiltonian is a quantum mechanical operator representing a system's total energy (E). It is the 

summation of the kinetic and potential energies of the individual particles in any given system. 

Microscopic particles like electrons, protons, photons, neutrons, and several fundamental particles in nature 

and atoms can be modeled as waves according to the wave-particle duality coined by Louis de Broglie 

(Zeilinger, 1999).  

We begin by introducing the Hamiltonian, adopted by Wheeler (2012): 

𝐻̂ = 𝑇 + 𝑉       (1) 

But the potential energy(𝑝𝑒 )or V is that of a classical simple harmonic oscillator (mass-spring system). 

The QHSO can be modeled as a classical oscillator comprising a mass attached to a spring. This system has 

a potential given by the expression: 

𝑉(𝑥) =
1

2
𝑘𝑥2       (2) 

It is widely believed that classical physics is merely a restricted instance of quantum physics, implying that 

several classical phenomena possess quantum physics analogues. As a result, this encourages the analogous 

approach of treating quantum and classical systems alike. Hence, this paper is confident in applying the 

classical potential energy equation to the QSHO. (Slavnov, 2005). 

 

If we substitute 𝑘 = 𝑚𝜔2from a classical mass-spring system SHO. Equation (2) becomes: 

𝑉(𝑥) =
1

2
𝑚𝜔2𝑥̂2     (3) 

where m is the mass of the oscillator, x is its displacement from the equilibrium position and omega(𝜔)is 

the angular velocity or angular frequency. 

The general formula for kinetic energy (T) is: 

                                                                                      𝑘𝑒 =
1

2
𝑚𝑣2                                                                                

(4) 

But the momentum of a particle 𝑝 = 𝑚𝑣 where v is the velocity of the particle.Now from 𝑝 = 𝑚𝑣 it 

follows that 𝑝2 = 𝑚2𝑣2  therefore 𝑚𝑣2 =
𝑝2

𝑚
 

Therefore it follows that kinetic energy can be expressed in terms of momentum. Note that in quantum 

mechanics the momentum and displacement operators play pivotal roles in quantum systems. 

𝑘𝑒 =
1

2

𝑝2

𝑚
                                                                                       (5) 

In quantum mechanics, the momentum operator is given as: 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS |Volume IX Issue IV April 2024 

 

Page 64 
www.rsisinternational.org 

 

 

 

𝑃̂ = −𝑖ℏ
𝜕

𝜕𝑥
      (6)  

Whereℏ is the reduced Planck constant and 
𝜕

𝜕𝑥
 is the partial derivative with respect to displacement along 

the x coordinate. 

Putting everything together, the Hamiltonian of the QSHO can be expressed as: 

 

𝐻̂ = 𝑇 + 𝑉 

𝐻̂ =
𝑃̂2

2𝑚
+

1

2
𝑚𝜔2𝑥̂2     (6a) 

Substituting equation (6) for 𝑃̂ in equation (6a) we obtain the Hamiltonian in its differential form: 

𝐻̂ = − 
ℏ2

2𝑚

𝜕2

𝜕𝑥2  +  
1

2
𝑚𝜔2𝑥̂2     (7) 

 Equation (7) can be alternatively presented as: 

𝐻̂ = − 
ℏ2

2𝑚

𝜕2

𝜕𝑥2  +  𝑉(𝑥)                                                                (8) 

Where 𝑉(𝑥) represents an arbitrary potential for example a magnetic, electrical or mechanical potential.  

According to the wave-particle duality, particles exhibit wave-like behaviour which is more prevalent at 

microscopic or nanoscopic levels. Quantum particles are thus modelled as waves and represented by the 

Schrodinger wave equation. The particles are examples of quantum states denoted by the wave 

function𝜓(𝑥), psi as a function of an arbitrary coordinate, say x (Schleich, 2016).  

THE TIME-INDEPENDENT SCHRODINGER EQUATION 

The ground and excited wave states of the QSHO and their corresponding energies can be determined by 

solving the time-independent Schrödinger equation: 

𝐻̂𝜓(𝑥) = 𝐸𝜓(𝑥)     (9) 

The Schrödinger equation is an eigen value equation. If the Hamiltonian operates on a state psiit generates 

a state with higher energy, the same state multiplied by eigen value E, a real number corresponding to the 

total energy of the system. 

Substituting (8) into (9) we obtain: 

− 
ℏ𝟐

𝟐𝒎

𝝏𝟐

𝝏𝒙𝟐 𝝍(𝒙) +  𝑉(𝑥)𝝍(𝒙) = 𝑬𝝍(𝒙)                                                   (10) 

The major aim of this paper is to solve the Schrodinger equation (10) without going through the rigour of 

solving the second-order differential equation and obtain the possible quantum states 𝜓(𝑥) of the QSHO 

and associated energy values. 

According to the Schrödinger Cat paradox, a quantum system can exist in more than one state at any given 

time, this is motivated by Erwin Schrödinger when he asserted that a cat can be both alive and dead inside 

a box with a radioactive substance. The researcher uses this paradox to suggest that our state 𝜓(𝑥) can exist 

in several physical and different states or conditions at any given time. Given that these states are waves 

one is driven to believe that these states could be superposed on each other.(Schrodinger, 1935). 
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 LADDER OPERATORS 

Ladder operators are so-called because they either raise or lower the energy state of a quantum system just 

like what a physical ladder does in assisting to hoist or lower a physical body. The raising operator (𝒂̂†) 

acts on a quantum state and generates a new state of higher energy by a factor of ℏ𝜔 whilst thelowering 

operator (𝒂̂) can generate lower energy states by the same factor. These operators are also called 

annihilation and creation operators because they can destroy or create a quantum of energy respectively.  

The combination of these operators provides an eloquent method for solving the harmonic oscillator 

problem and several other classical and quantum systems (Kelley and Leventhal, 2017). 

The mathematical manipulations for the creation and annihilation operators for particles withintegral spins 

(bosons)for example gluons, photons, gravitons and Higgs bosons and that for particles with half-integer 

spins (fermions) for example neutrons, electrons and protons and protons are different. For example, 

the commutation relation for the creation and annihilation operators for similar bosonic systems is equal to 

one, while all other commutators are zero. However, for fermions the mathematics is similar to that for 

the QSHO and it involves anti-commutators instead of commutators in the case of bosons (Feynman, 

1998). 

6.1 The lowering (annihilation) operator 

𝑎̂ = √
𝑚𝜔

2ℏ
(𝑥̂ +

𝑖𝑝

𝑚𝜔
)                                                                   (11) 

We want the lowering operator to act on a function, but it is very difficult and complicated to use it in the 

form of equation (11), we therefore transform it into a more user-friendly form. We begin by opening the 

bracket. 

𝑎̂ =  (√
𝑚𝜔

2ℏ
𝑥̂ + √

𝑚𝜔

2ℏ

𝑖𝑝̂

𝑚𝜔
) 

The square root signs affect both numerators and denominators therefore we can root the numerators and 

denominators separately for simpler calculations: 

𝑎̂ =
√𝑚𝜔

√2ℏ
𝑥̂ +

√𝑚𝜔

√2ℏ

𝑖𝑝̂

𝑚𝜔
 

To simplify the expression we play a mathematical trick, multiplying the numerators and denominators of 

both fractions by the same constant(𝑚𝜔 in this case) does not change anything mathematically but will 

help us simplify our expression. 

𝑎̂ =
√𝑚𝜔

√2ℏ

𝑚𝜔

𝑚𝜔
𝑥̂ +

√𝑚𝜔

√2ℏ

𝑖𝑝̂

𝑚𝜔

𝑚𝜔

𝑚𝜔
 

𝑎̂ =
√𝑚𝜔

√2ℏ 𝑚𝜔
 𝑚𝜔𝑥̂ + 𝑖𝑝̂

√𝑚𝜔

√2ℏ 𝑚𝜔
 

In mathematics 
√ 𝑚𝜔

 𝑚𝜔
=

1

√ 𝑚𝜔
therefore: 

𝑎̂ =
1

√2ℏ√𝑚𝜔
 𝑚𝜔𝑥̂ + 𝑖𝑝̂

1

√2ℏ√𝑚𝜔
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𝑎̂ =
1

√2ℏ𝑚𝜔
 𝑚𝜔𝑥̂ + 𝑖𝑝̂

1

√2ℏ𝑚𝜔
 

Factoring out common terms and re-arranging for convenience results in: 

𝑎̂ =
1

√2ℏ𝑚𝜔
(𝑖𝑝̂ + 𝑚𝜔𝑥̂)     (12) 

 

6.2 The raising(creation) operator  

𝑎̂† = √
𝑚𝜔

2ℏ
(𝑥̂ −

𝑖𝑝

𝑚𝜔
)                                                                                  (13) 

Again if we open the brackets and follow the above steps on dealing with the lowering operator and also 

multiply the numerators and denominators on the right-hand side by 𝑚𝜔 and simplify we get an alternative 

expression for the creation operator: 

𝑎̂† =
1

√2ℏ𝑚𝜔
(−𝑖𝑝̂ + 𝑚𝜔𝑥̂)                                                                       (14) 

 

6.3 The Quantum Energy term 

It should be noted that ℏ𝜔 is an energy term. It was argued earlier that the ladder operators either create or 

annihilate new states with energy values differing by a constant factor of  ℏ𝜔. This sub-section tends to 

prove that ℏ𝜔 is indeed an energy term. 

The energy of a quantum particle is generally given by the equation (15) where all terms have their usual 

meanings in Physics: 

                                                                                   𝐸 = ℎ𝑓  (15) 

The angular frequency of an oscillating particle is 𝜔 = 2𝜋𝑓, therefore: 

                                                                                  𝑓 =
𝜔

2𝜋
      (16) 

           

Substituting (16) into (15) we get: 

                                                                                𝐸 =
ℎ𝜔

2𝜋
     (17) 

Where ℏ is the reduced Planck’s constant: 

ℎ

2𝜋
= ℏ      (18)       

     

Therefore by substituting (18) into (17), we obtain an alternative energy term which can be expressed as: 

                                                                                  𝐸 =
ℎ𝜔

2𝜋
= ℏ𝜔                             (19)s 

6.4 Generating a new Hamiltonian from Ladder operators 

To solve equation (10) we first multiply both ladder operators to obtain their product. This will lead us to 

the generation of a new Hamiltonian which will take care of all possible quantum states that can exist 

simultaneously as espoused by the Schrodinger Cat paradox. 
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Now: 

𝑎̂𝑎̂† =
1

√2ℏ𝑚𝜔
(𝑖𝑝̂ + 𝑚𝜔𝑥̂) {

1

√2ℏ𝑚𝜔
(−𝑖𝑝̂ + 𝑚𝜔𝑥̂)} 

𝑎̂𝑎̂† =
(𝑖𝑝̂ + 𝑚𝜔𝑥̂)

√2ℏ𝑚𝜔

(−𝑖𝑝̂ + 𝑚𝜔𝑥̂)

√2ℏ𝑚𝜔
 

𝑎̂𝑎̂† =
1

2ℏ𝑚𝜔
{(𝑖𝑝̂ + 𝑚𝜔𝑥̂)(−𝑖𝑝̂ + 𝑚𝜔𝑥̂)} 

𝑎̂𝑎̂† =
1

2ℏ𝑚𝜔
(𝑝̂2 + 𝑖𝑝̂𝑚𝜔𝑥̂ − 𝑚𝜔𝑥̂𝑖𝑝̂ + 𝑚2𝜔2𝑥̂2) 

Rearranging the terms enclosed in the bracket, 

𝑎̂𝑎̂† =
1

2ℏ𝑚𝜔
{𝑝̂2 + 𝑚2𝜔2𝑥̂2 + 𝑖𝑚𝜔(𝑝̂𝑥̂ − 𝑥̂𝑝̂)}   (20) 

It is very important to note that 𝑝̂ 𝑎𝑛𝑑 𝑥̂ are not constants but are operators. We therefore treat them 

according to operator commutation rules. Their commutation relation is given by the expression[𝑥̂, 𝑝̂] 
which is expanded as: 

[𝑥̂, 𝑝̂]=𝑥̂𝑝̂ − 𝑝̂𝑥̂ = 𝑖ℏ                 (20a) 

If the order of these commutators is reversed, then [𝑝̂, 𝑥̂] = 𝑝̂𝑥̂ − 𝑥̂𝑝̂ − 𝑖ℏ   (21) 

Substituting equation (21) into (20) we get: 

𝑎̂𝑎̂† =
1

2ℏ𝑚𝜔
{𝑝̂2 + 𝑚2𝜔2𝑥̂2 + 𝑖𝑚𝜔[𝑝̂, 𝑥̂]} 

But from (21) [𝑝̂, 𝑥̂] = −𝑖ℏ therefore  

𝑎̂𝑎̂† =
1

2ℏ𝑚𝜔
{𝑝̂2 + 𝑚2𝜔2𝑥̂2 + 𝑖𝑚𝜔(−𝑖ℏ)}                                                   (22) 

Dividing each term in braces by 2ℏ𝑚𝜔 or multiplying every term by 
1

2ℏ𝑚𝜔
 

𝑎̂𝑎̂† =
𝑝̂2

2ℏ𝑚𝜔
+

𝑚2𝜔2𝑥̂2

2ℏ𝑚𝜔
−

𝑖𝑚𝜔(𝑖ℏ)

2ℏ𝑚𝜔
 

Factoring out 
1

ℏ𝜔
 and noting that 𝑖2 = −1 gives: 

𝑎̂𝑎̂† =
1

ℏ𝜔
(

𝑝2

2𝑚
+

𝑚𝜔2𝑥2

2
+

ℏ𝜔

2
)     (23)   

Comparison of (23) with (6a) 𝐻̂ =
𝑃̂2

2𝑚
+

1

2
𝑚𝜔2𝑥̂2shows that the first two terms inside the brackets give the 

Hamiltonian of the system therefore (23) can be re-written as: 

𝑎̂𝑎̂† =
1

ℏ𝜔
(𝐻̂ +

ℏ𝜔

2
)                                                                                         (24) 

Simplification of (24) results in: 

𝑎̂𝑎̂† =
𝐻

ℏ𝜔
+

1

2
                                                                                                (25)  
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We rearrange this equation to get a new expression for the Hamiltonian: 

𝐻̂ = ℏ𝜔 (𝑎̂𝑎̂† −
1

2
)     (26) 

But from (9) we stated that  𝐻̂𝜓(𝑥) = 𝐸𝜓(𝑥). This means that when the Hamiltonian acts on a quantum 

state it yields a new state with an energy value of E. Now if this Hamiltonian acts on a state already acted 

upon by a raising or lowering operator it will yield a state with a higher or lower energy than the original 

state respectively. 

ENERGY LEVELS FOR A HARMONIC OSCILLATOR 

The potential well of a Harmonic Oscillator is parabolic and thus maximum possible energy is infinite 

(increases unbounded up the vertical axes). Still, there must be the lowest possible energy value (the zero 

point energy in Fig.1.) which corresponds to the lowest energy state which is called the ground state (𝜓0). 

See Fig.1 for the diagram of the potential well. 

 

Fig .1. Potential well for a classical Harmonic Oscillator (Browne, 2020)  

Energy is a quantized phenomenon, meaning that it exists in discrete packages known as quanta. These 

quanta have a specific value that can be determined by the equation 𝐸 = ℎ𝑓, where E represents energy, h 

is Planck's constant, and f represents frequency. In Fig.1, the frequency symbol "f" is replaced with the 

Greek letter "ν" (nu) while the physics and mathematics remain the same. As you move up the energy 

levels (E0, E1, E2…and beyond.), there is an increase in the steps of ℎ𝜈. This quantization phenomenon is a 

fundamental aspect of quantum mechanics, which is essential in understanding the behaviour of particles at 

the atomic and subatomic levels. 

The general equation for the energy of a QHO is given by (39) as  

 

𝐸𝑛 = (𝑛 +
1

2
) ℏ𝜔 
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𝐸0 = (0 +
1

2
) ℏ𝜔 =

1

2
ℏ𝜔 =

1

2
ℎ𝜈 

𝐸1 = (1 +
1

2
) ℏ𝜔 =

3

2
ℏ𝜔 =

3

2
ℎ𝜈 

𝐸5 = (5 +
1

2
) ℏ𝜔 =

11

2
ℏ𝜔 =

11

2
ℎ𝜈 

Note that from (15) and (19) 𝐸 = ℎ𝑓 = ℏ𝜔 = ℎ𝜈 therefore the energy values are seen to be increasing by 

this constant value. 

As an example: 𝐸0 =
1

2
ℎ𝜈 

𝐸1 = 𝐸0 + ℎ𝜈 =
1

2
ℎ𝜈 + ℎ𝜈 =

3

2
ℎ𝜈 

𝐸5 = 𝐸4 + ℎ𝜈 =
9

2
ℎ𝜈 + ℎ𝜈 =

11

2
ℎ𝜈 

In the realm of quantum mechanics (QM), the precise position and momentum of a quantum particle 

cannot be determined with certainty due to the probabilistic nature of QM. However, their mean or 

expected values can be calculated. Fig.1. illustrates a symmetric potential well around 𝑥 = 0, implying that 

the probability of finding the particle at a point where 𝑥 > 0  is equivalent to that where 𝑥 < 0. As a result, 

the mean values of displacement and momentum are both zero. 

In classical physics, momentum (P) can be computed as 𝑃 = 𝑚𝑣, where m represents the mass of the 

particle and v reflects its velocity. If the momentum is zero, the classical particle is at rest with 𝑣 = 0, as 

the mass of an existing classical particle cannot be zero. In contrast, zero momentum for a quantum particle 

denotes an average value of all momenta in the positive and negative x directions. An oscillating quantum 

particle moves back and forth through the equilibrium position, without necessarily being at rest. If the 

particle is not at rest, then it must possess some energy. If it is not being translated to other points, it should 

be vibrating around 𝑥 = 0, thereby having vibrational energy at this point. 

The lowest energy a quantum particle can possess is referred to as the zero point energy or ground state 

energy, which is expressed in equation (36). This differs from the case of a classical particle, where the 

minimum energy can be zero for a stationary particle. 

It then follows that if the lowering operator acts on the ground state it will produce a state with zero energy, 

this is the lowest possible observable energy value because we cannot observe negative energy values. 

Therefore no state can physically exist with negative energy (note that mathematically this is possible). The 

ground state is the lowest energy state that can exist.  

Consider the following eigen value equation: 

𝑎̂𝜓0(𝑥) = 0 (27)  

SOLUTION OF THE SCHRÖDINGER EQUATION 

In quantum mechanics, Schrödinger's cat paradox is a quantum phenomenon analogous to wave-particle 

superposition. However, when an observation is made or measurement is taken on this system, the wave 

function collapses or is reduced to only one of the possible states, the particular observation. This suggests 

that when an observation is made by whatever instrument is used, the superposition of states disappears 

and the system is seen in only one of its several possible states. in other words, the actual act of measuring 

or observing a quantum system disturbs its actual reality and gives the observer the impression of a single  
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state function corresponding to what is under investigation (Schlosshauer and Maximilian, 2005; Giacosa, 

2014). 

A hypothetical cat may be considered to be simultaneously both alive and dead while it is unobserved in a 

closed box with a substance likely able to kill it. Once the box is opened and the cat is observed, there’s a 

50% chance of it being alive or dead. This summarises the phenomenon of wave-function collapse, a wave-

function can be observed in one of its possible states at a time, either the ground state or one of the excited 

states (Peres, 1993). 

Our task in this section is to solve the Schrödinger equation and find an explicit expression for the ground 

state. The action of the creation operator on the ground state can yield higher energy excited states. 

We start from (27) and substitute for 𝑎̂ from equation (12) 

𝑎̂𝜓0(𝑥) = 0 

1

√2ℏ𝑚𝜔
(𝑖𝑝̂ + 𝑚𝜔𝑥̂)𝜓0(𝑥) = 0 

Multiplying both sides by √2ℏ𝑚𝜔 gives us: 

(𝑖𝑝̂ + 𝑚𝜔𝑥̂)𝜓0(𝑥) = 0     (28) 

But from (6)𝑃̂ = −𝑖ℏ
𝜕

𝜕𝑥
 

Thus substituting (6) into (28) we obtain:  

{𝑖 (−𝑖ℏ
𝜕

𝜕𝑥
) + 𝑚𝜔𝑥̂} 𝜓0(𝑥) = 0 

If we multiply the contents of the bracket by i we obtain the expression: 

{(−𝑖2ℏ
𝜕

𝜕𝑥
) + 𝑚𝜔𝑥̂} 𝜓0(𝑥) = 0                          (28a) 

Note that = √−1 , then 𝑖2 = −1𝑎𝑛𝑑 (−1)2 = 1, therefore simplifying (28a) gives: 

{ℏ
𝜕

𝜕𝑥
+ 𝑚𝜔𝑥̂} 𝜓0(𝑥) = 0                                                 (28b) 

Simplifying the left-hand side of the equation (28b) by opening the braces we get: 

                                                                        ℏ
𝜕𝜓0(𝑥)

𝜕𝑥
+ (𝑚𝜔𝑥̂)𝜓0(𝑥) = 0                          (28c) 

Dividing every term on both sides of equation (28c) by ℏ and re-arranging the equation gives: 

𝜕𝜓0(𝑥)

𝜕𝑥
= −

𝑚𝜔𝑥̂

ℏ
𝜓0(𝑥) 

 Collecting like terms and grouping them on one side results in the equation: 

1

𝜓0(𝑥)
𝑑𝜓0(𝑥) = −

𝑚𝜔𝑥

ℏ
 𝜕𝑥              (28d) 

Integrating both sides of the equation (28d)gives: 
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∫
1

𝜓0(𝑥)
𝑑𝜓0(𝑥) = −

𝑚𝜔

ℏ
∫ 𝑥̂ 𝑑𝑥    (29) 

Two of the fundamental rules for integration in mathematics state that ∫
1

𝑥
𝑑𝑥 = 𝑙𝑛𝑥 + 𝑐and ∫ 𝑥𝑛 𝑑𝑥 =

𝑥𝑛+1

𝑛+1
+ 𝑐where c is an arbitrary constant of integration. Therefore the result of integrating equation (29) is: 

ln 𝜓0(𝑥) = −
𝑚𝜔

ℏ
[

𝑥2

2
+ 𝑐]              (29a) 

The application of mathematical rules for natural logarithms on both sides of the equation (raising every 

term to base e) gives us: 

𝑒ln 𝜓0(𝑥) = 𝑒
[

−𝑚𝜔𝑥̂2

2ℏ
+

𝑚𝜔𝑐

ℏ
]
              (29b) 

Taking anti-logarithms on both sides of equation (29b) results in: 

𝜓0(𝑥) = 𝑒
[

−𝑚𝜔𝑥̂2

2ℏ
+

𝑚𝜔𝑐

ℏ
]
              (29c) 

But generally 𝑎(𝑥+𝑏) = 𝑎𝑥𝑎𝑏 , therefore equation (29c) becomes: 

𝜓0(𝑥) = 𝑒
−𝑚𝜔𝑥̂2

2ℏ 𝑒
𝑚𝜔𝑐

ℏ  

Since c, m, 𝜔 and ℏ are all constants, it follows that 𝑒
𝑚𝜔𝑐

ℏ  is a constant, let us call it A. 

Therefore equation (29c) can be re-written as: 

𝜓0(𝑥) = 𝐴𝑒
−𝑚𝜔𝑥̂2

2ℏ      (30) 

'A' is the scalar multiple required to make the given wave function adhere to the normalization condition 

explained in sub-section 8.1 below. 

8.1 Normalisation 

We now use the standard normalisation expression (31) to normalise (30) so that we can solve it easily. 

The normalization condition states that the integral of the square of the wave function in all space must be 

equal to one. This means that the particle represented by the wave function must be present at some 

position in space along a particular axis, in this case, the x-axis (Swenson and Hermanson, 1972).  

∫ |𝜓(𝑥)|2∞

−∞
𝑑𝑥 = 1     (31) 

Substituting for the wave function (30) in the equation (31) we obtain: 

∫ |𝐴𝑒
−𝑚𝜔𝑥̂2

2ℏ |
2

𝑑𝑥 = 1
∞

−∞
     (32) 

Equation (32) Can be simplified by taking out the constant A to give: 

|𝐴|2 ∫ |𝑒
−𝑚𝜔𝑥̂2

2ℏ |
2

𝑑𝑥 = 1
∞

−∞
       (32a) 

This equation can be rewritten to match the standard integrals in  QM whose general solutions are known. 

Note that m, 𝜔, and ℏ are constants. They can be grouped and represented by an arbitrary constant a, where  
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𝑎 =
𝑚𝜔

ℏ
 

thus equation (32a) becomes: 

 

|𝐴|2 ∫ |𝑒
−𝑚𝜔𝑥̂2

2ℏ |
2

𝑑𝑥 = 1

∞

−∞

 

|𝐴|2 ∫ |𝑒
−𝑎𝑥2

2 |
2

𝑑𝑥 = 1
∞

−∞
              (32b) 

We can expand the term inside the modulus brackets 

|𝐴|2 ∫ 𝑒
−𝑎𝑥2

2 𝑒
−𝑎𝑥2

2
∞

−∞
𝑑𝑥 = 1              (32c) 

This equation can be simplified by the application of the law for indices, e is raised to a power equal to the 

sum of the individual powers: 

|𝐴|2 ∫ 𝑒
(

−𝑎𝑥2

2
+

−𝑎𝑥2

2
)∞

−∞
𝑑𝑥 = 1               (32d) 

We clear the brackets to obtain the final expression: 

|𝐴|2 ∫ 𝑒−𝑎𝑥2∞

−∞
𝑑𝑥 = 1  (33) 

But from given standard integral equations, the general solution of such equations as (33) is of the 

form:∫ 𝑒−𝑎𝑥2∞

−∞
𝑑𝑥 = √

𝜋

𝑎
    (34) 

Comparing the equation we generated (33) to the standard equation (34) shows that: 

|𝐴|2 ∫ 𝑒−𝑎𝑥2∞

−∞
𝑑𝑥 = 1 ⟹ |𝐴|2√

𝜋

𝑎
= 1    (35) 

But our =
𝑚𝜔

ℏ
 . Substituting for ‘a’ in equation (35) results in: 

|𝐴|2√
𝜋

(𝑚𝜔 ℏ⁄ )
 = 1 ⇒ |𝐴|2√

𝜋ℏ

𝑚𝜔
= 1              (35a) 

 

We clear the square root sign by squaring every term in (35a) toget: 

 
𝐴4𝜋ℏ

𝑚𝜔
= 1     (35b) 

To calculate the normalization constant A, we make it the subject of the formula in (35b): 

𝐴4𝜋ℏ

𝑚𝜔
= 1 ⇒ 𝐴4 =

𝑚𝜔

𝜋ℏ
, taking the fourth root on both sides of this equation gives us: 
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                                                                      𝐴 = √
𝑚𝜔

𝜋ℏ

4
=  (

𝑚𝜔

𝜋ℏ
)

1
4
     (36) 

If we substitute this expression for A into equation (30) we obtain the required expression for the ground 

state. This wave function contains all the information required to fully understand the behaviour and 

characteristics of the quantum particle represented by the wave function.(Dekker, 1981).It is worth noting 

that the wave function can collapse into any state corresponding to any particular observable (Giacosa, 

2014). 

The general expression of the ground state of the QSHO along coordinate x is therefore: 

𝜓0(𝑥) = 𝐴𝑒
−𝑚𝜔𝑥̂2

2ℏ = (
𝑚𝜔

𝜋ℏ
)

1
4

𝑒
−𝑚𝜔𝑥̂2

2ℏ  

∴ 𝛙𝟎(𝐱) = (
𝐦𝛚

𝛑ℏ
)

𝟏

𝟒
𝐞

−𝐦𝛚𝐱̂𝟐

𝟐ℏ       (37) 

ENERGY VALUES ASSOCIATED WITH THE GROUND STATE 

If the raising operator acts on the ground state ψ0, excited states of higher energy will be obtained. 

The action of the Hamiltonian on a quantum state produces a different energy state and if it acts on the 

ground state it would yield a state of lowest observable energy(E0), let us calculate this energy by applying 

equation (9) to the ground state. The solution of the Schrodinger equation shows that energy levels of a 

harmonic oscillator are quantized, they are not arbitrarily continuous and can only have particular discrete 

values.(Triana and Fajardo, 2011). 

𝐻̂𝜓0(𝑥) = 𝐸0𝜓0(𝑥) 

The Hamiltonian can be re-stated according to equation (26) in terms of the ladder operators and plugged 

into Schrödinger’s equation: 

ℏ𝜔 (𝑎̂𝑎̂† −
1

2
) 𝜓0(𝑥) = 𝐸0𝜓0(𝑥) 

ℏ𝜔𝑎̂𝑎̂†𝜓0(𝑥) −
ℏω

2
𝜓0(𝑥) = 𝐸0ψ0(x) 

Take note of the order in which the operators appear. If the raising operator first acts on the ground state it 

will generate a higher energy state say𝜓1(𝑥) .  When the lowering operator next acts on the new state 

𝜓1(𝑥) it will lower it back to the initial ground state. 

 

 𝑎̂†𝜓0(𝑥) = 𝜓1(𝑥);  𝑎̂𝜓1(𝑥) = 𝜓0(𝑥), 

Hence: 

ℏ𝜔𝑎̂𝑎̂†𝜓0(𝑥) = ℏ𝜔𝜓0(𝑥) 

∴ ℏ𝜔𝜓0(𝑥) −
1

2
ℏω𝜓0(𝑥) = 𝐸0𝜓0(𝑥) 

1

2
ℏω𝜓0(𝑥) = 𝐸0𝜓0(𝑥) 

Taking out 𝜓0(𝑥) on both sides we obtain an expression for the ground state energy level: 
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𝐸0 =
1

2
ℏω     (38) 

If the raising operator acts on a quantum state with this amount of energy, the energy will be raised to a 

higher level generally expressed as: 

 

𝐸𝑛 = (𝑛 +
1

2
) ℏ𝜔(39)  

It is of note that applying the Hamiltonian repeatedly on 𝑎̂†𝜓0(𝑥) will give states of higher energy than the 

ground state. 

CONCLUSION 

The present paper introduces an elegant and straightforward algebraic approach to solving the time-

independent Schrodinger Equation for a quantum simple harmonic oscillator. The paper aims to generate 

the ground state and its associated energy value by exploiting basic quantum mechanical operator 

commutation algebra and the action of creation and annihilation operators on wave functions. The 

Hamiltonian operator and the ladder operators are introduced, and the Hamiltonian is expressed in terms of 

the ladder operators and applied to a normalized wave function to obtain the ground state, excited states, 

and their corresponding energies. The algebraic method provides a versatile and reliable solution, as it does 

not require any particular basis or coordinate system. Furthermore, the paper highlights the unity and 

interconnectedness of several topics in Physics, emphasizing that Physics is a unified discipline rather than 

a collection of disparate scientific ideas. This paper is a valuable resource for students and researchers 

seeking to comprehend quantum mechanics without resorting to complex mathematical methods. The 

approach presented in this paper is both accessible and comprehensive, making it an excellent tool for those 

interested in furthering their knowledge in this field. 

This paper presents a method for solving the time-independent Schrodinger Equation for a quantum simple 

harmonic oscillator. The approach is based on using basic quantum mechanics operator commutation 

algebra and the Hamiltonian, creation and annihilation operators on wave functions. By applying these 

operators, the method generates the ground state and its associated energy value, and further action of these 

operators generates excited quantum states. Notably, this method does not rely on any particular basis or 

coordinate system, making it a versatile approach.  

The paper emphasizes the unification of various topics in Physics, highlighting that Physics is a unified 

body of knowledge. The theories of wave-particle duality by de Broglie and the Schrodinger cat paradox 

are used to draw important analogies between classical and quantum mechanics, which are then applied to 

model a solution to the TISE.  

This paper can serve as a useful tool for students and researchers interested in understanding quantum 

mechanics without the need for complex mathematical manipulations. 
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