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ABSTRACT 

This research paper investigates the stability characteristics of magnetohydrodynamic (MHD) flow within 

channels filled with porous media. Specifically, the study explores modifications to the classical Orr-

Sommerfeld equation using the Darcy-Forchheimer model to account for the presence of porous media. The 

analysis aims to elucidate the combined influence of porous media and magnetic fields on flow stability in 

such systems. Numerical simulations and analytical techniques are employed to assess the impact of varying 

parameters on the stability behavior of the flow. The study revealed that the velocity profile increases with 

increase in Schmidt and Prandtl’s number and stabilizes with the increase in Grashof number and the 

buoyancy.  The temperature profile increases with Reynold’s Number and Hartmann number.  It stabilizes 

with Schmidt, Prandtl and Grashof number.  The profile of species concentration stabilizes with thermo-

phoretic parameter, Prandtl number and Darcy-Forchheimer’s parameter augumentation. 

Keywords— Darcy-Forchheimer model, Orr-Sommerfeld analysis, Magnetohydrodynamic, Viscous flow, 

Porous Media, Stability, Channel 

INTRODUCTION 

Magnetohydrodynamic (MHD) flow, characterized by the interaction between electrically conducting fluids 

and magnetic fields, finds widespread applications in engineering and scientific research. In many practical 

scenarios, such flows occur within channels filled with porous media, introducing additional complexities to 

the flow behavior. Understanding the stability of such flows is crucial for the design and operation of various 

engineering systems. This study focuses on investigating the stability of MHD flow in channels occupied by 

porous media, with a particular emphasis on incorporating the Darcy-Forchheimer model into the classical 

Orr-Sommerfeld analysis.  Stability analysis of flow, pioneered by Reynolds, Orr, and Sommerfeld, remains 

integral to fluid mechanics (Reynolds [1]; Orr [2]; Sommerfeld [3]). 

Magnetohydrodynamic (MHD) flow, involving electrically conducting fluids in magnetic fields, finds 

applications in various industries (Hayat et al. [4]).  The flow through porous media is reported extensively by 

the following literature review by the studies, Umavathi and Veershetty [5], Krishnamurthy [6] and Haider et 

al. [7]. In the modeling of the two-dimensional magnetohydrodynamic boundary layer flow in a channel with 

porous walls, Okedoye [8] studied the analytical analysis of steady MHD free convective heat and mass 

transfer flow past a semi-infinite vertical porous plate in porous medium has been studied including the 

Dufour and Soret effects.  Ibrahim [9] investigated the effects of mass transfer, radiation, Joule heating, and 

viscous dissipation on steady MHD Marangoni convection flow over a flat surface with suction and injection. 

MHD effects on heat transmission over a stretching sheet immersed in a porous medium with variable 

viscosity and viscous dissipation were studied by Hunegnaw and Naikoti [10]. Adesanya et al. [11] 
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investigated the Thermodynamics Analysis of Hydromagnetic Third Grade Fluid Flow through a Channel 

Filled with Porous Medium.  Again, Okedoye [12] investigated the analytical calculation of entropy 

generation due to unsteady magnetohydrodynamic heat and mass transfer in MHD flow past an infinite 

vertical oscillating plate was considered, taking account of the presence of free convection with mass transfer. 

In a micropolar fluid with radiation, Mabood et al. [13] investigated the effects of Soret effects and non-

uniform heat sources/sinks on MHD non-Darcian convective flow past a stretched sheet. Darcy's Law and its 

modification by Forchheimer are fundamental in understanding such flows Liu [14]. The Darcy–Forchheimer 

model addresses both viscous and inertial effects (Shehzad et al. [15]). Hayat et al. [16] analyzed Maxwell 

fluid through temperature dependent thermal conductivity and heat flux of Darcy–Forchheimer flow through 

Cattaneo-Christov theory while Gbadeyan and Opanuga [17] worked on inherent irreversibility analysis in a 

buoyancy induced MHD couple stress fluid. Their results confirmed that increase in buoyancy force and 

suction/injection increases fluid velocity and temperature. The effects of slip on the MHD flow of a dusty 

fluid across a stretching sheet through porous space were investigated by Abbas et al. [18]. The impact of 

nonlinear radiative heat and mass transfer on MHD flow across a stretching surface with changing 

conductivity and viscosity was investigated by Okedoye and Salawu [19]. The flow in porous media is a 

crucial aspect across various disciplines, including engineering, geosciences, and biology (Kumar & Varma 

[20]; Menni et al. [21]. Falana and Alao [22] examined the Similarity Solution of Heat and Mass Transfer 

Flow of a Nanofluid across a Porous Plate in a Darcy-Forchheimer Flow. Sharma and Mishra [23] studied the 

impact of MHD and internal heat generation/absorption on micropolar fluid moving along a stretchable sheet. 

Eid et al. [24] investigated homogeneous-heterogeneous in the MHD flow of a non-Newtonian Prandtl fluid 

via a permeable linear horizontal expandable (shrinkable) surface. Panya et al. [25] studied MHD Darcy-

Forchheimer Slip Flow in a Porous Medium with Variable Thermo-Physical Properties. They find that when 

the porosity parameter is increased, the velocity of the fluid decrease, while temperature profile and skin 

friction decrease. 

As reported in the above considerations, previous studies have extensively explored the stability of MHD 

flows and the influence of porous media separately. However, limited research has been conducted on the 

combined effects of both factors. Notably, Darcy-Forchheimer modifications to the classical equations 

governing flow in porous media have been proposed, providing a framework for analyzing flow stability in 

such systems. Additionally, the Orr-Sommerfeld equation has been widely used to study the stability of 

viscous flows, but its applicability to MHD flows within porous media remains underexplored. By 

incorporating the Darcy-Forchheimer formulation, the study aims to provide insights into the combined 

influence of porous media and magnetic fields on flow stability in such systems. 

NOMENCLATURE 

x, y Axis of Flow Dimensionless group 

u, v Velocity Component along the x and y-axis θ Dimensionless Temperature 

T Temperature Field φ Dimensionless Concentration 

C Concentration Field 𝐺 Grashof Number  

g Gravitational Acceleration ε Temperature dependent viscosity 

B0 Magnetic Field of Uniform Strength N Buoyancy Ratio  

Tw Surface Temperature 𝜋0 Thermophoersis Parameter 

T∞ Ambient Temperature 𝑆𝑐 Schmidt Number 

Cw Surface Concentration    𝑃𝑟 Prandtl Number 

C∞ Ambient Concentration Nu  Nusselt Number 

βτ Volumetric Coefficient of Thermal Expansion Sh  Sherwood Number 

βc Volumetric Coefficient of Mass Expansion 𝐻𝑎   Hartmann Number 
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U∞ Ambient Velocity 𝐹𝑠 Darcy-Forchheimer Parameter 

𝑉𝑇 Thermophoretic force Velocity 𝐸𝑐  Eckert Number 

𝐷𝑚 Molecular diffusivity 𝐾𝑇 Variable thermal Conductivity 

Ω Thermophoretic Parameter A Heat generation Parameter 

Greek Symbol Subscript 

ρ Fluid Density ∞ Ambient Condition 

σ Electrical Conductivity w Wall Condition 

μ Fluid Viscosity 0 < ϵ ≪ 1 

ν Kinematic Viscosity  

PROBLEM FORMULATION 

Consider an unsteady MHD laminar fluid regime of viscous incompressible fluid with heat and mass transfer 

over a porous medium. A uniform magnetic field of intensity 𝐵 is imposed perpendicular to the flow direction 

and 𝑥 and 𝑦-axis are parallel and normal to the surface of plate respectively. The induced magnetic field is 

assumed to be small compared to the applied magnetic field. Let 𝑢 and 𝑣 be the fluid velocity tangentially and 

normally respectively. The ambient temperature of the fluid and the concentration far from the surface are 

taken as 𝑇∞ and 𝐶∞ respectively. While the surface below the fluid is heated by convection from the fluid 

having initial temperature 𝑇𝑤  with concentration 𝐶𝑤. It is assumed that the porous medium is homogeneous 

and isotropic and saturated. A sketch of the physical model and the flow schematics are given in Figure 1. In 

Abdul Hakeem et al (2014) non-uniform heat source/sink (𝑞′′′) and thermo-phoretic velocity (𝑉𝑇) are given by 

𝑞′′′ = (
𝜅𝑢𝑤(𝑥)

𝑥𝜈
) [
𝐴∗(𝑇𝑤 − 𝑇∞)

𝑏𝑥
(𝑢 − 𝑈) + 𝐵∗(𝑇 − 𝑇∞)]

𝑉𝑇 =
𝑘′𝜈

𝜏

𝜕𝑇

𝜕𝑦
                                                                                

, (1) 

  Following Arunachalam and Rajappa (1978) and Chaim (1998), the thermal conductivity 

  𝐾𝑇 = 𝑘
𝑇

𝑇∞
                                                                        (2) 

Using the boundary-layer approximations the continuity, momentum, energy and mass species equations 

governing the type of flow under consideration becomes:  

 

Figure 1: Flow Geometry of problem 
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𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜐 [

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
]      

−
𝜎𝜇𝐵2(𝑥)

𝜌𝑘
(𝑢 − 𝑈)  ∓

𝑔

𝜌
(
𝜈

𝐾1
) |𝑢̂|(𝑢 − 𝑈)

+
𝑔

𝜌
[𝛽𝜏(𝑇 − 𝑇∞) + 𝛽𝑐(𝐶 − 𝐶∞)]

     (3) 

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈 [

𝜕2𝑣

𝜕𝑥2
+
𝜕2𝑣

𝜕𝑦2
]      

−
𝜎𝜇𝐵2(𝑥)

𝜌𝑘
(𝑣 − 𝑈) ∓

𝑔

𝜌
(
𝜈

𝐾1
) |𝑢̂|(𝑣 − 𝑈)

        (4) 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
) =

𝜕

𝜕𝑦
(𝑘

𝑇

𝑇∞

𝜕𝑇

𝜕𝑦
) + 𝜇 (

𝜕𝑢

𝜕𝑦
)
2

+(
𝑘𝑢𝑤(𝑥)

𝑥𝜈
) [
𝐴∗(𝑇𝑤 − 𝑇∞)

𝑏𝑥
(𝑢 − 𝑈) + 𝐵∗(𝑇 − 𝑇∞)]

     (5) 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
=
𝐷𝑚
𝜌

𝜕2𝐶

𝜕𝑦2
−
𝜕

𝜕𝑦
((𝐶 − 𝐶∞)

𝑘′𝜈

𝜏

𝜕𝑇

𝜕𝑦
) (6) 

 

Following similar boundary conditions used by Aziz et al. (2014), the appropriate partial slip boundary 

conditions for the velocity, temperature and concentration boundary conditions are given by: 

{
 
 

 
 𝑢 =  𝐿1  (

𝜕𝑢

𝜕𝑦
) , 𝑣 =  𝑣𝑤 , 𝑇 =  𝑇𝑤  +  𝐷1  (

𝜕𝑇

𝜕𝑦
) ,

 𝐶 =  𝐶𝑤  +  𝑁1  (
𝜕𝐶

𝜕𝑦
)

𝑎𝑡 𝑦 = 0

𝑢 →  𝑈∞, 𝑇 →  𝑇∞, 𝐶 →  𝐶∞ 𝑎𝑠 𝑦 →  ∞

 (7) 

 

METHODOLOGY 

The research methodology involves analysis of disturbance and analytical approximation to investigate the 

stability of MHD flow in channels filled with porous media. The governing equations, including the modified 

Orr-Sommerfeld equation incorporating Darcy-Forchheimer terms, are solved using appropriate numerical 

algorithms. Sensitivity analyses are conducted to assess the influence of key parameters such as porosity, 

magnetic field strength, and flow velocity on flow stability. 

Analysis of Disturbance 

The complex and dynamic nature system of flow lead to it perturbation. Understanding and managing these 

perturbations is crucial for maintaining the stability and resilience of the flow system. By identifying potential 

sources of perturbations and developing strategies to stop/mitigate their effects, we can ensure the smooth and 

efficient functioning of the flow system in various domain. The following are assumed:   
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𝐵𝑎𝑠𝑒 𝑓𝑙𝑜𝑤: {
𝑈 =  𝑈(𝑦), 𝑉 =  𝑊 =  0,

𝑇 = 𝒯(𝑦) = 𝑇𝑤 , 𝐶 = ℂ(𝑦) = 𝐶𝑤 ,
 

𝐹𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑛𝑔 𝑓𝑙𝑜𝑤: {
𝑢𝑓 = 𝑢𝑓(𝑥, 𝑦, 𝑡), 𝑣𝑓 = 𝑣𝑓(𝑥, 𝑦, 𝑡),

𝑣𝑓 = 𝑣𝑓(𝑥, 𝑦, 𝑡), 𝑣𝑓 = 𝑣𝑓(𝑥, 𝑦, 𝑡)
 

𝑢 =  𝑈 + 𝑢𝑓 , 𝑣 =  𝑉 + 𝑣𝑓 , 𝑤 =  0,                

𝑝 =  𝑃 + 𝑝𝑓, 𝑇 = 𝒯(𝑦) + 𝑇𝑓, 𝐶 = ℂ(𝑦) + 𝐶𝑓
 

   (8) 

Applying the disturbance analysis on the governing equations (3 - 8) and neglecting product of fluctuating 

terms the resultant equations are: 

𝜕𝑢𝑓

𝜕𝑥
+
𝜕𝑣𝑓

𝜕𝑦
= 0                                                                      (9) 

𝜕𝑢𝑓

𝜕𝑡
+ 𝑈

𝜕𝑢𝑓

𝜕𝑥
+ 𝑣𝑓

𝜕𝑈

𝜕𝑦
+
1

𝜌

𝜕𝑝𝑓

𝜕𝑥
=  𝜐 {

𝜕2𝑢𝑓

𝜕𝑥2
+
𝜕2𝑢𝑓

𝜕𝑦2
}    

    −
𝜎𝜇𝐵2(𝑥)

𝜌𝑘
𝑢𝑓  ∓

𝑔

𝜌
(
𝜈

𝐾1
) |𝑢̂|𝑢𝑓 +

𝑔

𝜌
(𝛽𝜏𝑇

𝑓 + 𝛽𝑐𝐶
𝑓

  (10) 

𝜕𝑣𝑓

𝜕𝑡
+ 𝑈

𝜕𝑣𝑓

𝜕𝑥
+
1

𝜌

𝜕𝑝𝑓

𝜕𝑦
= 𝜈 {

𝜕2𝑣𝑓

𝜕𝑥2
+
𝜕2𝑣𝑓

𝜕𝑦2
}         

                                                     −
𝜎𝜇𝐵𝑦

2(𝑥)

𝜌𝑘
𝑣𝑓    

               (11) 

𝜕𝐶𝑓

𝜕𝑡
+ 𝑈

𝜕𝐶𝑓

𝜕𝑥
 + 𝑣𝑓

𝜕ℂ(𝑦)

𝜕𝑦
  =

𝐷𝑚
𝜌
(
𝜕2ℂ(𝑦)

𝜕𝑦2
+
𝜕2𝐶𝑓

𝜕𝑦2
)    

−
𝑘′𝜐

𝜏

𝜕

𝜕𝑦
((ℂ(𝑦) − 𝐶∞)

𝜕𝑇𝑓

𝜕𝑦
       

                            +(ℂ(𝑦) − 𝐶∞)
𝜕𝒯(𝑦)

𝜕𝑦
+ 𝐶𝑓

𝜕𝒯(𝑦)

𝜕𝑦
)

 (12) 

With boundary conditions (8) becomes 

𝑢𝑓 = 𝐿1  (
𝜕𝑢𝑓

𝜕𝑦
) , 𝑣𝑓 = Π,𝑇𝑓 = 𝐷1  (

𝜕𝑇𝑓

𝜕𝑦
) ,

𝐶𝑓 = 𝑁1  (
𝜕𝐶𝑓

𝜕𝑦
)

}
 
 

 
 

 𝑎𝑡 𝑦 = 0

𝑢𝑓 ⟶ 0,𝑇𝑓 ⟶ 0,𝐶𝑓 ⟶ 0 𝑎𝑡 ∞  

    (13) 

If disturbances are assumed to be composed of a number of discrete partial fluctuations each of which 

propagating in x-direction. Also, perturbation is assumed to be 2D stream function. 

Any arbitrary 2D disturbance is assumed to be expanded in Fourier series with each term represents partial 

oscillations. The stream function, 𝜓(𝑥, 𝑦, 𝑡) is given as 

𝜓(𝑥, 𝑦, 𝑡) = 𝜙(𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡) = 𝜙(𝑦)𝑒𝑖𝛼(𝑥−𝑐𝑡),   
 𝜔 = 𝜔𝑟 + 𝑖𝜔𝑖 , 𝑐 = 𝑐𝑟 + 𝑖𝑐𝑖         

         (14) 
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where 𝜔𝑟 − Circular frequency, 𝜔𝑖 −  Amplification factor and 𝑐𝑟 − Velocity of propagation of wave (phase 

velocity).  

A stream function 𝜓  is defined by 

𝑢𝑓 =
𝜕𝜓

𝜕𝑦
=  𝜙′(𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡) ,         

𝑣𝑓 = −
𝜕𝜓

𝜕𝑥
= −𝑖𝛼𝜙(𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡)

                         

𝑇𝑓 = 𝑎𝜃(𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡) ,    𝐶𝑓 = 𝑏𝜑(𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡)  

                 (15) 

The continuity equation is satisfied by 𝑢𝑓  and   𝑣𝑓. Substituting the temporal and spatial derivatives into (10) 

differentiating wrt y and (12) wrt x, we have 

((𝑈 − 𝑐)(𝜙′′ − 𝛼2𝜙′) − 𝑈′′𝜙′) =
𝑖𝜈

𝛼
[𝜙′′′′ − 2𝛼2𝜙′′

+𝛼4𝜙] +
𝑖𝜎𝜇𝐵2(𝑥)

𝛼𝜌𝑘
(𝜙′′ − 𝛼2𝜙) ±

𝑖𝑔

𝛼𝜌
(
𝜈

𝐾1
) |𝑢̂|𝜙′′

−
𝑖𝑔

𝛼𝜌
𝛽𝑐 (

𝛽𝜏
𝛽𝑐
𝜃′ + 𝜑′)

         (16) 

Substituting the temporal and spatial derivatives into (11) and (12) we have, 

𝑃𝑟(𝑈 − 𝑐)𝜃(𝑦) =
1

𝑖𝛼
𝜃′′(𝑦) + 𝜙′′(𝑦)                  

−𝛼2𝜙(𝑦) +
𝑎

2

1

𝑖𝛼
𝑈′ −

𝐵0
𝑖𝛼
𝜃(𝑦)      

                 (17) 

𝜑′′(𝑦) − 𝑖𝛼𝑆𝑐(𝑈 − 𝑐)𝜑(𝑦) = 𝑆𝑐𝜋
𝜕

𝜕𝑦
(𝜑(𝑦)𝜃′(𝑦))            (18) 

Subject to  

𝜙′(𝑦) = 𝐿1 𝜙
′′(𝑦), 𝜃′(𝑦) = 𝑠,𝜑(𝑦) = 0,

𝜙′(𝑦) ⟶ 0, 𝜃(𝑦) ⟶ 0,𝜑(𝑦) ⟶ 0     
                              (19) 

where 

𝜇(𝑦) =
𝑎2𝑘

2𝑈′
 
𝑘

𝜌𝑐𝑝
=
1

𝑃𝑟
,
𝜔

𝛼
= 𝑐,𝐵∗ =

𝐵0
𝑏
, 𝐴∗ =

𝑎

𝑏(𝑇𝑤 − 𝑇∞)
,

𝐷𝑚
𝜌
=
1

𝑆𝑐
, 𝑘′ = 𝑘0𝑒

−𝑖(𝛼𝑥−𝜔𝑡),
𝑎𝑘0𝜈

𝜏
= 𝜋

 

Validation of Result 

When the body forces Hartmann, 𝐻𝑎 , Darcy-Forchhiemer, 𝐹𝑠 and Grashof, 𝐺𝑟  parameters are zero in equation 

(16), we have the well-known Orr-Sommerfeld linearized boundary layer stability equation. 

Let 

𝜙′′ − 𝛼2𝜙 = 𝑔(𝑦) 

Now, from 𝑈′′ = −1 
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𝑈 = −
𝑦2

2
+ 𝑎𝑦 + 𝑎0 

This corresponds to velocity profiles of interest such as plane Poiseuille flow for which 𝑈(𝑦) = 𝛿, which 

implies 𝑎 = 0 

Hence 

𝜙′′

𝑈′′
 +
𝑖𝛼𝑅𝑒
𝐹𝑠

𝜙 = (𝜙′′ − 𝛼2𝜙)    

Using the conditions above, the linearized Orr-Sommefeld heat and mass transfer system of equation becomes 

𝑖

𝛼𝑅𝑒
𝑔(𝑦)′′ + ((𝑈 − 𝑐) −

𝑖𝛼

𝑅𝑒
+
𝑖𝐻𝑎
𝛼𝑅𝑒

+
𝑖𝐹𝑠
𝛼𝑅𝑒

)𝑔(𝑦)

= 𝑖𝐺𝑟(𝑁𝜃
′(𝑦) + 𝜑′(𝑦))

             (20) 

𝜃′′(𝑦) − 𝑖𝛼𝑃𝑟(𝑈 − 𝑐)𝜃(𝑦) − 𝐵0𝜃(𝑦) = 𝑖𝛼𝑔(𝑦) +
𝑎

2
𝑈′    (21) 

𝜑′′(𝑦) − 𝑖𝛼𝑆𝑐(𝑈 − 𝑐)𝜑(𝑦) = 𝑆𝑐𝜋
𝜕

𝜕𝑦
(𝜑(𝑦)𝜃′(𝑦))           (22) 

Solution of Problem 

To obtain solution to the dimensionless Equations of (20) – (22), subject to (19), a perturbation method in 

series expansion is adopted with the limit 𝜖 for the reliant variables. It is necessary because 𝜖 is small. The 

velocity, temperature and species concentration field are given by the expressions 

𝑔(𝑦) = 𝑔0 + 𝜖𝑔1 +⋯

𝑇(𝑦) = 𝜃0 + 𝜖𝜃1 +⋯

𝐶(𝑦) = 𝜑0 + 𝜖𝜑1 +⋯

}                                                            (23) 

With 𝑈 = 𝛿,𝐺𝑟 = 𝜖𝐺, 𝜋 = 𝜖𝜋0 

Using equation (23) in Equations (20)-(22) and then equating the harmonic and non-harmonic terms, and 

ignoring the terms with the coefficient of ϵ  2, the mean velocity, mean temperature and the mean chemical 

species respectively are:  

𝑖

𝛼𝑅𝑒
𝑔0
′′ + (𝛿 − 𝑐 −

𝑖𝛼

𝑅𝑒
+
𝑖𝐻𝑎
𝛼𝑅𝑒

+
𝑖𝐹𝑠
𝛼𝑅𝑒

) 𝑔0 = 0

         𝜃0
′′ − 𝑖𝛼𝑃𝑟(𝛿 − 𝑐)𝜃0 − 𝐵0𝜃0 − 𝑖𝛼𝑔0 = 0

                                     𝜑0
′′ − 𝑖𝛼𝑆𝑐(𝛿 − 𝑐)𝜑0 = 0}

 

 

                  (24) 

Subject to 

𝑦 = 0: 𝑔0 = 𝑏, 𝜃0 = 1, 𝜑0 = 1
𝑦 → ∞: 𝑔0 → 0, 𝜃0 → 0, 𝜑0 → 0

}                                           (25) 

And the oscillatory part of the velocity, temperature and chemical species field are:  
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𝑖

𝛼𝑅𝑒
𝑔1
′′ + (𝛿 − 𝑐 −

𝑖𝛼

𝑅𝑒
+
𝑖𝐻𝑎
𝛼𝑅𝑒

+
𝑖𝐹𝑠
𝛼𝑅𝑒

) 𝑔1               

                                                  −𝑖𝐺𝑟(𝑁𝜃0
′ + 𝜑0′) = 0

                𝜃1
′′ − 𝑖𝛼𝑃𝑟(𝛿 − 𝑐)𝜃1 − 𝐵0𝜃1 − 𝑖𝛼𝑔1 = 0

𝜑1
′′ − 𝑖𝛼𝑆𝑐(𝛿 − 𝑐)𝜑1 − 𝑆𝑐𝜋0(𝜑0

′ 𝜃0
′ + 𝜑0𝜃0

′′) = 0}
 
 

 
 

           (26) 

Subject to 

𝑦 = 0: 𝑔1 = 0, 𝜃1 = 1,𝜑1 = 1 
𝑦 → ∞: 𝑔0 → 0, 𝜃0 → 0, 𝜑0 → 0 

}                                              (27) 

These equations are then analytically solved to get the momentum, concentration and heat field solution as 

follows as: 

𝑔0(𝑦) = 𝑒
𝑒1𝑦(𝐶𝑜𝑠(𝑒2𝑦) + 𝑖𝑆𝑖𝑛(𝑒2𝑦))                                  (28) 

𝜃0(𝑦) = (
𝑒3𝑦

2
)𝐶𝑜𝑠ℎ(𝑒8𝑎21) + 𝐶𝑜𝑠 (

𝑒3𝑦

2
) 𝑆𝑖𝑛ℎ(𝑒8𝑎22)

+𝐶𝑜𝑠 (
𝑒3𝑦

2
)𝐶𝑜𝑠ℎ(𝑒8𝑎17) − 𝑆𝑖𝑛 (

𝑒3𝑦

2
)𝑆𝑖𝑛ℎ(𝑒8𝑎18)

                   −𝑎19𝑒
𝑒1𝑦𝐶𝑜𝑠(𝑒2𝑦) − 𝑎20𝑒

𝑒1𝑦𝑆𝑖𝑛(𝑒2𝑦)

−𝑖 {𝐶𝑜𝑠 (
𝑒3𝑦

2
)𝑆𝑖𝑛(𝑒8𝑎21) + 𝑆𝑖𝑛 (

𝑒3𝑦

2
)𝐶𝑜𝑠ℎ(𝑒8𝑎22)

+𝑆𝑖𝑛 (
𝑒3𝑦

2
)𝑆𝑖𝑛ℎ(𝑒8𝑎17) + 𝐶𝑜𝑠 (

𝑒3𝑦

2
) 𝐶𝑜𝑠ℎ(𝑒8𝑎18)

                    +𝑎20𝑒
𝑒1𝑦𝐶𝑜𝑠(𝑒2𝑦) + 𝑎19𝑒

𝑒1𝑦𝑆𝑖𝑛(𝑒2𝑦)}

     (29) 

𝜑0(𝑦) = 𝐶𝑜𝑠(𝑎13𝑦)𝐶𝑜𝑠ℎ(𝑎14𝑦)                 

                            +𝑖𝑆𝑖𝑛(𝑎13𝑦)𝑆𝑖𝑛ℎ(𝑎14𝑦)
                            (30) 

𝑔1(𝑦) = (𝑎23 + 𝑖𝑎24)𝑦
2 + (𝑎24 + 𝑖𝑎26)𝑦

3                    

                          +(𝑎27 + 𝑖𝑎28)𝑦
4 + (𝑎29 + 𝑖𝑎30)𝑦

5       (31) 

𝜃1(𝑦) = −6(𝑆𝑖𝑛 (
𝑒5𝑦

2
)𝐶𝑜𝑠ℎ(𝑒9𝑎34) + 𝐶𝑜𝑠 (

𝑒5𝑦

2
)𝑆𝑖𝑛ℎ(𝑒9𝑎35))

 
−2𝑎36𝐶𝑜𝑠 (

𝑒5𝑦

2
)𝐶𝑜𝑠ℎ(𝑒9) + 2𝑎37𝑆𝑖𝑛 (

𝑒5𝑦

2
)𝑆𝑖𝑛ℎ(𝑒9)

      +𝑎37𝑦
5 + 𝑎39𝑦

4 + 𝑎41𝑦
3 + 𝑎43𝑦

2 + 𝑎47𝑦 + 𝑎51            (32)

+ {6𝐶𝑜𝑠 (
𝑒5𝑦

2
)𝑆𝑖𝑛ℎ(𝑒9𝑎34) − 6𝑆𝑖𝑛 (

𝑒5𝑦

2
)𝐶𝑜𝑠ℎ(𝑒9𝑎35)

−2𝑎37𝐶𝑜𝑠 (
𝑒5𝑦

2
)𝐶𝑜𝑠ℎ(𝑒9) − 2𝑎36𝑆𝑖𝑛 (

𝑒5𝑦

2
)𝑆𝑖𝑛ℎ(𝑒9)

+𝑎38𝑦
5 + 𝑎40𝑦

4 + 𝑎42𝑦
3 + 𝑎44𝑦

2 + 𝑎48𝑦 + 𝑎52}

 

𝜑1(𝑦) = (𝑎53 + 𝑖𝑎54)𝑦
2 − (𝑎55 + 𝑖𝑎56)𝑦

3

+(𝑎57 + 𝑖𝑎58)𝑦
4 + (𝑎59 + 𝑖𝑎60)𝑦

5        
                           (33) 
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On substituting the above into (23), we have  

𝜙(𝑦) = 𝑒𝑒1𝑦(𝐶𝑜𝑠(𝑒2𝑦) + 𝑖𝑆𝑖𝑛(𝑒2𝑦)) + 𝜖((𝑎23 + 𝑖𝑎24)𝑦
2

+(𝑎24 + 𝑖𝑎26)𝑦
3 + (𝑎27 + 𝑖𝑎28)𝑦

4 + (𝑎29 + 𝑖𝑎30)𝑦
5)

(34) 

𝑇(𝑦) =
𝑒3𝑦

2
𝐶𝑜𝑠ℎ(𝑒8𝑎21) + 𝐶𝑜𝑠 (

𝑒3𝑦

2
)𝑆𝑖𝑛ℎ(𝑒8𝑎22)

+𝐶𝑜𝑠 (
𝑒3𝑦

2
)𝐶𝑜𝑠ℎ(𝑒8𝑎17) − 𝑆𝑖𝑛 (

𝑒3𝑦

2
)𝑆𝑖𝑛ℎ(𝑒8𝑎18)

−𝑎19𝑒
𝑒1𝑦𝐶𝑜𝑠(𝑒2𝑦) − 𝑎20𝑒

𝑒1𝑦𝑆𝑖𝑛(𝑒2𝑦)

−𝑖 {𝐶𝑜𝑠 (
𝑒3𝑦

2
)𝑆𝑖𝑛(𝑒8𝑎21) + 𝑆𝑖𝑛 (

𝑒3𝑦

2
)𝐶𝑜𝑠ℎ(𝑒8𝑎22)

+𝑆𝑖𝑛 (
𝑒3𝑦

2
)𝑆𝑖𝑛ℎ(𝑒8𝑎17) + 𝐶𝑜𝑠 (

𝑒3𝑦

2
)𝐶𝑜𝑠ℎ(𝑒8𝑎18)

+𝑎20𝑒
𝑒1𝑦𝐶𝑜𝑠(𝑒2𝑦) + 𝑎19𝑒

𝑒1𝑦𝑆𝑖𝑛(𝑒2𝑦)}

+𝜖 (−6𝑆𝑖𝑛 (
𝑒5𝑦

2
)𝐶𝑜𝑠ℎ(𝑒9𝑎34) − 6𝐶𝑜𝑠 (

𝑒5𝑦

2
)𝑆𝑖𝑛ℎ(𝑒9𝑎35)

−2𝑎36𝐶𝑜𝑠 (
𝑒5𝑦

2
) 𝐶𝑜𝑠ℎ(𝑒9) + 2𝑎37𝑆𝑖𝑛 (

𝑒5𝑦

2
) 𝑆𝑖𝑛ℎ(𝑒9)

+𝑎37𝑦
5 + 𝑎39𝑦

4 + 𝑎41𝑦
3

+𝑎43𝑦
2 + 𝑎47𝑦 + 𝑎51 + {6𝐶𝑜𝑠 (

𝑒5𝑦

2
)𝑆𝑖𝑛ℎ(𝑒9𝑎34)

−6𝑆𝑖𝑛 (
𝑒5𝑦

2
) 𝐶𝑜𝑠ℎ(𝑒9𝑎35) − 2𝑎37𝐶𝑜𝑠 (

𝑒5𝑦

2
)𝐶𝑜𝑠ℎ(𝑒9)

{−2𝑎36𝑆𝑖𝑛 (
𝑒5𝑦

2
)𝑆𝑖𝑛ℎ(𝑒9)

+𝑎38𝑦
5 + 𝑎40𝑦

4 + 𝑎42𝑦
3 + 𝑎44𝑦

2 + 𝑎48𝑦 + 𝑎52}}

(35) 

𝐶(𝑦) = 𝐶𝑜𝑠(𝑎13𝑦)𝐶𝑜𝑠ℎ(𝑎14𝑦) + 𝑖𝑆𝑖𝑛(𝑎13𝑦)𝑆𝑖𝑛ℎ(𝑎14𝑦)

+𝜖((𝑎53 + 𝑖𝑎54)𝑦
2 − (𝑎55 + 𝑖𝑎56)𝑦

3

+(𝑎57 + 𝑖𝑎58)𝑦
4 + (𝑎59 + 𝑖𝑎60)𝑦

5)

(36)  

Having obtained expressions for velocity, temperature and concentration, we then use a computer software 

package (Maple) to build up the imaginary and real parts, but the real part which is our interest for velocity, 

temperature and concentration are express as follow:  

ℜ(𝜙) = 1 + (
1

120
𝑒1
3 −

1

120
𝑎2
2𝑒1 +

1

120
𝑎1
2𝑒1 +

1

20
𝜖𝑎25

−
1

40
𝑒2
2 −

1

60𝑎1𝑎2𝑒2
) 𝑦5 + (

1

24
𝑎1
2 +

1

24
𝑒1
2 −

1

4
𝑎2
2𝑎1

2

+
1

12
𝜖𝑎23 +

1

24
𝑎2
4 +

1

24
𝑎1
4 −

1

24
𝑎2
2 −

1

24
𝑒2
2) 𝑦4

+
𝑦3𝑒1
6

+ (
1

2
+
𝑎1
2

2
−
𝑎2
2

2
)𝑦2                                     

(37) 
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ℜ(𝜙) = 1 + (
1

120
𝑒1
3 −

1

120
𝑎2
2𝑒1 +

1

120
𝑎1
2𝑒1                    

+
1

20
𝜖𝑎25 −

1

40
𝑒2
2 −

1

60𝑎1𝑎2𝑒2
) 𝑦5 + (

1

24
𝑎1
2 +

1

24
𝑒1
2

−
1

4
𝑎2
2𝑎1

2 +
1

12
𝜖𝑎23 +

1

24
𝑎2
4 +

1

24
𝑎1
4 −

1

24
𝑎2
2 −

1

24
𝑒2
2

                             +
𝑦3𝑒1
6

+ (
1

2
+
𝑎1
2

2
−
𝑎2
2

2
)𝑦2                       

  (37) 

ℜ(𝑇) =
𝑒3𝑦𝐶𝑜𝑠ℎ(𝑒8𝑎21)

2
+ 𝐶𝑜𝑠 (

𝑒3𝑦

2
)𝑆𝑖𝑛ℎ(𝑒8𝑎22)     

+𝐶𝑜𝑠 (
𝑒3𝑦

2
) 𝐶𝑜𝑠ℎ(𝑒8𝑎17) − 𝑆𝑖𝑛 (

𝑒3𝑦

2
)𝑆𝑖𝑛ℎ(𝑒8𝑎18)

−𝑎19𝑒
𝑒1𝑦𝐶𝑜𝑠(𝑒2𝑦) − 𝑎20𝑒

𝑒1𝑦𝑆𝑖𝑛(𝑒2𝑦)

+𝜖 {−6𝑆𝑖𝑛 (
𝑒5𝑦

2
)𝐶𝑜𝑠ℎ(𝑒9𝑎34)

−6𝐶𝑜𝑠 (
𝑒5𝑦

2
)𝑆𝑖𝑛ℎ(𝑒9𝑎35) − 2𝑎36𝐶𝑜𝑠 (

𝑒5𝑦

2
)𝐶𝑜𝑠ℎ(𝑒9)

+𝑎37𝑦
5 + 𝑎39𝑦

4 + 𝑎41𝑦
3 + 𝑎47𝑦 + 𝑎51

    (38) 

 

ℜ(𝐶) = 𝐶𝑜𝑠(𝑎12𝑦)𝐶𝑜𝑠ℎ(𝑎14𝑦) + 𝜖𝑎59𝑦
5                

+𝜖𝑎57𝑦
4 − 𝜖𝑎55𝑦

3 − 𝜖𝑎56𝑦
3 + 𝜖𝑎53𝑦

              (39) 

RESULTS AND DISCUSSION 

The results of the analytical approximation reveal significant modifications to the stability characteristics of 

MHD flow in porous media-filled channels due to the presence of Darcy-Forchheimer terms. Specifically, the 

incorporation of porous media alters the critical conditions for flow instability and may lead to the emergence 

of new stability regimes. Sensitivity analyses highlight the dependence of flow stability on various 

parameters, providing valuable insights for engineering applications. 

The perturbed equations with the boundary conditions were solved analytically using the perturbation method. 

From the numerical simulations of the results, the velocity profile, temperature profile and the concentration 

distribution profile for the flow are obtained with their behaviours discussed for varying governing parameters 

of interest. The impact of each flow parameters on the velocity, temperature and concentration distribution of 

the flow field are presented with contours and the contour values are presented in Table 1. 

In our contour drawing, as obtained in all contour drawings, level curves represent lines that connect points of 

equal value or altitude within a two-dimensional surface. These curves depict the variations in height or 

intensity across the surface. Each contour line represents a specific value, with lines closer together indicating 

a steeper change in the function's value. 

Contour lines are particularly useful for representing functions where the relationship between the variables is 

complex or difficult to visualize directly. When contour lines are almost the same throughout, it implies that 

the function being represented by those contour lines has relatively uniform values across the domain. In other 

words, the function does not vary significantly with changes in the independent variables within that region. 
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Table 1: Level curves for the Layers (Contour Values for various values of Parameters) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In our analysis a contour plot of a velocity, temperature and concentration distributions over the solution space 

with the boundaries, contour lines represent lines of equal velocity, temperature or concentration (e.g., every 5 

degrees Celsius). By examining the contour lines, one can discern patterns such as velocity, temperature or 

concentration gradients, areas of higher or lower velocity, temperature and concentration, and regions of 

uniform field.  

The species concentration distribution is found to change more or less with the variation of the flow 

parameters. The effect of the flow parameters on the velocity field is analyzed with the help of Figures 4.1- 

Field  𝐿1 𝐿2 𝐿3 𝐿4 𝐿5 𝐿6 𝐿7 𝐿8 

C
o
n
ce

n
tr

at
io

n
 C

o
n
to

u
r 

G 1.00 1.00 1.00 1.00 1.00  1.00  1.00  1.00 

𝜖 0.59 0.71 0.83 0.95 1.10  1.20  1.30  1.40 

𝑅 1.00 1.00 1.00 1.00 1.00  1.00  1.00  1.00 

𝜋0 0.97 0.97 0.98 0.98 0.99  0.99  1.00  1.00 

𝐻𝑎 1.00 1.00 1.00 1.00 1.00  1.00  1.00  1.00 

𝑆𝑐 0.54 0.60 0.67 0.73 0.79  0.85  0.91  0.97 

𝑃𝑟 0.92 0.93 0.94 0.95 0.96  0.97  0.99  1.00 

𝑁 1.00 1.00 1.00 1.00 1.00  1.00  1.00  1.00 

𝛿 0.85 0.87 0.89 0.91 0.93 0.95  0.97  0.99 

M
o
m

en
tu

m
 C

o
n
to

u
r 

G 1.00 1.00 1.00 1.00 1.00  1.00  1.00  1.00 

𝜖 1.00 1.00 1.00 1.00 1.00  1.00  1.00  1.00 

𝑅 1.00 1.00 1.00 1.00 1.00  1.00  1.00  1.00 

𝜋0 1.10 1.20 1.40 1.50 1.60  1.80  1.90  2.10 

𝐻𝑎 1.10 1.20 1.30 1.40 1.60  1.70  1.80  1.90 

𝑆𝑐 1.10 1.40 1.60 1.90 2.10  2.30  2.60  2.80 

𝑃𝑟 1.10 1.20 1.40 1.60 1.70  1.90  2.00  2.20 

𝑁 1.20 1.60 2.00 2.40 2.80  3.30  3.70  4.10 

𝛿 -5.00 -4.00 -2.90 -1.80 -0.76 0.310  1.40  2.50 

E
n
er

g
y
 C

o
n
to

u
r 

𝐺 -3.5 1010  -2.5 1010  -1.5 1010  -4.8 10^9  5.3 109  1.5 1010  2.6 1010  3.6 1010 

𝜖 -3.5 1011  -2.5 1011  -1.5 1011  -4.8 1010  5.3 1010  1.5 1011  2.6 1011  3.6 1010 

𝑅 3.7 1010  1.1 1011  1.9 1011  2.7 1011  3.4 1011  4.2 1011  4.9 1011  5.7 1010 

𝜋0 1.9 109  5.4 109  8.8 109  1.2 1010  1.6 1010  1.9 1010  2.3 1010  2.6 1010 

𝐻𝑎 1.3 109  3.6 109  5.9 109  8.2 109  1.1 1010  1.3 1010  1.5 1010  1.7 1010 

𝑆𝑐 1.9 101  5.5 1010  9.0 1010  1.3 1011  1.6 1011  2.0 1011  2.3 1011  2.7 1011 

𝑃𝑟 -0.7 107  -1.5 107  -1.3 107  -1.0 107  -8.0 106  -5.7 106  -3.4 106  -1.1 106 

𝑁 6.3 109  2.3 1010  4.0 1010  5.7 1010  7.4 1010  9.1 1010  1.1 1011  1.2 1011 

𝛿 -0.4 109  -6.1 109  -4.8 109  -3.5 109  -2.3 109  -9.7 108  3.1 108  1.6 109 
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4.4. Figure 4.1 highlight the influence of 𝜖 on the concentration profile. Concentration profile reduces 

through 𝜖. Figure 5.2 show the effect of thermophoretic parameter 𝜋0 on the concentration profile. It can be 

seen that the concentration and the solute boundary layer thickness decreases with an increase in  𝜋0.  

 

Figure 4.1: Variation of 𝜖 on the concentration profile 

Figure 4.3 shows the effect of Schmidt number 𝑆𝑐 on the concentration field. Schmidt number 𝑆𝑐 is defined as 

the ratio momentum diffusivity (kinematic viscosity) and mass diffusivity.  It is seen that the higher value of 

Schmidt number 𝑆𝑐 reduces concentration. Figure 4.4 demonstrates the profiles of species concentration with 

various values of Prandtl number 𝑃𝑟. The prandtl number represents the ratio of momentum diffusivity to 

thermal diffusivity which justify the fact that an increase 𝑃𝑟 causes decrease in concentration profiles. 

Figure 4.5 depicts the effect of Schmidt number 𝑺𝒄 on the velocity field. It is observed when molecules collide 

randomly, the momentum diffusivity parameter increases which increases the Schmidt number and result in 

velocity argumentation. Figure 4.6 demonstrates the profiles of velocity with Prandtl number Pr. The Prandtl 

number Pr which is defined as the ratio of momentum diffusivity to thermal diffusivity It is evident that 

velocity profile increases with augmentation in Prandtl number 𝑃𝑟. The influence of Grashof number on the 

temperature field is shown in Figure 5.7. If the thermal Grashof number prevail then the temperature 

distribution decreases but if the mass buoyancy dominates, temperature distribution increases. Figure 4.8 

represent the buoyancy effect on the temperature distribution. Increase in buoyancy decreases temperature. 

The Reynolds number's behavior on the temperature field is shown in Figure 4.9. The ratio of inertial forces to 

viscous forces is known as the Reynolds number. At decreasing Reynolds number levels, the fluid loses some 

of its viscosity. The viscous forces are subordinated to the inertial forces, increasing the fluid temperature. 

Figure 4.10 illustrate the effect of Schmidt number 𝑺𝒄  on the temperature profile. An increase in Schmidt 

number 𝑺𝒄 decreases the temperature profile.  Figure 4.11 demonstrates the profiles of temperature with 

variation of Prandtl number 𝑃𝑟. The prandtl number is ratio of momentum diffusivity to thermal diffusivity 

which clarify the fact that an increase 𝑃𝑟 causes decrease in temperature profiles. 

 

Figure 4.2: Variation of 𝜋0 on the concentration profile 
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CONCLUSION   

This research paper presents a comprehensive investigation into the stability of magnetohydrodynamic flow in 

channels occupied by porous media, considering modifications to the classical Orr-Sommerfeld analysis using 

the Darcy-Forchheimer model. The study contributes to the understanding of flow stability in complex porous 

media environments and lays the foundation for further research in this area. Insights gained from this study 

can inform the design and optimization of engineering systems involving MHD flows in porous media-filled 

channels. 

The Modified Orr-Sommerfeld MHD Stability Flow in a Channel occupy by Porous Medium was 

investigated. The governing non-linear partial differential equations are solved separately to obtain the mean 

velocity, mean temperature and the mean concentration along with the oscillatory part of the velocity, 

temperature and concentration. From the computational results, the influences of various physical parameters 

such as on the profiles of velocity, temperature and species concentration are analyzed. 

 

Figure 4.3: Variation of 𝑆𝑐 on the concentration profile 

 

Figure 4.4: Variation of 𝑃𝑟 on the concentration profile 
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Figure 4.5: Effects of 𝑆𝑐 on the velocity field 

 

Figure 4.6: Effects of 𝑃𝑟 on the velocity field. 

 

Figure 4.7: Effects of 𝐺 on the temperature field. 

 

Figure 4.8: Effects of 𝑁 on the temperature field 

In general, particularly in our context of stability analysis, uniform contour lines typically refer to regions in 

parameter space where the behavior of the system remains consistent or stable. In summary, our results reveal:  

1. Stable Regions: Contour lines that are uniform or nearly uniform across a region of parameter space 

indicate regions where the system's behavior is stable. This means that small perturbations or changes in 

parameters within that region do not lead to significant deviations or instability in the system's response. In 

this analysis where contour lines represent temperature velocity, temperature or concentration, uniform 

contours indicate that the system has reached momentum, thermal or species equilibrium. 

https://rsisinternational.org/journals/ijrias
https://rsisinternational.org/journals/ijrias
http://www.rsisinternational.org/


INTERNATIONAL JOURNAL OF RESEARCH AND INNOVATION IN APPLIED SCIENCE (IJRIAS) 

ISSN No. 2454-6194 | DOI: 10.51584/IJRIAS | Volume IX Issue V May 2024| 

 

Page 149 

www.rsisinternational.org 

 

 

 
 

 

Figure 4.9: Effects of 𝑅 on the temperature field. 

 

Figure 5.10: Effects of 𝑅 on the temperature field 

2. Robustness: Uniform contour lines suggest robustness of stability with respect to variations in 

parameters. A System designed with suggested parameters (as in our report) indicate that stability is 

maintained over a range of parameter values, which is often desirable in practical applications where 

parameters may vary. 

3. Parameter Sensitivity: In this analysis, contour lines that are almost parallel and equally spaced, 

indicate that the field (velocity, temperature or concentration) being analyzed is not highly sensitive to 

changes in the independent variables within that region. In other words, small changes in the input variables 

do not significantly affect the output values. Conversely, in some cases, regions where contour lines are highly 

variable or non-uniform indicate parameter sensitivity and instability. In such regions, small changes in 

parameters can lead to significant changes in the system's behavior, potentially resulting in instability or 

unpredictable responses.  

4. Uniform Boundary Conditions: Uniform contour lines can also arise when boundary conditions, such 

as velocity, temperature or concentration at the boundaries of the system, are constant or vary smoothly.  

5. Balanced Heat or Mass Transfer: Uniform contour lines also suggest regions where heat or mass 

transfer rates are balanced, meaning that the rates of heat or mass transfer into the region are approximately 

equal to the rates of heat or mass transfer out of that region. 

Therefore, the result of this work will help to identify stable regions, assess parameter sensitivity, and 

understand the boundaries of stability within the system's parameter space. 
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